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S U M M A R Y
Instantaneous velocity gradients within the continental lithosphere are often related to the
tectonic driving forces. This relationship is direct if the forces are secular, as for the case of
loading of a locked section of a subduction interface by the downgoing plate. If the forces
are static, as for the case of lateral variations in gravitational potential energy, then velocity
gradients can be produced only if the lithosphere has, on average, zero strength. The static
force model may be related to the long-term velocity field but not the instantaneous velocity
field (typically measured geodetically over a period of several years) because over short time
intervals the upper lithosphere behaves elastically. In order to describe both the short- and
long-term behaviour of an (elastic) lithosphere–(viscoelastic) asthenosphere system in a self-
consistent manner, I construct a deformation model termed the expected interseismic velocity
(EIV) model. Assuming that the lithosphere is populated with faults that rupture continually,
each with a definite mean recurrence time, and that the Earth is well approximated as a linear
elastic–viscoelastic coupled system, I derive a simple relationship between the instantaneous
velocity field and the average rate of moment release in the lithosphere. Examples with synthetic
fault networks demonstrate that velocity gradients in actively deforming regions may to a large
extent be the product of compounded viscoelastic relaxation from past earthquakes on hundreds
of faults distributed over large (>∼106 km2) areas.
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1 I N T RO D U C T I O N

Continental deformation generally occurs in broad and complex
zones. It has often been noted (e.g. McKenzie & Jackson 1986)
that the distribution of deformation in these zones is not uniform.
Rather, fault populations occur on many spatial scales, and large ar-
eas of distributed deformation may be juxtaposed against similarly
large areas best characterized as coherent, unfaulted blocks. One
way of quantifying the distribution of deformation in continental
deformation zones is through the rate of moment release, a mea-
sure of the density of the rate of production of elastic dislocations.
Until the mid-1980s, estimation of moment release rate was based
primarily on geological and palaeoseismological observations and,
where possible, the historical record of seismicity (e.g. Wesnousky
et al. 1982). Since the advent of space-based geodesy, particularly
the Global Positioning System, it has been possible to determine
instantaneous surface velocity fields with increasing density and
precision, to the point where lateral variations in strain rate can be
mapped to a certain degree of accuracy. These strain rates are often
related directly to the moment release rate and compared with other
estimates of the moment release rates. However, I am not aware of
a theoretical basis for this relationship. This is not surprising be-
cause the meaning of the instantaneous velocity field is intricately

bound up in the mechanics of continental deformation, and opin-
ions still diverge on appropriate conceptual models. A relationship
exists between the steady-state strain rate and the moment release
rate (Kostrov 1974), but a corresponding formalism connecting in-
stantaneous strain rates with moment release rates is lacking. The
purpose of this paper is to propose a new relationship between the
instantaneous velocity field and the moment release rate in a manner
which is, as far as possible, in harmony with prevailing ideas on the
mechanics of continental deformation.

2 E N D - M E M B E R M O D E L S O F
C O N T I N E N TA L D E F O R M AT I O N

Active continental deformation is usually envisioned in terms of
two end-member models (e.g. King et al. 1994; Nyst 2001). In the
first, the block model, it is supposed that the continental lithosphere
consists of coherent, unfaulted elastic blocks moving with respect
to one another (e.g. Savage & Burford 1973; Savage et al. 1979;
Hashimoto & Jackson 1993). Over very long time periods (aver-
aged over many seismic cycles), relative motions among the blocks
are accommodated by motions across the faults which divide them,
and the blocks themselves behave rigidly. The block model accounts
for the elastic effects associated with strain accumulation localized
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on the block boundaries, this strain being determined by a model
of resistance to the relative motions above a locking depth (Savage
et al. 1979; Matsuúra et al. 1986; Hashimoto & Jackson 1993). The
second model is the ‘thin-sheet’ model (England & McKenzie 1982;
England & Molnar 1997; Flesch et al. 2000). It is a continuum model
in which the lithosphere is defined to include elastic portions of the
crust and mantle plus intervening weaker material (i.e. lower crust).
This lithosphere is assumed to overlie an asthenosphere that is much
weaker, i.e. it flows much more readily than any components of the
lithosphere. Boundary forces acting on the thin lithosphere, such as
the static force produced by lateral variations in gravitational poten-
tial energy, can be related to consequent steady-state deformation
by means of an effective viscosity (e.g. Flesch et al. 2000), which
relates the induced lithospheric stresses to the lithospheric strain
rate.

