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Abstract

An explicit, essentially 2D solution for steady unsaturated seepage flow from infinity to a corner, with boundaries kept at

constant suction, is obtained for the Kirchhoff potential by the method of separation of variables. A system of coordinates

coinciding with the corner boundaries is selected. Distributions of the pressure, stream lines and velocities are derived. Non-

existence of steady flows at certain corner orientations, deflection of the incident flow by slanted boundaries and inflection

points on the stream lines close to the vertex are discussed. One-dimensional limit for zones far from the trough is examined.

Refraction and further collimation of the upper 2D flow in the second underlying porous medium with implications to

geotechnical capillary barriers is studied. A vadose zone originated accretion is matched with a saturated ‘wing’, which appears

on a slanted bedrock. Mathematically, this matching is done by linking the Dupuit–Forchheimer and quasi-linear models. A

tilted water table is shown to entrain the recharging moisture with curvilinear stream lines in the unsaturated zone.

q 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Descending (infiltration) and ascending (evapora-

tion and capillary rise) unsaturated flows in porous

media control distributions of moisture content,

matrix potential, solute concentration, mechanical

stresses and other physical parameters, which are

studied, for example, in hydrology, irrigation and

drainage, environmental physics and geomechanics.

Theoretical description of these flows is impeded by

two obstacles. First, even in steady conditions and

homogeneous media flow is described by highly non-

linear partial differential equations (PDEs), the non-

linearity of which originates from a compound

interrelation between conductivity, pressure and

degree of saturation (Philip, 1969). Second, soils or

rocks are naturally composed of zones with contrast-

ing textural and structural properties. This hetero-

geneity, even if detected appropriately in the field, can

be analytically taken into account in a few simple flow

schemes for which the PDEs are solvable.

The paucity of geological and pedological infor-

mation on heterogeneity and intrinsic mathematical

problems in solution of PDEs is obviated by

conceptualizing the subsurface as a laminated system.

Horizons in soil physics, commingled formations in

petroleum geology or interbedded aquifers-aquitards

in groundwater hydrology are postulated to have

piece-wise constant parameters, which change

abruptly across horizontal interfaces. However, the

undulating division boundaries between two adjacent
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materials in natural soils or rocks as in Fig. 1 are more

common than straight ones. Man-made engineering

constructions (gravel packs, draining layers or clay

liners) are often purposely shaped with edges,

corrugations or zigzags as in Fig. 1b (Cedergren,

1989). For example, capillary barriers are used to

protect landfills, waste repositories, basements, etc.

against moisture fluxes (Ross, 1990; Khire et al.,

2000). The main element of these barriers is a coarse

wedge two flanks of which divert the incident flow

from a protected area under the apexes. The re-routed

water seeps into troughs where it does not inflict any

damage (e.g. to a waste repository as in Fig. 1b). In

agriculture, planting is also made in natural dimples or

dug excavations filled with a porous medium, the

properties of which contrast with the parent material.

Thus, geologically born irregularities on natural

interfaces or crenellated profiles in designed sub-

surface structures call for models more adequate than

ideal strata.

The practical motivation of this paper is to study

2D unsaturated flows in depressions or protrusions as

ABC in Fig. 1a and to answer the following question:

what is the distribution of the matrix potential, stream

lines and velocities in the trough zone depending on

the incident infiltration intensity, physical properties

of the two contrasting soils, the orientation of the

trough and the obliquity of its two faces? In particular,

we are interested in how much moisture can be

accumulated (diverted) near (from) the trough vertex

and how efficiently the trough pointedness thwarts

gravity from bringing moisture into certain areas. Of

special importance is the very existence of unsatu-

rated flows and conditions when saturated wedges

Fig. 1. (a) Infiltration through a two-layer soil, (b) exfiltration and infiltration near crenellated geotechnical barriers, (c) trough geometry,

(d) protrusion, (e) flat draining layer, (f) constant pressure slot.
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form on dome-type saliences of bedrock. In particular,

we want to understand how the water table in a

hillslope receives moisture from the unsaturated zone,

when the groundwater zone is hidden under the slope

surface and at which conditions a perched saturated

zone exudes into the atmosphere.

The above mentioned mathematical non-linearity

of the governing PDE for unsaturated flows has been

effectively detoured by J.R. Philip and his colleagues

via the so-called Gardner-soil model that posits an

exponential dependence of the hydraulic conductivity

on suction pressure. In that quasi-linear model, a non-

linear PDE is reduced to the Helmholtz linear

equation for which a machinery of known methods

of wave mechanics (in particular optics) (Morse and

Feshbach, 1953) has been applied (Philip, 1989a;

Philip et al., 1989; Waechter and Philip, 1985), with a

number of mathematically equivalent (and antedated)

results available in the theory of heat transfer (e.g.

