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Abstract

We review observations of bubble size distributions (BSDs) generated during explosive volcanic eruptions and
laboratory explosions, as inferred from vesicle size distributions found in the end products. Unimodal, polymodal,
exponential and power law BSDs are common, even in the absence of coalescence, and both power law and
exponential distributions have been generated in the same eruption. To date theoretical models have proposed
incompatible mechanisms for producing the various distributions. We here present a unifying mechanism. Data from
our laboratory analogue experiments suggest that power law distributions are associated with highly non-equilibrium
degassing. A numerical model is developed in which bubbles nucleate repeatedly and grow in the spaces between those
of previous generations, where, in a non-equilibrium degassing scenario, the volatile concentration remains high. This
process causes the BSD to evolve from unimodal, through exponential, into a power law. The exponent of the power
law is a measure of the number of nucleation events, or the duration of the nucleation period compared with the
timescale of bubble growth. The mathematical inevitability of the evolution from unimodal (Poissonian) to power law
is discussed. The findings may resolve the apparent contradiction between the equilibrium degassing conduit flow
models and the non-equilibrium degassing conditions derived from bubble growth models of explosive volcanic
eruptions. The process of ongoing nucleation is the mechanism whereby the volcanic system maintains near-
equilibrium in the case of rapid depressurisation and slow volatile diffusion.
1 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

The inaccessibility of the interior of volcanic
systems means that the dynamics of degassing
cannot be directly observed in situ. Processes of
bubble nucleation and growth must be inferred

from secondary sources such as theoretical stud-
ies, laboratory investigations and textural exami-
nation of volcanic deposits. Over the last two dec-
ades the detailed analysis of the structure of
volcanic rocks such as pumice, scoria and lava
has become a standard tool in the deduction of
eruption parameters. One of the most common
textural parameters measured is the vesicle size
distribution (VSD) of the solid rock, which is
used to infer the bubble size distribution (BSD)
generated during the liquid process of magma ve-
siculation. In this paper we are interested speci¢-
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cally in the evolution of the BSD. (Wherever the
term BSD is used in connection with solid sam-
ples, we are referring to the distribution of bub-
bles that resulted in the observed VSD.)
A number of theoretical models have been de-

veloped linking the BSD with eruption parameters
such as the nucleation and growth rates of bub-
bles, the extent of bubble coalescence, magma as-
cent rate and volatile supersaturation. In 2. Back-
ground we summarise these methods and the data
to which they have been applied. We then de-
scribe the results of a new study which incorpo-
rates laboratory analogue experiments, numerical
modelling and observations of volcanic rocks.
This new study reveals that exponential and
power law BSDs, both commonly observed in vol-
canic rocks, may be generated by the same pro-
cess of continuous bubble nucleation and growth.
These ¢ndings may resolve the apparent contra-
diction between equilibrium conduit £ow models
and the non-equilibrium conditions derived from
bubble growth models of explosive volcanic erup-
tions.

2. Background

Unimodal, polymodal, exponential and power
law (fractal) BSDs have all been observed in nat-
ural magmatic rocks. The di¡erent distributions
have hitherto been explained separately on the
basis of fundamentally di¡erent physical process-
es. We use the symbol N(R) to represent the num-
ber density function of the BSD; that is, N(R)dR
is the number of bubbles with radii between R
and R+dR.

2.1. Unimodal and polymodal BSDs

Distributions containing one or more discrete
peaks are reported by numerous workers (see
e.g. Sparks and Brazier, 1982; Whitham and
Sparks, 1986; Orsi et al., 1992). It is usually in-
ferred that the di¡erent peaks arise from a corre-
sponding number of temporally well-separated
events. For example, the BSDs presented by
Sparks and Brazier (1982) show three discrete
peaks. The authors interpret the coarsest peak

as originating from nucleation in the magma
chamber prior to eruption. The peak at intermedi-
ate bubble size is attributed to nucleation during
an eruption. The ¢ne peak is not a separate bub-
ble population but is due to apertures between
vesicles (Whitham and Sparks, 1986). Similarly,
the data of Orsi et al. (1992) show two peaks:
one due to syn-eruptive nucleation and another
attributed to subsequent bubble coalescence.

2.2. Exponential BSDs

Exponential BSDs are usually explained using a
model based on the theory of Marsh (1988) for
crystal size distributions. This approach assumes a
steady state system in which the BSD does not
change with time. A conservation law for the bal-
ance of bubbles growing into and out of a size
class, given a constant growth rate G, produces
an exponential distribution of the form:

NðRÞ ¼ N0exp 3
R
Gd

� �
ð1Þ

where N0 is the nucleation density (N(R) =N0 for
R=0) and d is the timescale available for bubble
growth. The strength of this model lies largely in
its convenience; eruption parameters may be cal-
culated very simply from the BSD (Fig. 1). Note
that in this case Gd represents a natural length
scale for the bubble size.
The Marsh (1988) model has been applied in

several studies (Sarda and Graham, 1990; Man-
gan et al., 1993; Klug and Cashman, 1994; Man-
gan and Cashman, 1996; Burnard, 1999). Of par-
ticular interest here is the study of Mangan and
Cashman (1996) who examine samples of basaltic
scoria from ¢re-fountaining episodes of Kilauea.
They calculate nucleation rates of V2U104 cm33

s31, much greater than the nucleation rate of 35.9
cm33 s31 estimated for e¡usive lava-£ow activity
(Mangan et al., 1993). This ‘runaway’ nucleation
is interpreted as being due to the development of
a high supersaturation before nucleation, consis-
tent with the more explosive behaviour of the
eruption.
The limitations of Marsh’s model lie in the as-

sumptions of steady state behaviour and constant
bubble nucleation and growth rates. There is no
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justi¢cation for supposing that the BSD is in
steady state; this assumption is merely a mathe-
matical convenience. Numerical models of bubble
growth due to di¡usion and decompression
(Sparks, 1978; Proussevitch and Sahagian, 1996;
Blower, 2001; Blower et al., 2001b) reveal that
growth rates may be far from constant. Although
exponential BSDs are commonly observed, mea-
surements also reveal BSDs which deviate
strongly from this form (Fig. 1).

