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Transformation of VLF anomaly maps into apparent resistivity and phase

Michael Becken∗ and Laust B. Pedersen‡

ABSTRACT

We investigate a transformation of magnetic trans-
fer functions into the tangential-electric mode part of
the impedance tensor in the scope of the plane-wave
electromagnetic tensor–VLF method. The transforma-
tion, which is applicable to any 2D data representing
the response of arbitrary 3D geoelectric structures, over-
comes the difficulties of quantitative interpretation of
magnetic transfer functions, which predominantly pro-
vide a measure of the lateral changes of the electri-
cal conductivity in the earth. We require densely sam-
pled magnetic transfer functions of one frequency as

input data. These may be decomposed into their nor-
mal and anomalous parts (deviation from the response
of a layered earth) for a unit external plane-wave
source field using the Hilbert transform relationship
between the magnetic field components. Faraday’s law
then directly provides the anomalous toroidal elec-
tric field. Unfortunately, there is no chance to esti-
mate the normal electric field from magnetic data, since
the magnetic field is not sensitive to a layered earth.
This constant must be provided as a boundary condi-
tion, e.g., from one ground measurement, to derive an
impedance tensor and related apparent resistivities and
phases.

INTRODUCTION

In Sweden, very-low-frequency (VLF) three-component
magnetic data in the frequency range 14–25 kHz covering ar-
eas of several tens of thousand square kilometers have been
collected by the Geological Survey of Sweden (SGU) dur-
ing the last decade. By introducing the tensor-VLF concept
in analogy to magnetotellurics, Pedersen et al. (1994) have de-
rived magnetic transfer functions for each measurement point.
These transfer functions (or tipper vectors) describe the lin-
ear relationship between the vertical magnetic field, which is
entirely anomalous, and the horizontal magnetic field com-
ponents. They are independent of source field characteristics
as long as the primary field can be considered as uniform,
and they only reflect lateral variations in electrical properties
of the earth. Above a 1D earth (normal conductivity distri-
bution) the tipper vector equals zero, but in 2D or 3D en-
vironments (anomalous conductivity distributions), the vec-
tor exhibits peaks around lateral (anomalous) conductivity
contrasts.

The Swedish data provide in both horizontal coordinates
(x, y) spatially well sampled magnetic transfer functions
and are driving an investigation of the spatial relationship
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between magnetic field H and electric E field given by Faraday’s
law,

∇ × E = −iωµH. (1)

Here, ω is the angular frequeny and µ is the magnetic per-
meability. Vallee et al. (1992) and Roy (1993) point out that
taking vertical to horizontal magnetic field ratios avoids dis-
tortion by temporal and spatial variations of the primary field.
Using full tipper vectors as input data instead of directly mea-
sured magnetic field vectors also means that the amplitude
and direction of the source field do not have to be known and
source field variations do not affect the calculations to follow.
Gharibi and Pedersen (1999) have found a procedure to ex-
tract the anomalous magnetic fields from the tipper vector us-
ing the potential field properties of the magnetic field in the
air half-space. In this way, they synthesize simultaneous mag-
netic field measurements, which are required to solve Faraday’s
law (1) for the electric field. Integration of equation (1) yields
only the spatial variations of the electric field. The integra-
tion constant depends on the normal conductivity distribution
and must be given by appropriate boundary conditions. How-
ever, the approach of Gharibi and Pedersen (1999) is restricted
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to 2D conductivity structures, and their final solution yields
only the impedance element for E-polarization (electric field
is polarized parallel to the strike direction).

This paper is an extension of the work done by Gharibi and
Pedersen (1999). The generalization to an arbitrary 3D conduc-
tivity distribution, presented here, is relatively straightforward,
but the results can only be understood in terms of bimodal in-
duction. Since the simplified case of E-polarization may not be
used here, we will briefly describe the decomposition of cur-
rents in the earth into their toroidal and poloidal parts and
discuss its consequences on the application of the transforma-
tion scheme for 3D data. Our result describes the part of the
impedance tensor that is related to toroidal currents and sim-
plifies to E-polarization in the 2D case (Weidelt, 1975). The
method has been tested on synthetic noise-free data obtained
with a 3D magnetotelluric modeling program. Its application
to field data from an airborne survey in Sweden shows remark-
able agreement with the known geology, and maps of apparent
resitivities and phases illustrate the applicability of this method.