Sretensky, 1935; Concer, 1959). For the 2D Helm-

holtz equation, explicit solutions have been obtained

in domains where the equation separates, in particular,

for an isobaric and impermeable cylinder (Philip,

1984) and parabola (Philip and Knight, 1989). For

these geometries the PDE can be decoupled into two

solvable ordinary differential equations (ODEs) that

enables one to obtain explicit expressions for all flow

characteristics. For more complicated shapes, Philip

(1990a,b) cut ‘the Gordian knot of separability’ by

applying the boundary layer approximation.

To the best of my knowledge, quasi-linear flows in

corners as ABC (Fig. 1) have not been analyzed,

although in these domains the Helmholtz equation

either separates, i.e. reduces to two ODE, or can be

treated by the normal mode expansion (Pinsky, 1991).

This gap is strange because domains with corners and

cusps are common in continuum mechanics. The

behaviour of characteristic functions in these funda-

mental analytic elements (Strack, 1989) has been

thoroughly studied in problems governed by the

Laplace (saturated seepage, Polubarinova-Kochina,

1962), Poisson (flows in straight capillary tubes,

Sisavath et al., 2001), biharmonic (viscous flows,

Sherman, 1990), wave equations (diffraction of

acoustical signals on sharp edges, Morse and

Feshbach, 1953), etc.

A theoretical objective of our work is to obtain a

new rigorous 2D solution, which in the limit can be

reduced to 1D refraction on a sloped interface

between soils of contrasting texture (Warrick et al.,

1997). In particular, we can determine how far from

point B in Fig. 1, the Ross (1990) deflection formula

for a capillary barrier can be applied. We also

discovered a simple example of an unconfined

corner-shaped steady Dupuit– Forchheimer (DF)

groundwater flow accruing moisture through a dip-

ping water table, which, in its own turn, causes

deformation of the infiltration streamlines.

2. Philip’s model in non-orthogonal coordinates

We consider infiltration from above in a corner

ABC with an angle of ordination f0 (Fig. 1c). We

originate a Cartesian system of coordinates at the

vertex B with z axis oriented downward. Soil fills the

space between the left and right arms of the corner

oriented at angles gl and gr ¼ f2 gl: The left angle

is counted from 2z axis counterclockwise while the

right angle—clockwise. We assume that along AB and

BC pressure is a fixed constant, pb: As will be

discussed later, this corresponds to two-layered soils

(Section 5). In a particular case when pb is

atmospheric, we match saturated and unsaturated

flows by continuity of the normal and tangential flux

components along the water table. If we move to

infinity along any ray BJ originating at B and

contained between AB and BC; then pressure tends

to another constant, pi: Both pi and pb are arbitrary but

negative to ensure unsaturated conditions.

In the quasi-linear model, the hydraulic conduc-

tivity k is the Gardner (1958) function

k ¼ ks expðaPÞ

where ks is the saturated hydraulic conductivity, a is

the sorptive number, P ¼ p=ðrgÞ is the matrix

potential expressed as a length, r is the fluid density,

and g is the gravity acceleration. We assume that the

soil is homogeneous and isotropic and hence a and ks

are constants. The Kirchhoff potential u0 is defined as

u0 ¼
ðP

21
kðPÞdP ¼

ks expðaPÞ

a

From this expression we see that both pressure and

potential are constant along ABC, i.e. u0 ¼ u0b ¼ ðks

exp aPbÞ=a: At infinity, excluding the domain
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boundaries AB and BC; the potential u0 ¼ u0i ¼ ðks

exp aPiÞ=a: In the quasi-linear model in general, u0

varies in the range 0 , u0 , us where us ¼ ks=a

corresponds to the complete saturation limit.

In our Cartesian coordinates, the reduced potential

u ¼ u0 2 u0b satisfies the following equation:

›2u

›x2
þ

›2u

›z2
2 a

›u

›z
¼ 0 ð1Þ

Although soils seldom exhibit perfectly Gardner

conductivities, Philip invoked it as an expedient

approximation leading to a linear PDE (1).

The homogeneous Dirichlet boundary condition

and condition at infinity are

uABC ¼ 0; ui ¼ u0i 2 u0b ð2Þ

We notice that if a ¼ 0 in Eq. (1), then Eqs. (1) and

(2) has only a trivial solution when u ¼ const

everywhere in the corner. Indeed, if a harmonic ða ¼

0Þ function u vanishes at the sides of an unbounded

sector, then u must grow to infinity at infinity. This is

the crux of the famous Phragmen–Lindelof principle

(Protter and Weinberg, 1984, pp. 93–96).