In the block model there is no memory from past earthquakes:
instantaneous strain accumulation effects depend only on the accu-
mulating ‘slip deficit’ on locked portions of the lithosphere at rates
that bear no clear relation to the occurrence of past earthquakes. Nor
in the thin-sheet model are earthquakes explicitly taken into account.
The strong (elastic) portions of the lithosphere are assumed to have
zero strength in the long term because the yield strength of these
regions is continually being exceeded, resulting in distributed cata-
clastic failure. While this assumption is reasonable and implies the
occurrence of earthquakes, admissible spatio-temporal effects from
past earthquakes are quite limited by this simple characterization of
the average strength of the elastic portions of the lithosphere.

Both the block model and the thin-sheet model are useful descrip-
tions of continental deformation under the appropriate conditions,
i.e. for the block model, the existence of large unfaulted blocks and
for the thin-sheet model, steady-state continuum deformation of the
lithosphere as a whole. However, they afford no insight into the
properties of earthquakes that occur over time. To estimate the dis-
tribution of seismic moment release, the block model requires that
the block boundaries be precisely defined and that the instantaneous

steady state

 inter-
seismic

Figure 1. A repeating earthquake occurs at a given location with periodicity
T . The expected interseismic velocity field is the average velocity during an
interseismic period (i.e. time 0+ to T −). The steady-state velocity is the
average over a long time interval which includes several earthquakes.

A BInterseismic velocity Steady state velocity

Figure 2. Fault-parallel velocity in the viscoelastic coupling model (Savage & Prescott 1978), assuming uniform periodic slip on an infinitely long, straight
strike-slip fault which penetrates the entire elastic layer of thickness H . (a) Expected interseismic velocity after the system has evolved through several cycles.
(b) Steady-state velocity.

velocity field be the product of specific imposed boundary motions
(e.g. slip at depth) without a memory from past earthquakes. This
approach may be valid in the case of an infinitely long, straight
fault (see the comments below) but will lead to biased estimates in
more complicated fault geometries. The effective viscosity defined
in the thin-sheet model relates driving stresses to steady flow over
the entire lithosphere, but it is not clear (and usually subject to great
approximation) how stress in the ‘averaged’ lithosphere should be
partitioned into strain rate within the elastic versus anelastic portions
of the lithosphere.

There is a distinction between instantaneous velocity and steady-
state (i.e. secular) velocity that cannot be overemphasized. The for-
mer is typically represented by a geodetic survey measured over a
short time period, whereas the latter is best represented by the ge-
ological slip rates obtained for the faults occupying a region. Nev-
ertheless, in a modelling context many instances could be cited in
which the two types of velocity field are confused. The difference
can be demonstrated by pointing out the connection between the
instantaneous velocity and interseismic velocity in the context of an
earthquake cycle. In a single-fault system let us consider the inter-
seismic velocity field averaged over the entire interseismic period
between successive earthquakes (Fig. 1). This generally differs from
the steady-state velocity, which represents an average over a time
interval that includes both the interseismic period(s) and the static
offset(s) from the earthquakes themselves (Fig. 1). The distinction
between ‘interseismic velocity’ and ‘steady-state velocity’ is clear
in treatments of an elastic–viscoelastic coupled system. For exam-
ple, in the viscoelastic coupling model of Savage & Prescott (1978),
slip events occur periodically on an infinitely long strike-slip fault
embedded in an elastic layer overlying a viscoelastic substrate. In
this system, Savage et al. (1999) note that the average interseismic
velocity field exactly replicates the solution for strain accumula-
tion around a strike-slip fault that is locked above a certain depth
(Fig. 2a; Savage & Burford 1973), whereas the steady-state velocity
is simply steady block motion of one side of the fault with respect
to the other side (Fig. 2b). Clearly, the interseismic velocity field
is the more appropriate description of the instantaneous velocity
field.