THEORY

We use right-handed Cartesian coordinates (x, y, z), where z
is positive downward. The electric and magnetic fields are given
with a time dependency {E, H}∼eiωt , where ω is the angular
frequency. The magnetic permeability is assumed to be the vac-
uum permeabilityµ0 everywhere following, e.g., Vozoff (1991),
which gives the choice of working with the magnetic field or
the magnetic flux density B=µ0H. The field relations in re-
gions of constant conductivity σ are described by Ampere’s
and Faraday’s laws,

∇ ×H = J,∇ × E = −iωµ0H, (2)

respectively, where displacement currents are neglected in the
quasi-static approximation and the current density is given by
Ohm’s law, J= σE.

In most geophysical applications, the electromagnetic fields
are measured either in the homogeneous air half-space with
conductivity σ = 0 or at the surface z= 0. Besides the vertical
electric field, which usually is not measured, all components
of the electric field E and the magnetic field H are continuous
across the surface and can be considered as being measured in
the air half-space at z=−0. Let us first summarize the vector
analytic properties of the electromagnetic fields in homoge-
neous regions and in the insulating air half-space in particular,
which are needed in the following derivation.

Mode decomposition

The magnetic flux B and electric current density J (away
from sources) are divergence free and may be decomposed
into toroidal and poloidal parts (Schmucker and Weidelt, 1975;
Weidelt, 1975; Vasseur and Weidelt, 1977; Berdichevsky and
Zhdanov, 1984; McKirdy et al., 1985). The constitutive relations
yield the corresponding decompositions for the magnetic and
electric fields. We denote the fields connected to toroidal cur-
rents by subscript E and those related to poloidal currents by
subscript M . Thus, the toroidal vectors JE,EE and BM ,HM have
no vertical components and are tangential to the earth’s sur-
face. They are considered as tangential-electric (TE-mode) and

tangential-magnetic (TM-mode) systems following Schmucker
and Weidelt (1975). The poloidal vectors BE,HE complete the
TE-mode and JM ,EM the TM-mode, respectively. In insulating
media, EM and HE are potential fields. Thus, ∇ ×EM = 0 and
Faraday’s law yields HM = 0 here. This has the consequence
that an inductively coupled source field has only a poloidal
magnetic field (Berdichevsky and Zhdanov, 1984) and that
poloidal currents in the earth cannot produce a toroidal mag-
netic field at the earth’s surface. Hence, the measured magnetic
field is related solely to toroidal current systems.

The terms TE- and TM-mode are obviously not standardized
in geophysical literature. In magnetotellurics in particular, the
TE-mode is often synonymous with E-polarization (electric
field tangential to strike) and TM-mode with B-polarization
(magnetic field tangential to strike). This notation is restricted
to 2D conductivity structures. We use the first definition, which
comprises the latter in the 2D case; e.g., HM = 0 states that no
anomalous magnetic fields can be observed in B-polarization
and the magnetic field is both tangential to the surface and to
strike direction (see also Ward and Hohmann, 1988).

The transfer functions, which are derived from measured
electromagnetic fields, may be decomposed like the fields
themselves. The magnetic transfer function is entirely of TE-
mode, since only poloidal magnetic fields are involved. De-
noting vertical and horizontal vector components by the sub-
scripts z and h, respectively, and the matrix transpose by the
superscript T , we define the tipper vector TE by the equation

HE,z = TT
EHE,h. (3)

The impedance tensor Z=ZE +ZM relates the horizontal
poloidal magnetic field to the toroidal and poloidal horizon-
tal electric field as

EE,h + EM,h = (ZE + ZM)HE,h. (4)

Each element of the impedance tensor is decomposed into a
transfer function of TE- and TM-mode, respectively. Note that
the measured impedance is a superposition of both modes.
In the following section, we develop a procedure to calculate
the toroidal electric field and the related TE-mode impedance
ZE(x, y) from given TE(x, y).