In order to find a non-trivial solution to the

boundary value problem (1) and (2) at non-degenerat-

ing a . 0; we combine the ideas and techniques from

Philip (1998) and Warrick et al. (1997). As in Philip

(1990b), we introduce a non-Cartesian (but ‘natural’)

system of coordinates jBh :

j ¼ aðx cos gl 2 z sin glÞ;

h ¼ 2aðx cos gr þ z sin grÞ

ð3Þ

axes of which coincide with the corner sides. In these

coordinates, Eq. (1) is transformed into the following

PDE

›2u

›j2
þ

›2u

›h2
þ 2B

›2u

›j ›h
þ D

›u

›j
þ E

›u

›h
¼ 0 ð4Þ

where B ¼ cosðp2 f0Þ; D ¼ sin gl and E ¼ sin gr

are three constants.

Usually, PDEs of type (4) are reduced to Eq. (1)

(Zauderer, 1989) or even to the so-called canonical

form (the Helmholtz equation for an elliptic PDE) but,

as we assert, for the corner problem a seemingly

awkward Eq. (4) does provide some clues to solve

Eqs. (1) and (2).

3. Right angle trough

We attempt to solve Eq. (4) by separation of

variables searching for particular solutions in the form

um ¼ FmðjÞGmðhÞ: Then we can easily separate our

PDE if f0 ¼ p=2; 3p=2 when B ¼ 0: Consequently,

we arrive at two ODEs

F00
m þ DF0

m 2 lmFm ¼ 0;

G00
m þ EG0

m þ lmGm ¼ 0

ð5Þ

where lm is the separation constant and 0 designates

differentiation with respect to the corresponding

variable. The general solution to Eq. (5) is:

Fm ¼ c1 exp½2j=2ðD þ

ffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ 4lm

q
Þ�

þ c2 exp½j=2ð2D þ

ffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ 4lm

q
Þ�

Gm ¼ c3 exp½2h=2ðE þ

ffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ 4lm

q
Þ�

þ c4 exp½h=2ð2E þ

ffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ 4lm

q
Þ�

ð6Þ

We assume now f0 ¼ p=2; gr , p=2 and gl , p=2

that corresponds to V-troughs as in Fig. 1c. Then it

can be easily proved that the only opportunity for

solutions (6) to satisfy the boundary and infinity

conditions (2) is to set lm ¼ 0: Therefore, Fm ¼ F ¼

c1 expð2DjÞ þ c2 and Gm ¼ G ¼ c3 expð2EhÞ þ c4:

Using Eq. (2) we determine the constants c1–4 and

arrive at

u¼ ui½12 expð2j singlÞ�½12 expð2h singrÞ� ð7Þ

Note that if gr .p=2 or gl .p=2 (situation shown

in Fig. 1d), then from Eq. (6) we can deduce that the

problem (1), (2) (or (2), (4)) has no non-trivial

solutions (the trivial solution is 1D uðx;zÞ ¼ 0 or in the

original variables u0ðx;zÞ¼ u0b ¼ u0i). This non-exist-

ence of descending non-uniform steady-state regimes

is clear from Philip (1991) solution to the transient

infiltration problem in a hill. Indeed, by supplying

constant pressure on the hill sides in Fig. 1d we

eventually saturate the whole soil volume up to the

degree maintained at the surface and asymptotically

(in time) reach a constant flux uniform descending

infiltration.
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Using Eq. (3) we can easily express u through the

original coordinates x and z: We stress that (7) remains

inherently 2D in any coordinates, whereas some

Philip’s solutions (e.g. for a parabola) were 1D either

in an appropriate system of coordinates or due to

boundary-layer approximations.

Since gl; gr in Eq. (7) appear symmetrically, we

shall focus (without any loss of generality) on the case

gl ¼ gr ¼ p=4: Then from Eqs. (3) and (7)

u0 ¼ u0b þ ðu0i 2 u0bÞ½1 þ expðazÞ

2 expð2a=2ðx 2 zÞÞ2 expða=2ðx þ zÞÞ� ð8Þ

The horizontal and vertical components of velocity

can be found from Eq. (8)

u ¼ 2
›u0

›x
¼ aðu0i 2 u0bÞexpðaz=2Þsinhðax=2Þ

v ¼ au0 2
›u0

›z

¼ au0i þ aðu0i 2 u0bÞexpðaz=2Þcoshðax=2Þ

ð9Þ

From Eq. (9) we can reconstruct lines of constant

velocity magnitude. For instance, at u0i ¼ 0 these

lines can be determined explicitly from V ¼ffiffiffiffiffiffiffiffiffi
u2 þ v2

p
¼ au0b expðaz=2Þ

ffiffiffiffiffiffiffiffiffiffiffi
coshðaxÞ

p
¼ const: They

are important to estimate stability of soil particles at

textural interfaces, which are subjected to hydraulic

gradients. Sufusion and clogging triggered by water

carrying fine soil particles to a coarse material are

limiting factors in the design of gravel packs

(Cedergren, 1989). In our case it might become a

problem (Philip, 1998) at u0i , u0b when both

seepage and gravity jointly act against cohesion

(particle clinging) induced by capillary pendulae

bridging two neighbouring grains.