2.3. Power law BSDs

A framework for interpreting power law BSDs
of volcanic rocks is proposed by Gaonac’h et al.
(1996a). In this model the BSD evolves by a
mechanism of cascading coalescence. This process
is assumed to be scale-invariant and in quasi
steady state, giving the relationship:

NðVÞOV3B31 ð2Þ

where V is the bubble volume and B is an expo-
nent. (Note that Gaonac’h et al. express the BSD
in terms of bubble volume, not radius. The con-

version from N(V)dV to N(R)dR uses VOR3 and
dVOR2dR and leads to N(R)OR33B31.) The mod-
el predicts two regimes: for small bubbles, which
are assumed to grow by di¡usion and are not
a¡ected by coalescence, BW0, whereas for me-
dium to large bubbles which are assumed to
grow by coalescence, BW1 (the ‘coalescence re-
gime’).
Gaonac’h et al. (1996b) measured BSDs of ba-

saltic lavas from Mount Etna and found that they
were in the form represented by Eq. 2. For small
vesicles (with areas less than V0.25 mm2 in thin
section) they obtain BW0, in agreement with the
prediction of the model. For larger vesicles
BW0.85, close to the predicted value of 1.

2.4. Moments of BSDs

The approach of Toramaru (1989, 1990) and
Herd and Pinkerton (1997) does not consider
the exact form of the BSD. Instead BSDs are in-
terpreted in terms of readily measurable textural
parameters (porosity P, surface area per unit vol-
ume Sv, number density Nv and mean bubble ra-
dius R) that are simply related to the moments of
the BSD. The ith moment Mi of the BSD is given
by:

Mi ¼
R
RiNðRÞdR ð3Þ

The ¢rst four moments of the BSD are related
to the total number of bubbles N, the average
bubble radius R, the total surface area per unit
volume S and the total bubble volume per unit
volume (i.e. the porosity P) :

M0 ¼ N; M1 ¼ RN; M2 ¼
S
4Z

; M3 ¼
3P
4Z

ð4Þ

A physical eruption model is still required to
quantify how these parameters are related to
eruption conditions. Herd and Pinkerton (1997)
apply this approach to textural parameters mea-
sured in a suite of alkali basalts from recent erup-
tions on Mount Etna and Stromboli. They con-
clude that extensive coalescence occurred in
samples with Ps 35%. By contrast, Toramaru
(1990) ¢nds that the BSDs observed in pumices
from Towada volcano and scoria from Izu^
Oshima volcano are not modi¢ed by coalescence.

Fig. 1. BSDs predicted by the model of Marsh (1988), after
Mangan and Cashman (1996). If steady state nucleation and
growth applies (solid line), then a plot of ln(N(R)) versus R
is linear with a slope of 3(Gd)31 and intercept of ln(N0).
Processes which can cause the BSD to deviate from the
straight line are: coalescence (dotted line) which increases the
proportion of large bubbles and Ostwald ripening which re-
duces the number of small bubbles (dashed line). Such BSDs
were measured in samples of basaltic scoria and reticulite by
Mangan and Cashman (1996).
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2.5. Experimental samples

Experimental studies of degassing of natural or
arti¢cial silicate melts have revealed many impor-
tant features of the dynamics of bubble nucleation
and growth (e.g. Lyakhovsky et al., 1996; Navon
et al., 1998; Mourtada-Bonnefoi and Laporte,
1999; Gardner et al., 1999; Liu and Zhang, 2000;
Mangan and Sisson, 2000). Generally speaking,
however, these experiments do not reproduce the
BSDs of natural samples. Usually, a single nucle-
ation event occurs in the experiments and inter-
actions between bubbles are limited, leading to a
monodisperse or unimodal BSD (e.g. Lyakhovsky
et al., 1996, Gardner et al., 1999).
One exception, however, is the study of Sima-

kin et al. (1999). In their experiments, water-satu-
rated granitic melts were decompressed, causing
both vesiculation and crystallisation. BSDs of
the experimental samples were compared with
those of basaltic scoria from Mount Etna and
pumice from Vulcano. Power law BSDs were
measured; on combining all the data, the relation-
ship N(R)OR32:8 was revealed. It was noted that
coalescence took place in only two of the exper-
imental runs, so some mechanism other than that
of the cascading coalescence proposed by Gao-
nac’h et al. (1996a) must have led to the forma-
tion of power law BSDs. A plausible explanation
lies in the nucleation behaviour in the experi-
ments. Whereas most previous laboratory experi-
ments generated a single episode of nucleation in
response to decompression (e.g. Lyakhovsky et
al., 1996), Simakin et al. (1999) report that nucle-
ation proceeded in a continuous fashion in their
experiments. The presence of crystals probably
promoted heterogeneous nucleation; previous
studies were performed with crystal-free melt
and so nucleation would have been more di⁄cult.
This mechanism of generating power law BSDs
via continuous nucleation will form the crux of
the arguments in this paper.

3. The physical model

Experimental studies of the degassing of silicate
melts (either natural or synthetic) rarely repro-

duce the BSDs found in volcanic tephra. How-
ever, an analogue system consisting of solutions
of gum rosin (natural pine resin) in acetone
(GRA) provides a suitable physical model because
it closely mimics magmatic degassing behaviour
and produces a solid end product which has a
very similar texture to that found in many pyro-
clasts (Fig. 2). The GRA analogue system was
¢rst proposed by Phillips et al. (1995). An up-
to-date detailed review of the physical properties
of the system (viscosity, di¡usivity etc.) is pre-
sented by Blower (2001).
Gum rosin is an amorphous solid at room tem-

perature and pressure. Solutions of GRA are vis-
cous Newtonian liquids the viscosity of which is
strongly dependent on their acetone content, mim-
icking the analogous dependence of magma vis-
cosity on its water content. During degassing,
therefore, the liquid viscosity increases through
several orders of magnitude: at 30 wt% acetone
the viscosity of the liquid is 0.04 Pa s (Blower,
2001); pure, degassed gum rosin has a viscosity
of V1013 Pa s (Phillips et al., 1995). This large
viscosity increase exerts a strong control on the
£ow dynamics during degassing (Mourtada-Bon-
nefoi and Mader, 2001). Volume expansion during
vesiculation in both the GRA and magmatic sys-
tems depends on the speciation and di¡usivity of
volatiles and the ratio of initial to ¢nal pressure
(the decompression ratio). For the experiments
presented here, 30 wt% GRA produces the same
volume expansion as a silicic magma containing
4 wt% water under eruptions conditions (Lane et
al., 2001). The di¡usivity of acetone in GRA so-
lutions is of the order 10311 m2 s31, similar to
measured di¡usivities of water in hydrated mag-
mas (Watson, 1994; Zhang and Behrens, 2000)
and is dependent on the concentration of acetone
(Blower, 2001), just as the di¡usivity of water in
magma is concentration-dependent (Zhang and
Behrens, 2000). A limitation of the small-scale lab-
oratory model is that it cannot replicate the grad-
ual hydrostatic decompression experienced by
erupting magma as it rises up a volcanic conduit.