Estimation of the toroidal electric field

The subsequent derivation is more convenient in wavenum-
ber space. The spatial Fourier transform of a function f (r) is
denoted by f̃ (k), where r= (x, y)T is the horizontal space vec-
tor and k= (kx, ky)T is the wavenumber vector. Then

f̃ (k) = 1
2π

∫ ∞
−∞

f (r)e−i k·r dr (5)

and the inverse Fourier transform is given by

f (r) = 1
2π

∫ ∞
−∞

f̃ (k)ei k·r dk. (6)

Derivative operators in the space domain correspond to mul-
tiplication in the wavenumber domain: ∂/∂x[ f (r)] transforms
to ikx f̃ (k) and ∂/∂y[ f (r)] to iky f̃ (k), respectively.
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Since the magnetic field is a potential field in the air half-
space (Rokityansky, 1982; Reitz et al. 1993), knowledge of one
of its components on a (closed or infinitely extended) surface
is sufficient to calculate the two remaining field components.
Therefore, equation (3) can be used to uniquely determine
Bz(r) from tipper vectors TE(r) for a given plane wave source
field.

An iterative solution of the tipper decomposition is sug-
gested similar to the one used by Gharibi and Pedersen (1999)
in their 2D tipper transformation. The mathematical treatment
of the 3D case is a simple expansion of the 2D solution, but
calculation of the Hilbert transformation is performed in the
wavenumber domain. Here, a drift in the data can easily be
corrected by taking all magnetic field components to be zero
at zero wavenumber.

The Hilbert transformation of a potential vector field V(r, z),
which is given on the infinitely extended plane z= z0, is trans-
formed to the wavenumber domain (Pedersen, 1989) as

Ṽh(k, z0) = i k
k

Ṽz(k, z0), (7)

where k denotes the absolute value of the wavenumber vector.
For ease of notation, we subsequently drop the fixed variable
z0. The Hilbert transform (7) must be satisfied by the anoma-
lous magnetic field if all field inhomogeneities are of inter-
nal origin. Taking Bn

h as the horizontal normal magnetic field
and substituting the vertical component in expression (7) with
equation (3) transformed to Fourier domain, the total hori-
zontal magnetic field including inhomogenities attributable to
conductivity anomalies in the earth is given by

B̃h(k) = Bn
h +

i k
k

[
T̃T (k) ∗ B̃h(k)

]
, (8)

where the asterisk denotes the convolution operator. Equa-
tion (8) is the wavenumber domain representation of a
Fredholm integral equation of the second kind in the space
domain. A suitable and fast method for solving such systems
is the method of successive approximation, which can be per-
formed in the wavenumber domain as follows: for a given nor-
mal magnetic field Bn

h, a first approximation of the (anoma-
lous) vertical field component can be estimated according to
B0

z (r)=TT
E(r)Bn

h. Fourier transformation to the wavenumber
domain permits a first estimation of the anomalous horizontal
field using equation (7). Adding the derived horizontal anoma-
lous part to the normal field enables a new estimation of the
vertical component. Hence, a number of iterations j are per-
formed following the procedure

B j+1
z (r) = TT (r)B j

h(r),

B̃a, j+1
h (k) = i k

k
B̃ j+1

z (k), (9)

B j+1
h (r) = Ba, j+1

h (r)+ Bn
h.