I adopt the principle that instantaneous surface velocity measure-
ments represent the interseismic velocity field, not the steady-state
velocity field. In addition to the implications for mechanics of con-
tinental deformation discussed below, this means that the procedure
of relating geodetically determined velocity fields directly to rates
of seismic moment release, as is done in numerous studies, is not
altogether correct: the former is the product of the interseismic ve-
locity field, whereas the latter is the product of the steady-state ve-
locity field. This may help rationalize systematic discrepancies in
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estimates of seismic moment release using different methods (King
et al. 1994; Ward 1998).

3 P E R I O D I C M O M E N T R E L E A S E
M O D E L O F A E L A S T I C – V I S C O E L A S T I C
C O U P L E D S Y S T E M

3.1 Model description

To capture the properties of earthquakes occurring within the strong
portion of the lithosphere, I propose a physical model intermediate
between the block model and thin-sheet model. The Earth structure
is assumed to consist of a strong elastic lithosphere (elastic crust
and possibly uppermost mantle) underlain by a weaker ductile sub-
strate (lower crust and/or upper mantle). This picture is supported
by studies of rheology structure in the western United States (Pollitz
et al. 2001, and references therein) and Mongolia (Vergnolle et al.
2001). Under the framework of elastic–viscoelastic coupling, the
time-dependent velocity in the lithosphere can be related to one or
more particular earthquake sources. I postulate that many patterns of
active continental strain are the product of memory from past earth-
quakes, i.e. the compounded effects of stress diffusion (post-seismic
relaxation) from numerous past earthquakes distributed throughout
a region. The likely existence of such earthquake memory is sup-
ported by the theoretical study of Bott & Dean (1973), who demon-
strated that plate-like behaviour remote from a plate boundary is
the product of stress diffusion into the plate interior from contin-
ually occurring moment release along a long plate boundary. This
result has been verified in special geometries, i.e. 2-D strike-slip
faulting (Savage & Prescott 1978). Although the precise record of
earthquake occurrence in a locality, let alone for a region, is gener-
ally unknown, it is possible to relate the interseismic velocity field
to the rate of local seismic moment release by assuming that this
moment release occurs periodically. The periodicity may vary from
one location to the next. As demonstrated in the following section,
this provides a framework for relating the instantaneous velocity
field to the time-averaged distribution of moment release rate in the
lithosphere.

3.2 Interseismic velocity field

Let a fault occupying a portion of lithosphere undergo a slip event
with average recurrence time T . For convenience I assume that the
slip events occur periodically, i.e. T is the time between all succes-
sive slip events. As discussed below, however, the principal result
remains valid even for non-uniform recurrence intervals as long as
the expected recurrence interval is T . The expected interseismic ve-
locity (EIV) at a particular point is defined as the velocity averaged
over interseismic times, i.e. between time 0+ just after the last event
to time T − just before the succeeding event (Fig. 1). If u(t) and v(t)
are the time-dependent displacement and velocity, then

vs = 1

T

∫ T −

0+
v(t) dt = u(T −) − u(0+)

T
. (1)

Let un(t) be the displacement field on the viscoelastic system for
the nth previous slip event. Then

un(t) = u0(t + nT ). (2)

For times t > 0, u0 contains the effects of the coseismic (purely
elastic) displacement field from the event which occurred at time 0
plus accumulated post-seismic effects up to time t.

For times t > 0

u(t) =
∞∑

n=0

un(t) =
∞∑

n=0

u0(t + nT ). (3)

Evaluating vs with eqs (1) and (3) yields

vs = 1

T
[u(T −) − u(0+)]

= 1

T
{[u0(T ) − u0(0+)] + [u0(2T ) − u0(T )] + · · ·}

= 1

T
lim

n→∞
[u0(nT ) − u0(0+)]. (4)

Thus the EIV is the difference between the fully relaxed response
and the purely elastic response divided by the interseismic time
interval.