A stream function cðx; yÞ can be defined as u ¼

2cz; v ¼ cx: Integration of Eq. (9) yields:

c ¼ au0ix 2 2ðu0i 2 u0bÞexpðaz=2Þsinhðax=2Þ ð10Þ

with c ¼ 0 assumed along x ¼ 0:

Fig. 2a shows contour plots u0ðx; zÞ and cðx; zÞ for

our symmetrically oriented trough at u0i ¼ 0:1; u0b ¼

1 and a ¼ 1 (equivalent to introduction of dimension-

less coordinates ax; az and au=ks). The equipotentials

are depicted starting from 1 with a decrement of 0.1,

and stream lines ranging from 22 to 2 with

an increment of 0.2. Fig. 2b represents the same

plots but for u0i ¼ 1 and u0b ¼ 0:3 As we can infer

from Fig. 2 at u0i , uob and lxl . xc; streamlines have

an inflection point above the trough bottom. A precise

location of inflection points can be found from the

solution of a simple non-linear equation. We note that

the Warrick et al. (1997) streamlines did not exhibit

this property. The inflection points of (10) at lxl . xc

drift outside the flow domain, i.e. become non-

physical.

Obviously, for any u0i . u0b water accelerates

approaching the slanted constant pressure lines, which

‘shed’ the vertex zone. Symmetrically, for u0i , u0b

the incident flow decelerates near the walls

Fig. 2. Flow nets for a symmetrical rectangular trough with (a)

u0i , u0b and (b) u0i . u0b:
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and the streamlines ‘concentrate’ towards B: The

same effect was quantified by Philip (1998) for

parabolic protrusions.

Warrick et al. (1997) defined the deflection

strength of tilted constant pressure surfaces as

Qh ¼
ðV2

V1

uðzÞdz

where integration is performed along a vertical line,

V1 is a point on the cap of the left flank in Fig. 1b and

V2 is at infinity. In our case, integration according to

Eq. (9) gives

qhðxÞ ¼ Qh=ðu0b 2 u0iÞ ¼ 1 2 expðaxÞ;

x , 0

ð11Þ

According to Eq. (11) the integral deflection decreases

towards the corner vertex.

4. 1D limits

Far from point B flow is 1D as it was analyzed by

Warrick et al. (1997), i.e. P varies only normally to

the tilted wall. Let us obtain this limit from our 2D

solution at arbitrary gl;r , p=2:

Assume in Eq. (7) that h!1; i.e. move upward-

left from the vertex.

Then along the right boundary ðj ¼ 0Þ

u ¼ 2aðu0i 2 u0bÞsin gl cos gl;

v ¼ au0b þ aðu0i 2 u0bÞsin2 gl

ð12Þ

Obviously, Eq. (12) gives the Ross (1990) formula.

From Eq. (12) we conclude that lul attains its

maximum at gl ¼ p=4:

One has to be cautious with 1D limits. Indeed, if

we proceed to the limit gl ! p=2 and gr ! p=2

ðf0 ! pÞ; then one might expect to get the 1D

infiltration from infinity into a horizontal draining

layer (Fig. 1e), which PDE and its solution are

›2u

›z2
2 a

›u

›z
¼ 0

u0 ¼ u0b þ ðu0i 2 u0bÞ½1 2 expðazÞ�;

u ¼ 0; v ¼ au0b

ð13Þ

However, Eq. (4) does not degenerate into Eq. (13).

Similarly, in the limit of gl ! p; gr ! p and f0 ! 2p

we would anticipate obtaining the Boussinesq–

Sretensky limit of a semi-infinite constant pressure

slot (Fig. 1f) when the isobaric lines are confocal

parabolas (Sretensky, 1935). This limit has been

inspected by Philip and Knight (1989) to be 1D in a

parabolic system of coordinates. Again, Eq. (4) does

not deliver this limit. Moreover, in the two limits

Eq. (4) changes its type from an elliptic PDE to a

parabolic one, i.e. the asymptotics with boundary

perturbations f! p; 2p turn out singular. Therefore,

our non-orthogonal coordinates ðj;hÞ become

unsuitable.

5. Refraction

So far we set the constant pressure condition along

ABC without any concerns of the fate of the water that

infiltrated to the corner boundary. As has been shown

by Warrick et al. (1997) and Philip (1998), we can

consider the domain under the constant pressure

surface as the second porous medium of different

physical properties. Then we have to match two

flows—in soil II above ABC and in soil I beneath

(Fig. 1a). Both soils have the Gardner conductivity

and extend sufficiently far from the interface to assure

1D flow conditions at z !^1: For a parabolic

interface, Philip (1998) proved that in soil I flow is

collimated i.e. becomes 1D everywhere while the

incident flow in soil II is 2D (in Cartesian coordinates)

with a vertical alignment of streamlines sufficiently

far from ABC. Similar arguments in matching two

flows were used in coupling of the two flows by

Warrick et al. (1997).