A criterion to stop the iterative process is required. Here,
we use that the maximum difference of the vertical compo-
nent between the present and the previous iteration |B j

z (rm)−
Bj−1

z (rm)| at the point (rm) should be less than some δBz.
From the vertical magnetic field, we derive the toroidal

electric field from Faraday’s law (1). Taking EE(r)=En
E +

Ea
E(r), the anomalous toroidal electric field is given in the

wavenumber domain by

ẑ× Ẽa
E(k) = ωk

k2
B̃z(k), (10)

where the vanishing horizontal divergence

i k · Ẽa
E(k) = 0 (11)

is applied (the toridal electric field has no vertical component).
Division by k2 is required in equation (10), which causes nu-
merical instability at k = 0. The Fourier coefficient at this point
in the wavenumber domain is equivalent to a shift in the space
domain by the average anomalous field without affecting the
change of the electric field. Therefore, we take Ẽa

E(k= 0)≡ 0
for the moment.

Back-transformation to the space domain yields the anoma-
lous toroidal electric field, including an unknown shift
dEE . The total toroidal electric field is then given by
EE(r)=En

E + [Ea
E(r)− dEE]+ dEE . Suppose now that the

impedance at one point is known, e.g., Z(r0), and that this
measurement has been carried out in a 1D region suffi-
ciently far away from distorting conductors. In this case,
Ea

E(r0) = 0; the total electric field corresponds to the nor-
mal toroidal electric field since there are no poloidal currents
excited in normal regions. Furthermore, there is no magnetic
anomaly to be observed. Hence, the impedance is simplified to
Zi j (r0)= En

i,E/Bn
j,E , from which the electric field can be calcu-

lated for any normal magnetic field. The previously estimated
anomalous electric field [Ea

E(r)− dEE] may now be shifted to
the desired level at the point (r0), which should result in the
correct level for the whole surface, provided data were error
free. Therefore, dEE can be estimated from ground measure-
ments, at least theoretically. Since the measured tipper vector
is erroneous, one may expect a slight misfit of the calculated
electric field. But as we shall see later, the method seems to
work in a stable way and gives good structural resolution.

To describe the full three-dimensionality of the problem,
the same procedure must be repeated for another primary
magnetic field which is preferably polarized perpendicular to
the first one. Having found horizontal electric and magnetic
fields for two polarizations, we calculate the corresponding
impedance tensor ZE in equation (4) following, e.g., Zonge
and Hughes (1991).

TE-impedance tensor and related apparent
resistivity and phase

We have developed the transformation scheme to construct
images of the conductivity distribution, which provide a better
structural insight into the earth than magnetic transfer func-
tions. Here, we define apparent resistivities and phases solely
based on the TE-mode impedance tensor ZE according to
Cagniard (1953) as

ρE,i j = 1
ωµ0
|ZE,i j |2

(12)
φE,i j = arg{ZE,i j }.

Only in 1D and strictly 2D environments can the TE-
impedance be related to apparent resitivities and phases one
would actually measure. However, in realistic (3D) geolog-
ical situations, the modes are coupled inside the earth, and
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the measured impedance tensor cannot be rotated to decou-
ple into E- and B-polarization with vanishing main-diagonal
elements. Thus, only in the 2D case will the transformation
scheme yield exact E-polarization apparent resistivities and
phases, provided a normal impedance Zn is known. Thus, for a
structure striking in the x-direction,

ZE =
(

0 Zn + Za
E,xy

−Zn 0

)
. (13)

In general, the anomalous part of the impedance is distributed
over all elements of the tensor. Thus, a rotational invariant is
more suitable for visualizing the structures. For this purpose,
the determinant ‖ZE‖ is calculated according to

‖ZE‖ = ZE,xxZE,yy− ZE,xyZE,yx. (14)

However, using equation (14), anomalies are always under-
estimated. Consider, for instance, a 2D structure: taking the
determinant of equation (13) is actually the geometric mean
of the E-polarization and the normal impedance, respectively.
Thus, apparent resitivities are biased by the normal structure,
though the structure itself remains resolved.