3.1. Experimental procedure

Experiments are performed in a standard shock
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tube apparatus (Fig. 3). The experiments are con-
trolled by two parameters: the initial acetone con-
tent of the GRA solution and the pressure in the
vacuum chamber. Chamber pressures lower than
200 mbar are required to cause violent degassing
on decompression. The initial acetone content
controls both the viscosity of the solution and
the amount of volatiles available for expansion.

The explosivity of the ‘eruption’ can be increased
by increasing the initial acetone content or by
decreasing the chamber pressure.
Upon decompression to less than 200 mbar the

acetone boils explosively and drives a two-phase
£ow up the shock tube (Mourtada-Bonnefoi and
Mader, 2001). Boiling proceeds as an evaporation
wave (Hill and Sturtevant, 1989; Hill, 1991); bub-

Fig. 2. SEM images of (a) pumice sample from the Minoan Phase 1 Plinian eruption of Santorini, Greece and (b) gum rosin
foam. Despite the di¡erence in scales, the images are very similar, depicting highly disordered foams with some spherical and
some strained bubbles.
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bles nucleate initially on the surface of the solu-
tion and this nucleation surface propagates down-
ward with time (Fig. 3b and c). The bubbly liquid
may fragment, depending on the experimental
conditions (see Table 1).

After the foam has ceased to expand it is left in
the shock tube under vacuum until all the acetone
has been removed. The bulk vesicularity of the
foam is estimated by measuring the ¢nal length
Lf of the foam from the base of the test cell to the

Fig. 3. Experimental apparatus. (a) Schematic diagram of the apparatus used in the GRA decompression experiments. The GRA
solution is poured into a cylindrical Pyrex test cell (internal diameter 38 mm and length 300 mm) which is separated by a dia-
phragm (Sellotape0 all-weather tape) from a cylindrical vacuum chamber (height 1 m and diameter 0.5 m). The diaphragm is
burst by passing 10 A of current through a length of NiChrome wire around its circumference. This decompresses the solution
beneath its boiling pressure (V200 mbar) and initiates the boiling of the acetone. The test cell (b) before and (c) during an ex-
periment. Note that nucleation occurs initially on the surface of the liquid as an evaporation wave.

Table 1
Summary of experimental conditions in the GRA explosive degassing experiments

Run number Initial acetone content Chamber pressure Foam vesicularity Fragmentation style
wt% mbar (%)

1 30 1.2 89 fragments/spatters
2 30 1.0 89 fragments/spatters
3 25 1.2 91 spatters
4 25 1.0 92 spatters
5 20 50 93 no fragmentation
6 20 50 93 no fragmentation

No fragmentation was observed in experiments 5 and 6. In experiments 3 and 4 the liquid fragmented into ‘spatters’, i.e. small
elongate droplets of bubbly liquid which adhered to the tube walls. Experiments 1 and 2 generated both spatters and fragments;
‘fragments’ are sub-equant pieces of foam about 1^2 cm across which have separated from the main £ow.
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£ow front. The vesicularity of the foam is
(Lf3L0)/L0 where L0 is the initial depth of solu-
tion in the test cell. Cores of dry foam are recov-
ered from the shock tube using a sti¡ wire to
separate the foam from the shock tube wall.
Textural data are extracted from the cores us-

ing the following procedure. The gum rosin foam
cores are cut into slices around 5 mm thick and 30
mm in diameter using a razor blade and a⁄xed to
sti¡, white cardboard using PVA glue. The slices
are then placed in a gold sputter coater (normally
used for coating samples for scanning electron
microscopy) for 30 s. This coats the surface of
the slice with a thin layer of gold powder. The
gold powder appears dark and so contrasts visu-
ally with the pale, straw-coloured foam and
brings out the shapes of the bubbles. Photographs
are taken of the coated slices using monochrome
35-mm ¢lm and printed onto A4-sized pieces of
high-contrast photographic paper. In this way,
images of the slices at a magni¢cation factor of
V6 were generated (Fig. 4). Hand tracings of the
bubbles in the photographs are scanned into a
computer for computerised image analysis. The
software package Visilog0 is used to measure
the cross-sectional area A of each bubble in the
binary images. The equivalent circular radius r of
each bubble is then calculated (r ¼

ffiffiffiffiffiffiffiffiffiffi
A=Z

p
).

It was not possible to impregnate the foam to
increase its strength and allow the production of a
thin section. The foam is highly soluble in all
organic solvents (including alcohols) and there-
fore standard low viscosity resins could not be
used. Water-based resins were found to be too
viscous, and the surface tension of water too
high, to impregnate the foams successfully; fur-
thermore the drying time of these water-based
resins was found to be extremely long (several
days to weeks).

3.2. Properties of power law BSDs

Power law size distributions are described by
the relationship:

NðRÞOR3ðdþ1Þ
DNðsRÞOR3d ð5Þ

where N(sR) =
Rr
R N(R)dR is the number of ob-

jects with a radius greater than R, and d is the
power law exponent. The cumulative distribution,
plotted as N(sR) versus R, is preferable for de-
scribing power law BSDs because it produces a
more accurate estimate for the exponent, d. This
is because the cumulative distribution does not
require the data to be separated into arbitrary
size classes, which can cause large uncertainties
in d.

Fig. 4. A slice of gum rosin foam, taken from an experiment in which the initial acetone content was 25 wt% and the chamber
pressure was 1 mbar. (a) Image of the slice after partial coating using a gold sputter coater for 30 s. (b) Hand tracing of the im-
age. Width of each image is 3 cm. Note that due to the extreme fragility of the foam many bubble walls have broken during the
sectioning process and could not be traced. The hand tracing is scanned into a computer for image analysis.
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Power law distributions, unlike unimodal or ex-
ponential BSDs (Eqs. 6 and 7), have no character-
istic length scale and so no average bubble size in
the population. If the exponent d is between 2 and
3 (typical of volcanic rocks as we shall see), then
the total volume of the bubbles is controlled
mostly by the large bubbles, but the total surface
area is controlled by the smallest size fractions
(Turcotte, 1992). It is therefore impossible to ap-
proximate successfully both di¡usive bubble
growth (surface area controlled) and decompres-
sive growth (volume controlled) by assuming a
monodisperse distribution.
Note that for everything except mathematical

fractals, the power law form is only valid for a
range of bubble sizes; for the largest and smallest
bubbles in a population the power law ¢t does not
in general apply.