The property of collimation of streamlines seems

to be generic for an arbitrary interface between soil I

and soil II (Fig. 1a). Indeed, consider a contour AC in

Fig. 3a with a constant potential ui: Assume that AC

can be bounded geometrically by two horizontal lines

U –U and L–L: For both flat boundaries kept at the

same suction, only a trivial solution to Eq. (1) in the

lower half-plane exists i.e. uðx; yÞ ¼ ui: Consequently,

we surmise that AC in Fig. 3a sandwiched between

two horizontal lines generating a trivial solution is

doomed to result in the same trivial solution.
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Let us consider a tilted interface between two soils

(Fig. 3b). Due to collimation in the lower medium,

u1b ¼ u1i: To ensure matching of the velocity field

(12) in soil II (quasi-linear model parameters ks2; a2)

and the rectilinear flow in soil I (parameters ks1; a1),

we consider a stream line T2iTbT1i: At point Tb

pressure p is continuous in the two media but the

moisture content jump. Besides, the normal (to the

interface) flux at Tb must be continuous (the tangential

velocity jumps). As a geometrical consequence, we

Fig. 3. (a) Arbitrary isobaric contour sandwiched between two horizontal isobars, (b) refraction on a slanted interface, (c) saturated–unsaturated

flow in a hillslope, (d) tapering saturated wing, (e) hodograph domain, (f) saturated wing exuding through a seepage face.
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have a discontinuity of the stream line slope at Tb: In

the Philip model the first jump condition is

a2u2

ks2

� �1=a2

¼
a1u1

ks1

� �1=a1

ð14Þ

Matching the normal velocities from Eq. (12) and

from the trivial solution u1 ¼ 0 and v1 ¼ a1u1i; we

come to the second equation

a2u2i ¼ a1u1i ð15Þ

From Eqs. (14) and (15) at given hydrological

conditions ðu2iÞ and given soil properties, we can

easily determine u1i and u2b: The latter we set as u0b in

our corner solution above. Clearly, we can consider

other slanted or flat interfaces in soil I (Fig. 1b, dashed

line S–S), in particular, a horizontal water table, i.e.

we can combine ‘elements’ as in Miyazaki (1993) and

Warrick et al. (1997). Then, obviously, in the lowest

(semi-infinite from below) layer, flow is collimated

and in all overlying layers streamlines are curved.

Practically, descending moisture reaches the water

table (Warrick et al., 1997) located at a depth H in

Fig. 1a. Just above a horizontal water table we should

match our collimated flow with Eq. (13). If the water

table slopes we can again use our solutions as in

Section 6.

6. Water table accretion

Saturated and unsaturated flows are matched in

two different ways. In groundwater hydrology,

infiltration (evaporation) is simulated by a

distributed source (sink) over the water table

(Polubarinova-Kochina, 1962), i.e. the vadose zone

is substituted by a boundary condition along a free

surface over a Laplacian domain or a DF saturated

sheet (Strack, 1989, pp. 74–89, 243–244, 319–340,

517). In this simplified description, a strictly vertical

streamline coming from the unsaturated zone and

crossing a non-flat phreatic surface experiences

refraction because in the saturated zone the same

streamline forms a non-right angle with the phreatic

surface (e.g. Todd, 1980, pp. 90–91, Strack, p. 323).

Therefore, a streamline in this approximate model

intersects the upper boundary of a groundwater

mound with a jog similar to one at point Tb in our

Fig. 3b. However, in a rigorous saturated–unsatu-

rated flow model (e.g. Tritcher et al., 2001) the

hydraulic conductivity is a continuous, albeit not

always (in particular, in the Gardner soil) smooth,

function of pressure. Hence, streamlines intersecting

the phreatic surface should be smooth as is shown

in Fig. 3d, line T2iTbT1i: Clearly, in case of

Fig. 3 (continued )
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a conductivity contrast as in Fig. 3b, streamlines are

refracted on the interface that is reflected in both

simplified models and the rigorous description.

On the other hand, vadose zone hydrologists often

consider the water table as a geometrically flat

regional sink for descending flows (Philip, 1989b).

Consequently, an atmospheric pressure boundary

condition is imposed along the lowest boundary of

the unsaturated zone (and the fate of water leaving for

the conterminous groundwater zone is neglected).

Philip (1992) and Warrick (1993) investigated in

conjunction a 2D Laplacian (saturated) and quasi-

linear (unsaturated) flow near a line source (subsur-

face emitter) with a free surface (oval-shaped ‘water

table’) appearing as a part of the solution. Here we

use the same Philip–Warrick idea of 2D conjugation

but we focus on the generic scheme in hillslope

hydrology when a perched water table is formed on a

‘sloping slab’ (e.g. Dingman, 1994, pp. 415, 419,

422).