A peculiarity in defining the normal structure can be noticed.
Consider, for instance, two quarter-spaces, which is a transi-
tion anomaly. Sufficiently far away from the contact, both me-
dia may be considered as one dimensional; thus, only toroidal
electric fields exist. To explain the normal electric field on an
arbitrarily chosen side of the contact, a normal toroidal electric
field is sufficient; but on the opposite side, a spatially constant
poloidal electric field is required which, when added to the nor-
mal toroidal electric field, gives the correct total electric field.
Usually we consider TM-mode fields as anomalous, which im-
plies spatial nonuniformity. Thus, the determinant on the op-
posite side underestimates the anomaly because the constant
poloidal fields cannot be taken into account.

An alternative rotational invariant of the impedance tensor
can be used to overcome this problem. From equations (13)
and (14), we can express the E-polarization impedance
ZE,2d = Zn+ Za

E,xy independent of the measurement coordi-
nate system according to

ZE,2d = −‖ZE‖
Zn

, (15)

since only rotational invariants are involved. The negative sign
produces phases in the first quadrant, provided Zn is defined
with phase in the third quadrant. For 3D impedances, equa-
tion (15), which is a simple manipulation of the determinant,
can be used as an optimal approximation to E-polarization.
Note that ZE,2d can be obtained without the critical step of
determining rotation angle.

A SYNTHETIC EXAMPLE

A powerful 3D modeling code (Avdeev et al., 2002) has been
used to generate synthetic data for testing the transformation
algorithm. Electromagnetic fields are calculated by the integral
equation technique, combining Krylov subspace iteration with
the modified iterative dissipative method.

The model, sketched in Figure 1, consists of two inhomo-
geneous layers, embedded in a normal background structure

of 1000 Ä m for the upper 60 m and 10 000 Ä m below. Both
layers have a thickness of 10 m and are at 0–10 m and 50–
60 m depth. The top layer contains a figure eight-shaped 3D
structure of 100 Ä m; the second layer describes an elongated
conductor of 2 Ä m. This model shall simulate a typical situa-
tion of shallow structures in Sweden: the loops in the surface
layer sketch alluvial fillings of minor valleys around basement
outcrops, while the deeper conductor simulates a thin miner-
alized zone—all embedded in resistive crystalline rocks form-
ing the background structure. The frequency used for forward
modeling is 16 kHz.

The total model area (1100× 1350 m) for numerical calcula-
tions exceeds the area shown in Figures 1–3 (500× 750 m) by
a frame of 300 m. The enlarged model guarantees the 2D char-
acter of the deep, elongated conductor. Quadratic model cells
with a base length of 5 m result in a horizontal discretization
of 220× 270 model cells. The vertical discretization of both
inhomogeneous layers varies between 2 and 5 m.

The transformation algorithm has been applied to the mod-
eled magnetic transfer functions shown as Wiese induction ar-
rows (Parkinson, 1959; Schmucker, 1970) in Figures 2a and 2b,
respectively. Since the data are discrete and the area of investi-
gation is bounded, we have to impose boundary conditions to
be satisfied in a practical implementation. The Fourier analysis
of discretely sampled functions is based on the assumption of
a periodic continuation of the function in space domain. Thus,
2D features extending over the whole area as in the deeper
layer are permitted. However, to avoid Gibb’s oscillations, a
taper window is applied prior to Fourier transformation, sup-
pressing all anomalies at the model borders.

The normal structure is known in this case, and knowledge of
the medium electric field was obtained from comparison with
the measured impedance in the northwestern model corner. A
small bias was introduced because here the anomalous fields
are not exactly zero and in particular the elongated conductor
is still visible at the upper model border. Thus, we may expect
a slight misfit of apparent resistivities, as we always expect on
field data.