3.3. Stereology

Currently, the most widely-used method for
measuring the BSD of a volcanic rock is image
analysis (Toramaru, 1990; Mangan et al., 1993;
Klug and Cashman, 1994; Mangan and Cash-
man, 1996; Gaonac’h et al., 1996b; Simakin et
al., 1999). A thin section (or equivalent) of the
rock is made and the resulting slices through the
bubbles are analysed. It is common to measure
the apparent area A of each bubble on the image
and convert this to an equivalent circular radius r
( =

ffiffiffiffiffiffiffiffiffiffi
A=Z

p
). The task is to deduce the true size

distribution N(R) of 3-D bubbles from the mea-
sured 2-D distribution n(r) of apparent circle rad-
ii ; this is the problem of stereology. In the Ap-
pendix we adopt the converse, forward-modelling
approach and provide a method by which the ex-
pected distribution of 2-D slices may be calculated
from a known 3-D distribution.
If the BSD is monodisperse (i.e. all the bubbles

are of the same size), then the problem is trivial.
The average radius of the circular slices in thin
section is r= (Z/4)RW0.785R where R is the true
radius of the bubbles (see Appendix). (Note that
the expression r=0.85RDR=1.18r in Mangan et
al. (1993) is incorrect and probably a typograph-
ical error; the result in Cashman and Marsh
(1988) is correct.)

For the general case of a polydisperse BSD the
problem is more complex. Sahagian and Prousse-
vitch (1998) have developed a method for dealing
with polydisperse BSDs by considering them to be
the sum of many monodisperse distributions.
However, although this approach is general and
powerful, it is rather unwieldy; unfortunately this
is a characteristic problem of all stereological
methods.
Here, this problem is circumvented; most of the

BSDs we measure are in the form of a power law.
This greatly simpli¢es the stereological method. In
the Appendix we show that, if bubbles are spher-
ical and the true BSD is in the form of a power
law of the form N(R)OR3K , then the 2-D distri-
bution of circle slices is of the form n(r)Or3ðK31Þ.
Therefore, the exponent K of the 3-D distribution
is simply one greater than the exponent of the
measured 2-D distribution (this fact was also
used by Gaonac’h et al., 1996b). It is worth not-
ing that although the analysis in the Appendix is
derived using spheres for simplicity, the underly-
ing argument is a purely dimensional one and so
this result holds for any bubble shape.

3.4. Experimental results

In order to generate foam from a wide range of
experimental conditions, several GRA decompres-
sion experiments were performed with a range of
initial acetone contents (20, 25 and 30 wt%) and
chamber pressures (1 and 50 mbar). Foam from
six of these experiments was successfully recov-
ered and analysed. The experimental conditions,
foam vesicularities and fragmentation behaviour
are summarised in Table 1.
A total of 18 foam slices were made from the

foam produced in these experiments, six for each
set of experimental conditions. The binary images
of the foam slices and the size distributions of the
circle slices of the bubbles are shown in Figs. 5^7.
In the calculation of the BSD, only circle slices
with an area greater than 0.1 mm2 were used;
circle slices smaller than this could not be resolved
accurately on the images. Only values of n(sA)
greater than 5 were included to ensure that each
size class in the analysis was adequately repre-
sented.
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Fig. 5. Cumulative distributions of apparent circle area in sections of six samples from experiments with an initial acetone con-
tent of 20 wt% and a chamber pressure of 50 mbar. Samples (a), (b) and (c) are from run 5 (Table 1) and samples (d), (e) and
(f) are from run 6. The binary images of the samples are also shown. All six area distributions are well ¢tted by a power law re-
lationship. Circled points were not included in the calculation of the best ¢t parameters.
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Fig. 6. Cumulative distributions of apparent circle area in sections of six samples from experiments with an initial acetone con-
tent of 25 wt% and a chamber pressure of 1 mbar. Samples (a), (b) and (c) are from run 3 (Table 1) and samples (d), (e) and (f)
are from run 4. The binary images of the samples are also shown. All six area distributions are well ¢tted by a power law rela-
tionship, but in the case of samples (c) and (e) an exponential distribution is also reasonable.
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Fig. 7. Cumulative distributions of apparent circle area in sections of six samples from experiments with an initial acetone con-
tent of 30 wt% and a chamber pressure of 1 mbar. Samples (a) and (b) are from run 1 (Table 1) and samples (c), (d), (e) and (f)
are from run 2. The binary images of the samples are also shown. The area distributions of samples (c) and (e) are well ¢tted by
a power law relationship. The distribution of sample (d) was better ¢tted by an exponential relationship. The images of samples
(a), (b) and (f) were judged to be inadequate for the reliable determination of any particular distribution. The highly explosive
nature of the experiments appears to have led to the production of an extremely fragile foam and many bubble walls were bro-
ken on sectioning.
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In Figs. 5^7 the power law distributions are
expressed in terms of the area of the circle slices,
n(sA)OA3V . Since AOr2, the distribution of
equivalent circle radii is n(s r)Or32V . We have
seen that, for a power law distribution, the expo-
nent of the 3-D distribution of bubbles is one
greater than that of the 2-D distribution of equiv-
alent circle radii (see 3.3. Stereology). Therefore,
N(sR)OR3ð2Vþ1Þ, i.e. the power law exponent
d=2V+1. The error in estimating d is di⁄cult to
constrain accurately. Some indication of the error
can be gained by a bootstrapping method, in
which random points from the BSD plot are re-
moved to see how the best ¢t curve is a¡ected. By
this method, the error on the exponent V was
found to be about R 0.1, giving an error on d of
VR0.2. The results of the analysis are summa-
rised in Table 2.

3.5. Natural samples

We can compare our experimental data with
natural samples. A reanalysis of the images in
¢gure 2 of Toramaru (1990) reveals both power
law and exponential BSDs in scoria samples

from the same basaltic sub-Plinian eruption of
Izu^Oshima, Japan (Table 3). The BSDs of pumi-
ces from the same ¢gure were found to be gener-
ally better described by an exponential distribu-
tion.