This can be generalized to the case of the response to moment re-
lease distributed throughout the lithosphere and a 3-D interseismic
velocity field. Suppose a given volume δV of lithosphere has mo-
ment release M occurring periodically with repeat time T . If Gi j (r,
r0; t) is the displacement field observed at r at time t on the vis-
coelastic system from unit moment tensor excitation Mij = 1 acting
at r0 beginning at time 0, then the EIV field at point r is

vs(r) = 1

T

∑
i j

Mi j (r0)[Gi j (r, r0; ∞) − Gi j (r, r0; 0+)]. (5)

It is convenient to define the moment rate tensor as Ṁi j = Mi j/T
and the moment rate tensor density (per unit volume) as ṁi jδV =
Ṁi j . To account for the additional effects of a distribution of time-
dependent forces, as could arise from tectonic interactions at a col-
lision zone or shear zone, I further define Gi (r, r0; t) as the dis-
placement field observed at r at time t on the viscoelastic system
from unit force excitation Fi = 1 acting at r0 beginning at time 0; I
then define a forcing rate density (assumed constant with time at any
given location) ḟiδV = ∂t Fi . Combining all of the above definitions
with eq. (5), the total EIV field is

vs(r) =
∑
i, j

∫
ṁi j (r0)[Gi j (r, r0; ∞) − Gi j (r, r0; 0+)] d3r0

+
∑

i

∫
ḟi (r0)[Gi (r, r0; ∞) − Gi (r, r0; 0+)] d3r0. (6)

This provides a direct relationship between the EIV field and the
distribution of time-averaged moment release rate and forcing rate
in the lithosphere, in principle, for all six components of the moment
rate tensor and all three components of the forcing rate vector. In
the remainder of this paper I will focus only on the contributions to
eq. (6) from ṁ. As will be demonstrated in subsequent sections,
eq. (6) forms the basis for inversion of elements of the moment rate
density tensor from observed surface velocity fields. In practice,
given the nature of GPS velocity fields, one should expect to recover
only the distribution of the vertical average of ṁ.

A noteworthy property of the derived relationship is that nei-
ther the block nor continuum extreme models of deformation need
be satisfied, i.e. both discontinuous or continuous distributions of
ṁi j (r0) in eq. (6) are admissible sources of the deformation. An-
other property of the relationship is that, for a given subdivision of
the Earth into elastic and anelastic regions, vs does not depend on
the viscosity distribution but only on the elastic moduli distribution.
The average recurrence interval T need not be constant: it may vary
from one location to the next. This allowable variation of T with r0

is implicit in the integral (6) through its dependence on ṁi j (r0). The
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598 F. F. Pollitz

relationship (6) is valid even for a fault system with a more compli-
cated distribution of interevent times. More precisely, for a single
fault let the expected number of events occurring within a preceding
time interval nT be n. The history of events with this property need
not be periodic, only the average recurrence interval must equal T .
Then one can derive the expected interseismic velocity field at time
t = 0 resulting from a sequence of events occurring within −nT <

t < 0. The expected contribution from one event occurring within
that time interval is

1

nT

∫ nT

0+

∂u0(t)

∂t
dt = 1

nT
[u0(nT ) − u0(0+)].

The contribution from n such events reduces to eq. (4) in the limit
n − →∞, leading again to eq. (6).

It will be convenient to work with vertically integrated rates of
moment release

ṁ ′
i j (r̂) =

∫ R

R−H
ṁi j (r) dr, (7)

where R is Earth’s radius and H is a depth assumed to be 15 km. If
ṁ ′

i j (r) are assumed to be independent of r and assuming no force
contributions, then eq. (6) may be rewritten as

vs(r) = 1

H

∑
i j

∫
ṁ ′

i j (r̂0)
∫ R

R−H
[Gi j (r, r0, r̂0; ∞)

− Gi j (r, r0, r̂0; 0+)] r 2
0 dr0 d2r̂0. (8)

The assumption of constant ṁi j with depth in the ‘elastic’ portion
of the lithosphere may be a good approximation in many situations
according to modelling of the steady-state moment release rate in
a depth-dependent viscoelastic medium with account for frictional
rheology of faults (Rolandone & Jaupart 2002).

3.3 Steady-state velocity field

The steady-state (secular) velocity is given by the EIV plus the time-
averaged contribution of static offsets from the periodic moment
release events (Fig. 1) and constant forces. The time-averaged static
component is given by∑
i, j

∫
ṁi j (r0)Gi j (r, r0; 0+) d3r0 +

∫
fi (r0)Gi (r, r0; 0+) d3r0.