The hydrology of hillslopes is complicated due to

3D effects, heterogeneity of the matrix, transience of

recharge events, topographical irregularities, etc.

(Kirkby, 1985; Zaslavsky and Sinai, 1981) that brings

about a flow topology with intermittent recharge–

discharge zones, hinge lines, stagnation points, etc.

(Sophocleous, 2002). However, even for simple

schemes matching of saturated and unsaturated

hillslope flows has been done numerically (Dingman,

1994, Tritcher et al., 2001). We shall give a lucid

example of analytical closed-form matching of our

solution (12) with a DF flow.

We consider an impervious dome ABC (bedrock)

protruding into the soil. Soil surface is exposed to

infiltration of a given intensity. We assume that

the thickness of the soil cover is high enough for

formation of uniform infiltration, which bifurcates

near the dome crest.

It is well-known (Philip et al., 1989) that the stream

function c in the quasi-linear model satisfies the same

Eq. (2) as the Kirchhoff potential. That makes possible

considering impermeable boundaries like BM and BF

in Fig. 3c along which c ¼ const: Boger (1998),

Philip (1988), Philip and Knight (1989), Philip et al.

(1989), Warrick and Fennemore (1995) and Zachman

(1978) investigated analytically finite and semi-

infinite impermeable boundaries (inclined bottoms,

protrusions, cavities, Rankine-type stones, etc.).

In domains unlimited from above, an obvious

asymptotic c , au0ix at z !21 holds. An elegant

analytical solution for a single ‘critical’ (i.e. both

constant potential and no-flow) protuberance has been

recently found by Youngs (2002) in terms of a

capillary-fringe model based on the theory of

holomorphic functions.

However, if we place an impervious corner like

ABC in Fig. 1c into a uniform descending flow, there

will be no solution for purely unsaturated conditions.

Needless to say that if we position a trough directing

its impervious arms upward, then quasi-linear flow is

also impossible. This fact becomes vital if instead of

truly impervious boundaries (e.g. stones or domes)

one models so-called subcritical structures (tunnels)

for which the non-existence of unsaturated flows

practically implies trickling through some parts of the

tunnel contour (Kacimov, 2000). We conjecture that

the Philip and Knight (1989) parabola is the bluntest

semi-infinite body that supports a purely unsaturated

quasi-linear infiltration flow.

Two saturated ‘wings’ form on the two sides of the

corner in Fig. 3c. Here NM and EF are perched water

tables. The right wing (with through flow in terms of

Kirkby, 1985) exudes through the hill slope. What

seeps out is called the return flow (Sophocleous,

2002), which, if intensive enough, can generate the

overland excess flow. If the infiltration rate is high

enough (or the two soil flanks above the dome dip at

sufficiently small angles il and ir), then the two

‘wings’ merge and the crest B is capped by a single-

branched phreatic surface. This regime will not be

studied here. We shall consider only the disjoint

wings as in Fig. 3c.

In Dingman (1994), all perched water tables on

slanted bedrocks are shown as straight (tilted) lines.

Our analysis will corroborate this configuration. We

seek, first, a solution for the left water table NM in

Fig. 3d, that is a ray originating at M to which the

saturated zone tapers. We set a longitudinal coordi-

nate X along MB and transverse coordinate h normal

to X: In the saturated zone I, we assume the DF model

(Chapman and Dressler, 1984; Verhoest and Troch,

2000), i.e. we suppose that in AMN the groundwater

velocity and hydraulic head depend on X only (lines

perpendicular to the bed are constant head lines).

Along NM, a uniform recharge E ¼ au0i from the

quasi-linear zone II takes place.
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Let us start with zone I. The thickness hðXÞ of the

saturated wing satisfies the ODE

cos il
d

dX
h

dh

dX

� �
þ sin il

dh

dX
þ e ¼ 0 ð16Þ

where e ¼ E=ks: Instead of Eq. (16) adopted from

Verhoest and Troch (2000), we can use a more

adequate equation from Chapman and Dressler (1984,

Eq. (80)), which, however, is mathematically equiv-

alent to Eq. (16) because the two equations differ in

constant coefficients only.

We search for a solution to Eq. (16) in the form

h ¼ aX þ b where a and b are two constants, i.e. for a

straight-line water table. The water table inclination

angle (counted positively clockwise from the X axis)

is a ¼ 2tan vl: We can set b ¼ 0 due to the

coincidence of the origin of coordinates and the

perched zone tip. Putting aX into Eq. (16) we arrive at

the following quadratic equation for a

cos ila
2 2 sin ila þ e ¼ 0 ð17Þ

We select the root

a1 ¼2tanvl ¼
2sin il þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 il 24e cos il

p
2 cos il

ð18Þ

From Eq. (18) the condition for solving Eq. (17) is

sin2 il . 4e cos il; i.e. as we have emphasized, to

generate a stable perched groundwater wedge either

the bedrock slope should be steep or infiltration small.