4. Numerical modelling of power law BSDs

We have seen that BSDs of experimentally gen-
erated foam and volcanic rocks of many di¡erent
types are often in the form of a power law. The
work of Gaonac’h et al. (1996a) suggests that a
mechanism of cascading coalescence could ac-
count for the form of these BSDs. However, in
the experiments of Simakin et al. (1999) power
law BSDs were generated in the absence of bubble
coalescence.
In Blower et al. (2001a) we ¢rst proposed a

model which attributes the formation of power
law BSDs to nucleation behaviour, not coales-
cence. The basis of the model is that nucleation
is imagined to proceed in a continuous fashion (as
in the experiments of Simakin et al., 1999), simul-
taneous with growth. Bubbles nucleate and grow

Table 2
Summary of results of the BSD analysis of the gum rosin foam

Figure Sample R2 (power law) R2 (exponential) Form of distribution Power law exponent d

5 (a) 0.99 0.83 power law 2.3
5 (b) 0.98 0.83 power law 2.3
5 (c) 0.98 0.90 power law 2.5
5 (d) 0.97 0.87 power law 2.5
5 (e) 0.98 0.90 power law 2.3
5 (f) 0.97 0.87 power law 2.8
6 (a) 0.98 0.80 power law 2.6
6 (b) 0.97 0.88 power law 2.5
6 (c) 0.94 0.93 (power law) (2.4)
6 (d) 0.98 0.76 power law 2.6
6 (e) 0.94 0.92 (power law) (2.5)
6 (f) 0.96 0.89 power law 2.4
7 (c) 0.96 0.92 power law 2.7
7 (d) 0.93 0.96 (exponential) N/A
7 (f) 0.98 0.83 power law 3.0

For each sample the correlation coe⁄cients (R2) are shown for both a power law and an exponential ¢t. For distributions which
are well ¢tted by a power law the exponent d is calculated, with an estimated error of R 0.2. There is no systematic variation of
d with experimental conditions; the di¡erences between the exponents are comparable to the error on the exponent. It can be
seen that in most cases a power law distribution gives a much better ¢t to the data than does an exponential distribution. Brack-
ets denote that the form of the distribution is uncertain, i.e. that the correlation coe⁄cients for power law and exponential ¢ts
are similar (within 0.03).
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in response to decompression. As magma ascends
through the conduit it is continuously decom-
pressed and bubbles continue to nucleate in the
pockets of melt between existing bubbles. We will
show that this simple mechanism can generate
both exponential and power law BSDs.

4.1. Fractal models of continuous nucleation

The proposed mechanism in which new gener-
ations of bubbles are nucleated and grow in the
gaps between pre-existing bubbles can be mod-
elled, in a highly idealised sense, by perfect math-
ematical constructions which illustrate the emer-
gence of power law distributions.
Perhaps the simplest such construction which

leads to a power law BSD is the 1-D Cantor’s
middle-third fractal (Fig. 8a; Falconer, 1984).
This starts with a line of unit length, which plays
the role of the material. The ¢rst step consists of
removing the middle third. The gap produced
may be thought of as the ¢rst-generation bubble.
This leaves two segments, each of length one-
third. The next step consists of removing the mid-
dle third of both of these, producing two new
gaps (second-generation bubbles) and leaving
four segments, each of length 1/9. Repeating this
procedure gives, at the nth step, 2n segments, each
of length 1/3n. Taking the limit as nCr produces

a fractal. There is clearly one bubble of size 1/3,
two of size 1/9, four of size 1/27, and hence 2m31

of size 1/3m. Thus, if L=1/3m, the number of
bubbles greater than or equal to L in size is
1+2+4+T+2m31 = 2m31=L3log2=log331, and so
d= log2/log3= 0.6309T.
A more realistic construction is the fractal

known as the Apollonian packing (Falconer,
1984). In 2-D, this fractal is generated by drawing
three equal, mutually tangential circles and then
¢lling the curved triangular space in between them
with ever-smaller circles (Fig. 8b). The circle size
distribution is in the form of a power law with an
exponent dV1.312 (Fig. 8c). The analogous 3-D
¢gure (a packing of spheres) has dV2.45 (Anish-
chik and Medvedev, 1995). One can readily imag-
ine that these spheres might be bubbles which
have nucleated between pre-existing bubbles ; in
this way the bubbles pack e⁄ciently and ¢ll space.
The Apollonian packing has found application
particularly in the science of granular materials ;
it is by de¢nition the densest possible packing of
circles (in 2-D) or spheres (in 3-D).

4.2. Developing the model

Although the Apollonian packing represents a
useful paradigm, we would not expect natural sys-
tems to pack according to such a perfect geome-

Table 3
BSD analysis of images from ¢gure 2 of Toramaru (1990)

Image Rock type R2 (power law) R2 (exponential) Form of BSD

a pumice 0.87 0.92 exponential
c pumice 0.84 0.97 exponential
d pumice 0.81 0.98 exponential
e pumice 0.85 0.75 inconclusive
f pumice 0.91 0.89 inconclusive
g pumice 0.66 0.90 exponential
h scoria 0.94 0.68 power law (dV2.5)
i scoria 0.67 0.95 exponential
j scoria 0.92 0.67 power law (dV2.5)
k scoria 0.94 0.65 power law (dV2.5)

Pumice samples came from Towada volcano and scoria samples originated from a basaltic sub-Plinian eruption of Izu^Oshima.
The ¢t of the BSDs to both an exponential and power law form was investigated; the correlation coe⁄cient R2 is given in each
case. If the values of R2 are similar (within 0.03) or if they are both less than 0.90, then the analysis was deemed to have given
an inconclusive result. The scoria samples generally displayed power law BSDs, all with exponents close to 2.5, with one excep-
tion (sample i). The pumice samples gave exponential BSDs except for two (e and f) for which the BSD was well ¢tted by neither
an exponential nor a power law. It is important to note that both exponential and power law BSDs have originated from the
same eruption. Figure 2b is not included here as it does not contain a su⁄cient number of bubbles for a reliable reanalysis.
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try. However, we can see evidence of organised
space-¢lling behaviour in textures of natural and
experimentally produced foams (Fig. 9). The nu-
merical model which we now develop utilises the
process of space-¢lling nucleation and growth to
produce volcanologically realistic textures.
In our model we consider the evolution of the