(9)

The sum of the velocity fields in eqs (6) and (9) is then the steady-
state velocity:

vsteady(r) =
∑
i, j

∫
ṁi j (r0)Gi j (r, r0; ∞) d3r0

+
∑

i

∫
ḟi (r0)Gi (r, r0; ∞) d3r0. (10)

If ṁi j (r) are assumed to be independent of r, and assuming no force
contributions, then eq. (10) may be rewritten as

vs(r) = 1

H

∑
i, j

∫
ṁ ′

i j (r̂0)
∫ R

R−H
Gi j (r, r0, r̂0; ∞)r 2

0 dr0 d2r̂0. (11)

There are major differences between the EIV field (eq. 6) and the
steady-state velocity field (eq. 8), not just in their mathematical
form but in their interpretation. The EIV field represents the time-
averaged difference between the fully relaxed deformation field and
the static deformation field contributed from a distribution of elastic
dislocations, whereas the steady-state velocity field represents just

the fully relaxed response—the time-averaged static deformation
field on the elastic Earth stripped of its viscoelastic portions.

Although the formulae for interseismic and steady-state velocity
presented in this and the previous section are valid for general vis-
coelastic models, in all applications to be presented I will evaluate
these velocity fields on a spherically stratified viscoelastic medium.
The required Green functions evaluated at times 0+ or ∞ after a
particular moment release event are calculated with the methods
described in Pollitz (1996, 1997).

3.4 Context of the EIV model

A secular force model, such as that produced by the relative motions
of shear zone boundaries in a strike-slip fault system or by motion
of a downgoing slab at a subduction zone, corresponds to non-zero
ḟ. Even in the absence of slip events (ṁ = 0), eq. (6) shows that
the secular force model will generate a non-trivial average instan-
taneous velocity field, and eq. (10) demonstrates the same for the
steady-state velocity field. In a static force model such as a model
of lateral variations in gravitational potential energy, ḟ = 0, and
in the absence of earthquakes there would be no instantaneous or
steady-state deformation of the lithosphere: the system would reach
static equilibrium. However, the topographic gradients generating
lateral gradients in gravitational potential energy typically produce
deviatoric stress levels much larger than the yield strength of the
lithosphere; earthquakes must occur. The same conclusion may ob-
viously be reached for the stress levels generated by a secular force
model, e.g. the continual occurrence of earthquakes within the San
Andreas or Anatolian strike-slip fault zones. Thus, any attempt to ex-
plain strain gradients over the short-term must retain the short-term
integrity of the lithosphere (i.e. its elasticity) and thus must account
for the continual release of strain through discrete slip events.

Models that describe short- or long-term deformation could each
be classified as either deterministic or statistical. For long-term de-
formation, the first category is represented by steady block motions
of tectonic plates or microplates described by rigid rotations. The
second category is best represented by the thin-sheet model, in which
no attempt is made to describe every fault which ruptures in a large
region populated by a very large number of distributed faults. Rather,
an effective viscosity (Flesch et al. 2000) describes the expected be-
haviour of the lithosphere over long periods of time. Over shorter
time intervals, a deterministic model such as the block model or the
viscoelastic coupling model (Savage & Prescott 1978) is applicable
only within a laterally restricted region where the number of im-
portant faults is small. Over short time periods but covering a large
region, however, the effects of slip release over a large number of
faults must be accounted for, and a statistical theory for interseis-
mic deformation is required. The EIV model of eq. (6) provides a
statistical interpretation of the interseismic deformation without de-
manding detailed knowledge of all of the faults occupying the given
region.

3.5 Kostrov’s formula

Kostrov (1974) derived a formula that is often used to relate rates of
moment release to the strain rate field. As another way of emphasiz-
ing the difference between the interseismic and steady-state veloc-
ity field, I investigate under what conditions this formula is valid.
Kostrov’s formula states that the average strain rate in a volume is
proportional to the average moment release rate in the same vol-
ume, both averaged over time and the space in the volume. Kostrov
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assumed shear dislocations populating a volume of constant shear
modulus µ, in which case the tensor form of the formula is

1

V

∫
ε̇i j d3r = 1

2µV

∫
ṁi j (r) d3r, (12)

where V = ∫
d3r is the considered volume.