If this inequality is not satisfied, no steady regime is

possible. More precisely, the wing will grow transi-

ently and eventually flow out through a discharge

zone as in the right half of Fig. 3c. If the soil surface is

flat and we do not provide a vent for the saturated

wedge to escape, it will expand into the whole soil

volume and (under continued precipitation) surface

flooding will take place. Obviously, if i¼ 0 in Eq. (17),

viz. the bedrock is horizontal, then a straight-line

steady solution does not exist, and one has to search

for a solution h2 ¼ a1X2 þa2Xþb which leads to an

elliptical water table (Polubarinova-Kochina, 1962).

Even if the most rigorous hydrodynamic model

(Polubarinova-Kochina, 1962) is applied to the

saturated ‘wing’ assuming a 2D flow in zone I, the

problem can have no steady-state solutions. In this

model the water table is not necessarily straight, and

the Polubarinova-Kochina methods of hodograph

and linear differential equations can be used to find

its shape. According to these two methods, we deal

with the hodograph plane V ¼ u þ Iv where Vðu; vÞ is

the saturated specific discharge (related to ks) and I is

the imaginary unit. In this plane, the image of a

phreatic surface with accretion is a circle of a unit

radius centered at the point 2Iðe þ 1=2Þ (see

Polubarinova-Kochina, 1962 for details) and the

image of the bedrock AM is a straight line as it is

shown in Fig. 3e. The hodograph domain correspond-

ing to the physical flow domain is a segment MNA

(points N and A merge) and is identical to the domains

in oil–gas trap hydrodynamic models (Kacimov and

Obnosov, 2001). If we decrease il (spinning MA

clockwise about the origin of coordinates) or increase

e (shifting the hodograph circle downward), then we

reach the limiting case when MA merely touches the

circle and the hodograph degenerates into one point

that implies a uniform flow with a straight tilted free

surface. At even higher e (or lower il) the wing does

not exist (analogously to Kacimov and Obnosov,

2001). The critical value from the hodograph in Fig. 3e

is tan ic ¼ 2
ffiffi
e

p
=ð1 2 eÞ: Comparing this limit with

one delivered by the hydraulic model (18) we

conclude that the DF and hydrodynamic models

give fairly close solvability criteria.

Now we consider flow in zone II. In the vicinity of

point M; we have a constant potential condition along

MN and no-flow condition along MB. Unfortunately,

we cannot yet solve a mixed boundary-value problem

of this type for Eq. (1). However, far from point M in

Fig. 3d we can apply our solution (12) for a tilted

isobar MN. We only have to put ub ¼ us in Eq. (12)

because MN is the water table. Then from Eq. (12)

v=u ¼ tan il; i.e. upon entering the saturated zone, flow

lines get collinear with the bedrock. Hence, we arrive

at a quadratic equation for tan g, the roots of which are

tan g ¼
ð1 2 eÞtan il ^

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 2 eÞ2tan2 il 2 4e

p
2e

ð19Þ

We select ” 2 ” in Eq. (19). In Eq. (18) vl ¼ gþ il 2

p=2; and we can compare the DF and quasi-linear

models. Curves 1 and 2 in Fig. 4 depict two pairs of

curves tan gðiÞ at e ¼ 0:05 and e ¼ 0:1 according to

Eqs. (18) (upper curves in the pairs) and (19)

(lower curves). In Fig. 5 we illustrate the dependence

tangðeÞ at i ¼ p=8 and i ¼ p=4: As we can see in
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the graphs, at practically reasonable slopes and

infiltration rates, the curves are quite close that

supports our assumption on effectively uniform

source (recharge) in the DF model (16). We

underscore that zones I and II in Fig. 3d are inherently

coupled: without infiltration, the wedge would

disappear and without the wedge quasi-linear steady

infiltration is mathematically impossible.

Let us consider the right half of Fig. 3c zoomed for

clarity as Fig. 3f. We assume that the soil slope is a

straight line plunging at an angle aþ ir: Due to

infiltration, a curved water table is formed. Ground-

water seeps out through a seepage face EU and a

segment UW of the slope, which is covered by the

Hortonian sheet flow. The thickness of this flow (if

any) hH is small and we assume that along EW

pressure is atmospheric. Next, we approximate the

real water table by a straight line one (EF) and set a

straight line EC normally to the bedrock. The

locations of point E on the slope and point F on

the bedrock are now unknown.