BSD in primarily geometric terms. This approach
has the strength that the model is not constrained
by timescales and so results can be revealed that
are independent of the detailed dynamics of the
degassing process.
The model works as follows. A small number of

bubble nuclei (between 3 and 10 nuclei) are placed
at random positions within a 3-D domain. The
‘zone of in£uence’ of each bubble is determined,
i.e. the volume of the set of points which are
closer to the bubble in question than to any other
bubble (the Voronoi cell). The boundary separat-
ing the zones of in£uence for two neighbouring
bubbles is midway between them. In each new
time step, a new generation of bubbles nucleates
as far as possible from the existing bubbles, at the
vertices between Voronoi cells. These are the lo-

cations where the volatile resources are least de-
pleted and hence represent the most favourable
locations for nucleation (Lyakhovsky et al.,
1996). In each time step, the bubbles are allowed
to grow according to a parabolic (di¡usional)
growth law, R= Lt1=2 (Scriven, 1959). The growth
constant L= k

ffiffiffiffiffiffi
Vv

3
p

, where k is a constant of pro-
portionality between 0.1 and 0.6 and Vv is the
volume of the Voronoi cell. The bubbles grow
by an amount dR= (0.5L/

ffiffi
t

p
)dt where dt equals

one time unit and t is given by the number of
time steps since nucleation for each bubble. For
example, if we are in time step 5 and considering
the growth of a bubble that was nucleated in time
step 2, then t for that bubble would be 3 dimen-
sionless time units. Thus, bubbles which are rela-
tively isolated and younger grow more rapidly
than those which must compete with near neigh-
bours for volatile resources, or are older and so
have already depleted the volatiles in their imme-
diate vicinity. Note that there is no explicit length
scale ; lengths are measured in pixels. The model
process is illustrated in Fig. 10.
If two bubbles touch, they cease to grow. This

Fig. 8. (a) The Cantor middle-third fractal. (b) The Apollonian packing: starting with three large, touching circles, space is pro-
gressively ¢lled with ever-smaller circles. If this procedure is continued ad in¢nitum then a space-¢lling fractal is created with no
overlap between circles. (c) The distribution of circle sizes in the Apollonian packing.
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condition was employed to avoid problems of
bubble overlap and to prevent bubble coalescence.
This constraint is not as unrealistic as it at ¢rst
appears; since the bubbles are constrained to nu-

cleate as far from each other as possible, they do
not begin to touch until late in their evolution,
when they would be expected to be approaching
their ¢nal radius anyway.

(a) (b)

(c) (d)

(e) (f)

Fig. 9. Illustration of space-¢lling behaviour in di¡erent systems. In each picture several bubble generations are visible with small-
er bubbles ¢lling the spaces between larger ones. (a) SEM image of a sample of scoria from the Kokkino cinder cone, Santorini.
Image is 7 mm across. (b) Thin section of scoria from a basaltic sub-Plinian eruption of of Izu^Oshima, Japan (reproduced from
Toramaru, 1990). Image is 6 mm across. (c) Sample of experimentally produced andesitic foam from ¢gure 8 of Proussevitch et
al. (1993). The similarity between this sample and the Apollonian packing (Fig. 8a) is striking. Image is 4 mm across. (d) Sample
of experimentally produced foam from ¢gure 3 of Simakin et al. (1999). Image is 4 mm across. (e) Sample of gum rosin foam.
The foam vesicularity is very high (V90%) and so the bubbles are in the form of polyhedral cells. The image is 1.2 mm across.
(f) Image of a slice through the ‘foam’ produced in the numerical model described in the text.
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4.3. Results of the numerical model

The main result of the model is that the form of
the BSD depends most strongly on the number of
nucleation events which occur during growth. If
there is only one nucleation event a unimodal
BSD results (Fig. 11). Because of the dependence
of the growth rate L on the Voronoi volume, the
size of each bubble depends on the proximity of
its neighbours. Under the simplifying assumption
that the ¢nal bubble size is proportional to the

distance to the nearest bubble, a Poisson distribu-
tion is expected (Tuckwell, 1988):

NðRÞOR2expð3VR3ÞDNðsRÞOexpð3VR3Þ ð6Þ

where V is a constant related to the number den-
sity of bubble nuclei.
After a small number (typically 3) nucleation

events have occurred, an exponential BSD
emerges (Fig. 11a):

NðRÞOexpð3R=R0ÞDNðsRÞOexpð3R=R0Þ ð7Þ

(a) (b)

(c) (d)

Fig. 10. The construction of the numerical model. For illustrative purposes this diagram shows the results of a two-dimensional
version of the model. (a) The initial nucleation event. The bubbles have been allowed to grow by a small amount. The shades of
grey represent the Voronoi cells of di¡erent bubbles. (b) The second generation bubbles have nucleated at the vertices between
the Voronoi cells in the ¢rst picture. The Voronoi cells have been recalculated. (c) and (d) Two more stages in the evolution of
the bubble distribution.
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(see Eq. 1) where R0 is a characteristic bubble
size. Note that the model predicts exponential
BSDs without the assumption of a steady state
BSD or a constant bubble growth rate (see
Marsh, 1988). In the model, exponential BSDs
always evolve into power law distributions (Eq.

5) with further nucleation events. After a total
of about 5 events the distribution is consistently
power law (Fig. 11a). As more nucleation events
occur, the distribution remains in the form of a
power law, but the exponent d increases with the
number of events (Fig. 11b).

Fig. 11. Results of a typical model run. (a) Plots of N(sR) versus R at di¡erent stages during a model run. A single nucleation
event gives a unimodal BSD. After three events the BSD has taken an exponential form (with correlation coe⁄cient 0.97). Five
events give a power law BSD with exponent d=1.80 (with correlation coe⁄cient 0.99). After eight events the BSD is still in the
form of a power law, but the exponent has increased to 2.24 (with correlation coe⁄cient 0.99). The BSD is evolving throughout
the model run and is therefore not in steady state (cf. Marsh, 1988). (b) In (a), the number of bubbles with a radius greater than
R is plotted against R (i.e. the cumulative distribution) on double-logarithmic axes and so some of the BSDs appear unfamiliar.
This plot shows for comparison the curves for perfect unimodal, exponential and power law cumulative distributions. (c) The
evolution of the power law exponent d with successive nucleation events in a typical model run. After four nucleation events the
BSD is intermediate between an exponential and power law form. For ¢ve events and greater the BSD is power law in form; the
exponent increases with the number of nucleation events.
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4.4. The e¡ect of the bubble growth law and
nucleation rate