FIG. 1. Sketch of model. The surface layer with a thickness
of 10 m contains a double-loop structure of 100Äm, repre-
senting sediment-filled valleys. An elongated conductor with
2Äm in a depth from 50–60 m indicates a fractured zone. In-
homogeneities are embedded in a background normal struc-
ture of 1000Äm in the upper 60 m and 10 000Äm below. The
model simulates typical 3D conductivity distributions in base-
ment-dominated areas of Sweden.
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Let us first consider a profile ABacross the model at position
east= 245 m passing the center of the western loop perpendic-
ular to the deep conductor. This profile is approximately two
dimensional. In Figures 2c and 2d we compare true apparent re-
sistivities and phases from forward modeling (Zxy corresponds
to B-polarization in a 2D approximation, Zyx to E-polarization,
respectively) with the result of the transformation ZE,xy and
ZE,yx and in Figures 2e and 2f with the invariant representa-
tions ‖ZE‖ and ZE,2d.

Real and imaginary induction arrows (Figures 2a and 2b) and
true apparent resitivities and phases (solid and dash-dotted
lines in Figures 2c–2f) clearly indicate the upper and lower

FIG. 2. Model calculations. (a) Real and (b) imaginary Wiese induction arrows representing modeled magnetic transfer functions.
Only every fifth point is plotted. (c) Apparent resitivity and (d) phase along profile AB indicated in maps of induction arrows.
Solid and dash-dotted lines denote modeled impedance elements Zyx and Zxy, respectively. Open and closed circles indicate
off-diagonal elements ZE,yx and ZE,xy of TE-mode impedance tensor, respectively. (e), (f) Modeled impedances (Zyx—solid line;
Zxy—dash-dotted line) are compared to the invariant representations ZE,2d (closed circles) and ‖ZE‖ (open circles).

inhomogenities, respectively, at 16 kHz frequency. Note that
real induction arrows mainly point away from the shallow loop
conductor, whereas imaginary induction arrows point toward
the elongated conductor in the lower inhomogeneous layer.
The value Zxy is strongly distorted by charge accumulation at
the loop boundaries, giving rise to poloidal currents. There is
almost no anomalous field to be observed in the correspond-
ing TE-impedance element ZE,xy (closed circles in Figures 2c
and 2d), since the profile is approximately in a 2D environment.
On the other hand, the impedance ZE,yx (open circles) shows
a similar characteristic as Zyx in both apparent resistivity and
phase, but the apparent resistivity cannot be recovered exactly.
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Thus, in this particular model at the frequency used for model
calculations, phases are less distorted by poloidal currents than
apparent resistivities are. In other words, phases look deeper
to the 2D conductor and exhibit a 2D character.

Using the invariant representations (14) and (15), respec-
tively, shown in Figures 2e and 2f, the shape of Zyx can be
recovered in both apparent resistivities and phases. The de-
terminant (open circles) reveals the structures with fewer side
effects in the apparent resitivity than ZE,yx, but the anomalies
are underestimated as expected. The optimal E-polarization
approximation ZE,2d yields acceptable values of apparent re-
sistivities and phases compared to Zyx, although the fit of the
phase on this particular profile is worse than ZE,yx.

Figures 3a–3d show maps of apparent resitivies and phases
for the whole model area. White and light gray denote low
and dark gray and black indicate high apparent resistivities
and phases, respectively. True apparent resitivities (Figures 3a
and 3b) related to the impedance element Zyx image the loop
conductor, while phases indicate both the loop and the deep
conductor beneath. Apparent resistivities show the discontin-
uous behavior of the electric field with a component perpen-
dicular to the loop conductor pronouncing the boundary of the

FIG. 3. Model calculations. (a) Apparent resistvity and (b) phase related to Zyx from forward modeling. (c) Apparent resistivity
and (d) phase estimated from magnetic transfer functions shown in terms of the invariant ZE,2d. Differences in the maps, which are
significant in the apparent resistivities, occur because of poloidal currents, which do not affect the calculated TE-mode impedance
tensor and its invariants. The phase of Zyx is less distorted by 3D effects because of charge accumulation, resulting in a great
semblance to the phase of ZE,2d.

loops. Thus, white in Figure 3a is from the poloidal electric field
and cannot be seen in the TE-mode invariant ZE,2d in Figure 3c.
Still, the loop conductor is easily identified in Figure 3c, and
in some sense it is less distorted by 3D effects than in
Figure 3a. Phases of Zyx and ZE,2d in Figures 3b and 3d, respec-
tively, clearly indicate the existence and location of the deeper
conductor in a similar way, while the surface loop is still visible.