The saturated zone triangle I in Fig. 3f can be

decoupled into two parts: a rectangular triangle

capped by a phreatic surface EFC and a rectangular

triangle ECW. Then in EFC we can again adopt the

DF model (16) and our solution. Obviously, EC is a

constant head boundary. Therefore, in ECW we have

exactly the same flow conditions as in Youngs (1974),

Fig. 3. In this ECW triangle, groundwater flow is

rigorously parallel to the bedrock that follows from

the full hydrodynamic (2D) model (Polubarinova--

Kochina, 1962). Thus, flow in the two triangles is

perfectly matched. According to Youngs (1974), the

exuding rate through EW is

Q ¼ ksHðsin ir þ cos ir tan aÞ

where H ¼ lECl: Due to our uniform accretion

assumption, the recharge rate through EF is

Q ¼ eksLh ¼ eksHðsin ir þ cos ir tan vrÞ

From the last two expressions H; Q and EF can be

found easily.

In Fig. 3c we can see the importance of the bedrock

obliquity and corresponding v: In studying ground-

water ridging (Sophocleous, 2002), one should collect

the data on i (along with standard porosity–conduc-

tivity measurements of the slope soil). As shown in

Fig. 3c, the right saturated wing discharges through

the slope (gently dipping rock) while the left wing has

no outwardly detectable signs of seepage, although

both wings are characterized by the same soil,

precipitation and topography.

7. Discussion and unresolved problems

We obtained new analytical solutions for unsatu-

rated and saturated corner-type zones. Infiltration flow

is proved to be deflected by subsurface troughs, which

mimic irregular interfaces common in sedimentation

of rocks, genesis of soils, or purposely crenellated

buried geotechnical gravel packs or liners.

By matching two corner flows in a hillslope, we

fine-tuned the common model of Todd (1980) for

infiltration recharging a tilted water table. We

demonstrated that the vertical streamlines from the

vadose zone are not refracted by the free surface.

Trajectories of water particles passing through the

phreatic surface, are smooth. Figuratively speaking,

Fig. 4. Water table angle as a function of the bedrock angle for two

infiltration rates.

Fig. 5. Water table angle as a function of infiltration rate at two

bedrock dips.
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the groundwater stream entrains the infiltration flow

even above the phreatic surface, i.e. the saturated zone

has an effect that extends upward (although deflection

of unsaturated stream lines occurs just above the water

table). Chapman and Dressler (1984) reasoned that

this deflection is by means of ‘effective’ turning of the

infiltration vector near the water table; however, they

did not do rigorous matching of the saturated and

vadose zone. In summary, vertical recharge arrows

common in most hydrological textbooks should be

drawn with ‘turned heads’.

We used the Philip quasi-linear model and the

advective-dispersion Eq. (1) for the Kirchhoff poten-

tial. We explored only the simplest 2D solution to this

equation in a corner. For a right angle trough at an

arbitrary orientation we contrived to separate the

variables in an elliptic PDE that allowed us to

circumvent even a standard Fourier integration over

the separation constant variable. The Fourier method

(Polubarinova-Kochina, 1962) can be implemented if,

for instance, our corner problem in Fig. 1c is

generalized to the case of a ‘bent’ of a thickness d

(Fig. 6a). In the arm-aligned coordinates this bent is a

square 0 # j # d; 0 # h # d: It would be also

interesting to consider three-medium systems with a

bent semi-permeable seam of a small thickness d

(Fig. 6a) modeling a thin geomembrane located

between two unsaturated lumps.

If f0 in Fig. 1c is not a right angle, then the mixed

second derivative in Eq. (4) persists, and the two

variables do not separate as FmGm: Nonetheless, we

can search for normal mode solutions

um ¼ expð2amjÞexpð2bmhÞ ð20Þ

For the mode coefficients am and bm we get a quadric

form (Pinsky, 1991) and a spectrum of roots m ¼

1; 2;… satisfying the corresponding equation. At

f0 , p we can attempt to fit both boundary and

infinity conditions for u by combining linearly um:

For f0 . p the form (20) is not suitable because

we have zones where j or h are negative, i.e. the

infinity condition cannot be satisfied by normal

modes. Still, for symmetric corners with gl ¼ gr we

can select other non-orthogonal coordinates shown in

Fig. 6b such that one axis coincides with the corner

side and another-with the axis of symmetry BT. Then

in TBC the condition ðj;hÞ $ 0 holds and we can try

Eq. (14) as normal modes. The only difference with

f0 , p will be in the boundary condition along BT,

where u ¼ 0 instead of u ¼ 0:

Analytical solutions for arbitrary constant pressure

corners would allow us to assemble them as elements

(Strack, 1989) and to model the whole interface in

Fig. 1a. Of special importance would be an analytical

solution for an arbitrary (non-constant pressure)

Dirichlet problem (even in a solitary corner). A

mixed boundary-value problem for Eq. (1) seems to

be prohibitively complicated because even in a half-

plane (e.g. Fig. 1e), mathematicians have not yet

supplied for Eq. (1) anything resembling the

Signorini formula available in saturated conditions

(Polubarinova-Kochina, 1962).
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