One may obtain a more general form of this formula as follows.
Let an elastic volume � bounded by area  enclose a large number
of seismic sources and consider the deformation rate within that
volume. For a single seismic source at r0 with moment rate tensor
Ṁ, the force balance equation that describes the quasi-static velocity
field is

∇ · σ̇(r) = ∇δ(r − r0) · Ṁ, (13)

where σ̇ is the stress rate tensor and δ(r − r0) is the 3-D Dirac delta
function. For an arbitrary vector function g(r) we have∫

�

[∇ · σ̇(r)] · g(r) d3r =
∫

�

∇δ(r − r0) · Ṁ · g(r) d3r. (14)

Simple differential relations applied to the integrands yield∫
�

∇ · (σ̇ · g) d3r −
∫

�

(∇g) : σ̇ d3r = − ∫
�

δ(r − r0)∇g : Ṁ d3r

+
∫

�

∇ ·[δ(r−r0)Ṁ · g] d3r

= −∇g(r0) : Ṁ. (15)

In eq. (15) I eliminated the second integral on the right-hand side
using Gauss’ theorem and noting the vanishing of the δ-function on
. Let us suppose for the source element at r0 that Ṁ = ṁ(r0) d3r0,
and consider the contributions from ṁ distributed over the volume
�. Applying Gauss’ theorem to the first integral on the left-hand
side of eq. (15), we obtain∫



n̂ · [σ̇′ ·g(r)]d2r−
∫

�

[∇g(r)] : σ̇d3r = −
∫

�

[∇g(r0)] : ṁ(r0)d3r0.

(16)

Eq. (16) is quite general and is valid for any volume enclosing
an elastic portion of an elastic–viscoelastic coupled system. I now
consider the deformation averaged over a time much longer than
the seismic cycle of either � or the surrounding actively deforming
regions. Assuming that the boundary  does not intersect any dis-
location source, σ̇ in the first term on the left-hand side of eq. (16)
must be zero because, over a sufficiently long time period, all built-
up stresses are relieved by the distributed faulting. Since eq. (16) is
valid for arbitrary choices of g, we have∫

�

σ̇ d3r =
∫

�

ṁ(r0) d3r0. (17)

If a constitutive relation for a homogeneous isotropic elastic medium
is assumed, i.e.

σ̇i j = λε̇kkδi j + 2µε̇i j (18)

then this is a restatement of eq. (12), i.e. the proportionality between
the volume-averaged strain rate and the moment release rate in a
homogeneous isotropic elastic volume. However, eq. (17) is valid
for a more general constitutive relation.

Note that eq. (17) is strictly applicable only to the steady-state
strain or velocity field. During an interseismic interval or any time

period in which elastic stresses are not averaged out, σ̇ , in the -
integral of eq. (16) may be large, in which case eq. (17) is not
justified.

4 S Y N T H E T I C M O D E L O F
D I S T R I B U T E D D E F O R M AT I O N

4.1 Elements of synthetic model

Here I derive an EIV field based on a random distribution of fault-
ing within a 20 × 20 deg2 area (Fig. 3). The H-shaped grey region
contains a network of both tensile-opening faults (region E) and
strike-slip faults (regions A–D). The relationship between the fault
geometry and moment tensor for these fault types follows the con-
ventions of Aki & Richards (1980). Assuming vertical faults, these
sources are defined as follows. If the normal and horizontal tangent
and vertical tangent vectors to an infinitesimal section of the fault
plane of area δA are given by φ̂, θ̂ , and r̂, respectively, and the slip
value is u, then the non-trivial moment tensor components of that