Obviously, apparent resistivies and phases of the invariant
representation (15) of the TE-mode impedance tensor are rea-
sonable indicators of the electrical conductivity distribution in
the subsurface even in complex 3D cases as used for this model
study.

APPLICATION TO AIRBORNE VLF DATA
IN SOUTHEASTERN SWEDEN

This description of an application to field data demonstrates
that the suggested algorithm is stable, yields reasonable re-
sults, and facilitates interpretation of magnetic transfer func-
tions in VLF applications. We have chosen field data from an
area where the geology is known and the results can easily be
checked for their plausibility.
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The data shown here were collected and provided by the
Geological Survey of Sweden (SGU) during airborne sur-
veys in Sweden. They used the Rugby (United Kingdom) and
Bordeaux (France) transmitters to estimate magnetic transfer
functions for frequencies around 16 kHz. Their azimuthal an-
gles differ by about 20◦. Fortunately, the predominant strike
direction in the measurement area is east-west. Northward-
striking structures are poorly resolved because of the choice of
transmitters.

For the purpose of the 3D tipper transformation, the original
irregularly spaced data (flight line separation ∼200 m, lines in
south–north direction, point distance on each line ∼15–20 m)
were interpolated to a regular grid of 50 m point-to-point dis-
tance in both north and east directions. We did not perform
a downward continuation of the fields from the measurement
height (∼70 m) to the surface, since this would create some in-
stability from noise in the data. The data were manipulated with
a taper window, which is equal to one everywhere except on the
borders, where it smoothly decays to zero. The decay area was
restricted to a small part of the whole area under consideration.
Tipper data were then decomposed using equation (10), where
a maximum difference criterion of 0.001% with respect to the
normal field was used. Convergence problems may occur in the
case of heavily distorted data which are not of internal origin.
Such areas should be excluded from a transformation, e.g., by
tapering the tipper vector in those areas to zero. In the present
case, all data could be used and convergence was reached after
around 50 iterations for each primary field polarization.

Geological background

The area investigated lies within the map Stockholm 10 I
SO (SGU), southeast of Stockholm, and is part of the Bergsla-
gen region, which has been a major metal producer for more
than a millennium (Allen et al., 1996). The Bergslagen area is
the type location of the term skarn and several other mineral
species. Banded iron formations and various types of skarn
deposits build a diverse range of ore deposits. Most of them
occur in metavolcanic rocks and associated facies. Figure 4a
shows a simplified geological map of the bedrock. The base-
ment, covered to a great extent by quaternary sediments, is of
early Proterozoic age and part of a felsic magmatic region of
mainly medium to high metamorphic grade in the Baltic shield.
Allen et al. (1996) interpret the region as an extensional basin
in the environment of an active continental margin, compris-
ing several stages of pre- and posttectonic magmatic intrusions
through the evolution.

The metavolcanic (yellow and light green) and metasedi-
mentary (blue) rocks shown are deformed into steep, doubly
plunging, mainly east–west-oriented synclines, partly wrap-
ping around rheologically more competent granitoid and
granodioritic intrusions (brown). Thin, sheet-like intrusions
were involved in the folding and show up as macrofolds of
wavelengths of>30 km (Stalhos, 1981) embedded in deformed
metasediments.

Since the competent rocks were resistant to glacial erosion
during the Quaternary ice-sheet coverage of the Baltic
shield, they gently build up as topographic highs. The valleys,
covered by thin electrical conductive Quaternary alluvium,
indicate underlaying rheologically weaker metavolcanics and
metasediments.

Maps of apparent resistivities and phases

As an example of the data set, the real part of Tx is shown in
Figure 4b, mainly indicating east–west-striking structures. The
15× 25 km area is the same as shown in the geological map
(Figure 4a). Typical values of the tipper in this area range from
−0.5 to 0.5. The plot is superimposed by the topography, which
is plotted as a gray-shaded relief.