So far we have used a parabolic (di¡usional)
growth law for bubbles. This growth law has
been shown to be an oversimpli¢cation, particu-
larly for high-viscosity melts (Proussevitch and
Sahagian, 1996; Lyakhovsky et al., 1996; Blower,
2001, Blower et al., 2001b). Other growth laws
may be used in the model, and the main results
are una¡ected. Fig. 12a shows the results of a
model run in which the bubbles grew according
to a linear growth law, ROt, as deduced from the
bubble growth model of Blower et al. (2001b). A
single nucleation event gives a unimodal distribu-
tion as before. After 4 nucleation events the BSD
is exponential in form. A power law distribution
is generated after 7 events. Between these times
the distribution is intermediate between an expo-
nential and a power law form and the BSD may
be equally well ¢tted by either form. This insensi-
tivity of the results to the bubble growth law is
due to the fact that the BSD is constrained mainly
by the geometry of the system; the details of the
vesiculation process do not a¡ect this fundamen-
tal property.
This observation provides the justi¢cation for

using a numerical procedure in which the volume
of melt is not conserved. Conservation could be
achieved by rescaling the domain after each time
step so that the melt volume remained constant.
This would have the e¡ect of changing the growth
law for the bubbles. But, as we have seen above,
the growth law has no signi¢cant e¡ect on the
form of the BSD.
In the model described so far, each nucleation

event populates all Voronoi vertices with new
bubble nuclei. The ‘nucleation rate’ may be al-
tered by only populating a certain fraction of
the vertices in each event. Again, this has very
little e¡ect on the main results of the study. Fig.
12 shows the results of a model run in which only
half of the Voronoi vertices were populated with
new nuclei in each time step. A progression
through an exponential BSD (4 nucleation events)
to a power law BSD (7 events) is once more pro-
duced.

5. Discussion and conclusions

The numerical model demonstrates that uni-
modal, exponential and power law BSDs can be
generated by a mechanism of continuous nucle-

Fig. 12. The e¡ect of the growth law and nucleation rate. (a) The results of a model run in which bubbles grew according to a
linear growth law, rOt. An exponential BSD is produced after four nucleation events; a power law distribution is observed after
seven events. The initial unimodal distribution has been omitted from this diagram for clarity. (b) The results of a model run in
which only half of the Voronoi vertices were populated with new nuclei in each time step, simulating a slower nucleation rate.
Once more, an exponential BSD is produced after four nucleation events; a power law distribution is observed after seven
events.
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ation and in the absence of bubble coalescence.
The analogue experiments (see 3. The physical
model) have also generated power law BSDs.
One characteristic of the experiments is that the
degassing is highly non-equilibrium. The pressure
drop is extremely rapid and the volatile (acetone)
content of the solution is high; it is therefore im-
possible for all the acetone to be lost from the
solution on the timescale of decompression. This
is borne out by observation; the residual acetone
content of the foam immediately after expansion
ceases is signi¢cant (Mourtada-Bonnefoi and
Mader, 2001). The foam becomes su⁄ciently per-
meable to allow these residual volatiles to escape
without any further expansion.

5.1. Non-equilibrium degassing and continuous
nucleation

The combined results of the analogue experi-
ments and numerical modelling suggest that the
presence of a power law or exponential BSD is
indicative of a degassing system that cannot main-
tain equilibrium with its environment. The ob-
served evaporation wave that propagates through
the liquid marks the start of the nucleation pro-
cess. If the di¡usive mass transfer of volatile mol-
ecules into the ¢rst bubble population nucleated
on the surface of the solution as this wave passes
is not rapid enough to allow the system to main-
tain a volatile concentration in the melt which is
in equilibrium with the ambient pressure then fur-
ther bubbles may nucleate in the volatile-rich melt
pockets between bubbles (Lyakhovsky et al.,
1996). Such nucleation behaviour has been re-
ported in experiments simulating the degassing
of silicate melts (Navon et al., 1998; Simakin et
al., 1999). As a result of this non-equilibrium de-
gassing, continuous bubble nucleation occurs and
a power law BSD is generated. Power law or ex-
ponential BSDs are to be expected whenever a
system is forced far from equilibrium and physical
parameters do not favour e⁄cient degassing, i.e.
for rapid depressurisation, low initial nucleation
density, and slow volatile di¡usion. The exponent
d is a measure of the number of nucleation events,
or the length of the nucleation period relative to
the timescale of growth. Non-equilibrium degas-

sing has been shown to be signi¢cant during the
early stages of degassing in volcanic melts (Gard-
ner et al., 1999; Simakin and Salova, 2001).

5.2. Theoretical remarks

The fact that the ¢rst generation BSD is Pois-
sonian is a direct consequence of the two assump-
tions: that the nucleation sites of the ¢rst bubble
population are randomly distributed, and that the
bubbles grow at a rate which increases with the
distance to the nearest neighbour. This would
thus seem to be a robust conclusion. The fact
that the BSD is a power law after several nucle-
ation generations is a consequence of the scale-
invariance, and hence loss of a characteristic
length, which results from repeated nucleation of
bubbles on smaller and smaller scales in the gaps
between earlier generations of bubbles, as in both
the Apollonian packing and Cantor’s middle-third
constructions discussed in 4.1. Fractal models of
continuous nucleation. This, too, would thus ap-
pear to be a robust conclusion. Consideration of
the curves in Fig. 11 might lead one to expect that
the transition between these extremes would be
approximately exponential in form. That it is con-
sistently so close to being exactly exponential is,
however, surprising. We know of no explanation
for this observation.