A

C

B

D

E

φ

θ

Figure 3. Configuration of synthetic fault network. It is composed of 300
north–south-trending tensile opening faults randomly distributed in region
E and four sets of 100 strike-slip faults randomly distributed in regions
A–D. Each fault ruptures periodically with a random recurrence interval
in the range 500–2500 yr and random time of the most recent earthquake.
Post-seismic relaxation from the compounded relaxation of these faults is
observed at 100 sites (top part of figure) randomly distributed within the
boxed 14 × 14 deg2 area. Calculations are performed in an r–θ–φ spherical
geometry.
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600 F. F. Pollitz

section are

mφφ = (λ + 2µ)uδA

mθθ = λuδA


 tensile opening

mrr = λuδA

mθφ = µuδA strike-slip, (19)

where δ and µ are the Lamé parameters.
The faulting is distributed in both space and time and is intended

to represent a stationary process of earthquake occurrence within
any given active fault zone (i.e. one of the regions A–E) and cap-
ture the breadth of distributed deformation that makes up a broadly
deforming region such as the central Basin and Range province. On
any given fault, however, earthquake occurrence is constrained to
be periodic in time. In detail, I distribute 700 synthetic source faults
�ν according to the following scheme.

(1) 300 tensile opening source faults are randomly distributed
in region E under a uniform distribution. Each source fault is con-
strained to have a strike of 0◦, a length of 30 km and the time history
of earthquake occurrence on a particular fault follows the probabil-
ity distributions f T and f t given below. Tensile opening at the time
of each earthquake on any given fault is 1.15 m.

(2) 100 strike-slip faults populate each of regions A–D under a
uniform distribution. Each source fault is constrained to have a strike
of 90◦, a length of 30 km, a width of 15 km, and follow the f T and
f t time distributions of occurrence. Regions A and D are populated
with right-lateral faults; regions B and C with left-lateral faults.
Strike-slip motion at the time of occurrence of each earthquake on
any given fault is 1.725 m.

(3) Each fault ruptures periodically, and I associate with each
fault �ν a recurrence interval T ν and elapsed time since the previ-
ous event tν . The T ν are considered identically distributed random
variables with probability density functions f T (T ) = 1 for 500 <

T < 2500 yr and f T (T ) = 0 elsewhere. The elapsed time tν since
the last event is uniformly distributed between the present, which
is arbitrarily assigned time t = 0, and time t = T ν , i.e. it has a
probability distribution f t(t) = 1 for 0 < t < T ν and f t(t) = 0
elsewhere.

The recurrence intervals of 500–2500 yr are roughly consistent
with those determined on several faults in the Basin and Range
province and environs (e.g. Anderson & Hawkins 1984; Wills &
Borchardt 1993; McCalpin & Nishenko 1996; Sanders & Slemmons
1996; Reheis & Sawyer 1997; Bell et al. 1999), although the range
in recurrence times is generally even broader because a few faults
are much less active than others. All faults are constrained to rupture
over the depth interval 0–15 km with uniform slip.

The described scheme is realistic in allowing a distribution of
faulting on a broad range of spatial scales, in producing earthquake
occurrence which, when viewed over sufficiently long time inter-
vals, is essentially Poissonian, and in accounting for post-seismic
relaxation from multiple past events. It is unrealistic in chiefly two
respects:

(1) the earthquake occurrence on an individual fault is assumed
to be periodic;

(2) the constant length and slip of the faults leads to a moment
release distribution that does not obey a magnitude–frequency rela-
tionship.

The assumption in the first case is largely inconsequential because
(as will be demonstrated in Section 4.2) different realizations of the
synthetic fault catalogue, each of which results in quite different

slip histories on individual faults, yield nearly the identical instan-
taneous velocity field. The second case arises because the faults
populating a region will generally exhibit a wide variety of slip and
fault areas, ranging from microearthquakes to great earthquakes,
and even a single fault segment may not necessarily slip with iden-
tical magnitude in each event. The chosen system is considered a
proxy for a more complicated system that would include a real-
istic size distribution of earthquakes. For example, the system of
300 tensile-opening faults occupying region E of length 30 km, slip
1.15 m and average recurrence interval 1500 yr, implies the occur-
rence of exclusively magnitude 6.8 earthquakes approximately once
every 5 yr. This could be replaced with a system of 150 faults of
length 30 km and slip 1.15 m and 15 faults of length 100 km and slip
3.45 m. With the same mean recurrence interval of any given fault
(1500 yr), this would produce M = 6.8 events once every 10 yr and
M = 7.6 events once every 100 yr. The behaviour of this more com-
plicated system deserves investigation, but I will henceforth restrict
attention to the simpler system.