In the absence of ground impedance measurements, the re-
quired mean electric field over the whole area was estimated by
assuming a homogeneous earth with a resistivity of 2000Äm,
representing the crystalline basement rocks described previ-
ously. It should be taken into account that the range of ap-
parent resistivities and phases is thereby determined. Hence,
one should focus on their lateral changes rather than on their
absolute values.

Figures 4c and 4d show the results of the tipper transforma-
tion in terms of apparent resistivity and phase using the in-
variant representation of equation (15), superimposed by the
topography as a gray-shaded relief. Blue denotes high appar-
ent resistivities and phases below 45◦, whereas red indicates
low apparent resistivities and high phases, respectively. White
lines mark the coastline and lakes.

Apparent resistivity and phase correlate significantly with
lithological units, as shown in the geological map. The appar-
ent resistivity is low in sediment-filled valleys, described previ-
ously, whereas the phase is higher than 45◦ in these regions, in-
dicating deep conductors, e.g., in the form of highly mineralized
metasediments and metavolcanics (Allen et al., 1996). The mas-
sive granitoid blocks shown in the geological map clearly ap-
pear as electrically highly resistive structures. Here, the phase
is lower than 45◦, indicating an increasing resistivity with depth.
This coincides with a simplified depth sequence of a thin layer
of conductive overburden and an underlying, highly resistive
(but weathered in the near surface) crystalline rock.

Fault zones are marked by low resistivities (if they are
fluid filled) and build a pattern of south–southeast- and east–
northeast-striking features. Many details given in the geologi-
cal map can be recovered from the map of apparent resistivities,
and vice-versa, but this is not described further here.

The results are very satisfactory and are easily interpreted.
Improvements could be achieved by using two transmitters per-
pendicular to each other to enhance the resolution of north-
striking features and by using more frequencies to improve
depth resolution. Furthermore, involving ground measure-
ments to obtain information about the normal structure can
help to eliminate the uncertainties introduced into the maps
by simply assuming a medium electric field as was done in this
example.

CONCLUSION

The transformation of magnetic transfer functions into ap-
parent resistivities and phases is a new representation of VLF
data. Interpretation of magnetic transfer functions is rather dif-
ficult because they mainly indicate lateral changes of the earth’s
conductivity distribution. Information about the depth depen-
dency of the structures is given in terms of the mutual sign
relation between the real and imaginary parts of the trans-
fer functions, i.e., their phases. Extracting this information
cannot be obtained by visually analyzing the maps. The new
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representation in terms of apparent resistivity and phases
clearly indicates lithological units in complicated 3D geological
environments and gives an idea about the depth profile by
interpreting phases.

The apparent resistivities and phases are calculated itera-
tively, exploiting the potential field character of the magnetic

FIG. 4. Airborne VLF measurements from Sweden. (a) Geological map of the area of investigation (Bergslagen region, southeastern
Sweden). (b) Real part of one component of the measured tipper (Tx). (c) Invariant representation ZE,2d of the TE-mode impedance
tensor in terms of apparent resistivity and (d) phase estimated by the transformation of tipper data. See text for description. Maps
are reprinted with permission of the SGU.

field in the air and the vector analytic properties of the electric
field formally introduced by the decomposition into its toroidal
and poloidal parts. Only a simple mathematical tool is required
to estimate the toroidal electric field besides a constant. The
unknown constant has to be estimated by other means—for
instance, by an impedance ground measurement. From the
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magnetic and toroidal electric fields for two independent pri-
mary field polarizations, we calculate an impedance tensor rep-
resenting the TE-mode response of a 3D earth. When bound-
ary information about the normal structure is not available,
we can still obtain reasonable impedances, although the level
of apparent resitivity and phase is biased. However, this does
not degrade the significant correlation of the maps of invari-
ant representations of the impedance tensor with the known
geology.
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