5.3. Coalescence versus continuous nucleation

The mechanism of producing power law BSDs
by means of continuous nucleation does not in-
corporate the e¡ects of coalescence. In an e¡usive
eruption involving low viscosity magma, we might
expect that degassing will be close to equilibrium,
and so the likelihood of the occurrence of several
nucleation events is much reduced. The mecha-
nism of cascading coalescence (Gaonac’h et al.,
1996a) may therefore be dominant in generating
power law BSDs in basaltic lavas (Gaonac’h et
al., 1996b).
By contrast, in the case of explosive eruptions,

especially involving acidic, highly viscous magma
and rapid magma ascent rates, bubble growth
models (Proussevitch and Sahagian, 1996; Blow-
er, 2001; Blower et al., 2001b) predict non-equi-
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librium degassing and so continuous nucleation
may occur. There is strong evidence that both
exponential and power law BSDs can be gener-
ated in the absence of coalescence (e.g. Simakin et
al., 1999; Toramaru, 1990). We interpret these
pre-coalescence BSDs to be the result of multiple
nucleation events.
A point which has yet to be resolved is the

problem of why laboratory experiments in which
silicate melts are degassed do not in general pro-
duce continuous nucleation (e.g. Lyakhovsky et
al., 1996; Gardner et al., 1999). This is probably
due to a di⁄culty in nucleation; most laboratory
systems investigate crystal-free melt. However, Si-
makin et al. (1999) allowed crystallisation to oc-
cur in their experiments and did indeed observe
continuous nucleation. The experiments of Prous-
sevitch et al. (1993) are particularly instructive.
They investigated the degassing of andesitic and
rhyolitic melt. The rhyolitic samples were crystal-
free and did not produce a characteristic space-
¢lling pattern of bubbles. However, the andesitic
samples contained about 7% quartz particles ; the
texture of the foam produced (Fig. 9c) strongly
implies that continuous nucleation occurred in
this case.

5.4. Implications for modelling volcanic processes

Our ¢ndings may resolve an apparent contra-
diction in current numerical models of explosive
volcanic eruptions. Conduit £ow models (Papale
et al., 1998; Melnik and Sparks, 1999) are usually
based on the assumption that degassing is an
equilibrium process. By contrast, bubble growth
models (Proussevitch and Sahagian, 1996) assume
a single nucleation event and a monodisperse
BSD and predict non-equilibrium degassing under
the conditions of an explosive eruption, in agree-
ment with our observations. However, highly
non-equilibrium conditions are expected to lead
to continuous nucleation. This would tend to in-
crease the e⁄ciency of the degassing process and
allow the system to remain close to equilibrium.
The process of continuous nucleation can explain
why the assumptions behind conduit £ow models
can also be consistent with non-equilibrium de-
gassing.
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Appendix. Stereology

Given a distribution N(R) of randomly placed
spheres in 3-D space, we wish to ¢nd the expected
distribution n(r) of circular slices resulting from
the intersection of a plane and the spheres. It is
natural to approach this problem in terms of
probability theory and so we here use the proba-
bility density functions F(R) and f(R) for the 3-D
and 2-D distributions, respectively. The probabil-
ity density function is simply a dimensionless
number density function obtained by normalising
the number density function with respect to the
total number of bubbles, i.e. N(R) =NTF(R) and
n(R) = nTf(R) where NT is the total number of
bubbles and nT is the total number of circles.
Fig. A1 shows the intersection of a spherical

bubble of radius R and a plane distant x from
the bubble centre. The radius of the circle de-
scribed by the intersection of the plane and the
sphere is r, where:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R23x2

p
ðA:1Þ

A.1. Monodisperse BSD
The simplest case, which shall be dealt with

¢rst, is that of a monodisperse distribution (i.e.
all the bubbles have the same radius). If these
bubbles are randomly positioned, then a slice
through the population will generate a range of
circle sizes; some bubbles will be intersected near
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a diameter and will appear as a circle of radi-
usVR, whilst others will be intersected away
from a diameter and will appear as smaller circles.
From equation A.1:

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R23r2

p
D
dx
dr

¼ 3
rffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R23r2
p ðA:2Þ

From the laws of probability:

j f ðxÞdx j ¼ j f ðrÞdr jDf ðrÞ ¼ f ðxÞjdx
dr

j ðA:3Þ

where f(r) and f(x) are the probability density
functions of r and x, respectively.
Now, since each value of x has an equal chance

of occurring and 09 x9R, f(x) = 1/R. Therefore:

f ðrÞ ¼ 1
R

rffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R23r2

p ðA:4Þ

Fig. A2 shows the form of the expected 2-D slice
distribution in the case of a monodisperse BSD.
The average slice radius r is given by:

r ¼
Z R

0
rf ðrÞdr ¼ 1

R

Z R

0

r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R23r2

p dr ¼ Z

4
R ðA:5Þ

A.2. Polydisperse BSDs ^ the general case
Eq. A.4 gives the probability of obtaining a

circular cross-section of radius r given the inter-
section of a plane with a sphere of radius R. Now
let us consider a polydisperse distribution of bub-
bles with probability density function F(R). The
probability of a plane intersecting a given bubble
is proportional to the bubble radius R. Cross-sec-
tions of radius r may be obtained from any bub-

ble with a radius greater than or equal to r. We
may now write a general expression for the prob-
ability of obtaining a cross-section of radius r
from the whole distribution:

f ðrÞ ¼
Z r

r
FðRÞR1

R
rffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R23r2
p dR ðA:6Þ

That is to say, f(r) is the probability of ¢nding a
bubble of radius R, multiplied by the probability
of intersecting this bubble, multiplied by the prob-
ability of obtaining a slice of radius r from this
bubble, integrated over the range of Rv r. This
gives:

f ðrÞ ¼
Z r

r

rffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R23r2

p FðRÞ dR ðA:7Þ

A.2.1. Power law (fractal) BSD
The general form of a power law (or fractal)

BSD is:

FðRÞ ¼ aR3K ðA:8Þ

where a is a constant and K is the power law
exponent. From Eq. A.7:

f ðrÞ ¼
Z r

r

rffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R23r2

p aR3KdR ðA:9Þ

Substituting R= ry (which implies dR= rdy) :

Fig. A.1. The intersection of a spherical bubble of radius R
with a plane at a distance x from the bubble centre. The ra-
dius of the circular slice of the bubble in the plane is r.

Fig. A.2. The expected 2-D probability density function, f(r),
of circles produced by the intersection of a plane with a ran-
domly placed, monodisperse distribution of spheres of unit
radius.
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f ðrÞ ¼ a
Z r

1

rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2y23r2

p ðryÞ3K rdy ¼

ar13K

Z r

1

y3Kffiffiffiffiffiffiffiffiffiffiffi
y231

p dy ðA:10Þ

Noting that the integral factor is independent
of r, we obtain:

f ðrÞOr3ðK31Þ ðA:11Þ

This is an important result ; it implies that if the
size distribution of bubbles is in the form of a
power law with exponent K, then the size distri-
bution of slices is also in the form of a power law
with an exponent of (K31).
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