To summarize, one realization of earthquake occurrence in this
model consists of the set {�ν , T ν , tν |ν = 1700}, which defines
an infinite sequence of past earthquakes. Time-dependent defor-
mation results from the compounded post-seismic relaxation from
every earthquake in the sequence on a viscoelastic earth model,
shown in Fig. 4. This model possesses a lower crust of viscosity
ηc = 5 × 1019 Pa s and a mantle of viscosity ηm = 2 × 1019 Pa s.
This simple viscosity structure is similar to that obtained by Bills
et al. (1994) for the central Utah region and by Pollitz et al. (2001)
for the longer-term (>2 yr post-seismic) relaxation in the Mojave
Desert, CA.

Time-dependent post-seismic velocity at time t after a slip event
consists of a linear combination of thousands of viscoelastic nor-
mal modes (Pollitz 1997), each with exponentially decaying time
dependence exp(−sjt), where 1/sj is the characteristic decay time
of mode j. Fig. 5 shows the toroidal and spheroidal mode dispersion
on the viscoelastic model of Fig. 4. There are two toroidal and seven
spheroidal mode branches. One property of the dispersion curves
is that decay times are larger at longer wavelength. At wavelengths
>∼100 km, the spheroidal decay times reach the same order of magni-
tude as the recurrence intervals assigned to the faults (grey regions
of Fig. 5). The toroidal modes, which are less dominant at long
wavelength, have decay times of ∼100 yr at 100 km wavelength.
This means that, at a given observation point sufficiently far from
the source, interseismic velocity contributed by a single dislocation
exhibits only moderate variations with time during an interseismic
period (e.g. Savage & Prescott 1978). It might be expected that an
ensemble average (e.g. Kittle 1958) of post-seismic relaxation from
many ruptures distributed in space and time, as is described by the
EIV model, will exhibit a fairly uniform variation with time.

Let mν(r0) be the moment tensor density of the νth fault in the
synthetic catalogue. The instantaneous velocity field at selected ob-
servation sites rk for fault �ν for an event at time t before the present
is evaluated in the form

v(rk ; �ν ; t) =
∑
i, j

∫
�ν

(mi j )ν(r0)Ġi j (rk, r0; t) d2r0. (20)

For a given fault geometry and viscoelastic stratification, this defor-
mation is calculated using the method of Pollitz (1997). The total
instantaneous deformation contributed by all faults rupturing with
their respective periodicities is then

vobs
k =

700∑
ν=1

∞∑
n=0

v(rk ; �ν ; tν + nTν). (21)
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Instantaneous velocity field and rate of moment release 601

Figure 4. Assumed distribution of bulk and shear moduli with depth. Viscoelastic structure beneath an elastic upper crust of thickness H = 15 km is
parametrized with uniform lower crust and mantle viscosities ηc and ηm, respectively.

Figure 5. Toroidal and spheroidal mode dispersion curves for viscoelastic normal modes derived from the structure of Fig. 4. The dispersion includes the
effect of coupling with Earth’s gravitational acceleration (Pollitz 1997). The range of recurrence intervals on the considered faults is shown in the grey area.

The slip values listed in steps (1) and (2) above have been cho-
sen such that the secular velocity field of the region will behave
as rigid opening of the two sides of the tensile opening zone (re-
gion E) apart from one another. The rate of opening equals the
product of one fault length (30 km), the number of faults (300)
and the slip value (1 m) divided by the length of the rupture zone
(1112 km), multiplied by the average inverse recurrence interval,
which is

1

2000
[ln(2500) − ln(500)] = 8.047 × 10−4 yr−1 = 1

1243 yr
. (22)

This yields a tensile opening rate of 7.5 mm yr−1. A similar calcu-
lation for the secular motion across each strike-slip segment yields
3.75 mm yr−1 in the right-lateral or left-lateral sense, i.e. one-half of
the tensile opening rate, which is appropriate for the strike-slip faults
that bound the northern and southern edges of the tensile opening
zone. The secular motion thus consists of equal but opposite block
motion of the area bounded by regions A, E and C with respect to
the area bounded by regions B, E and D. The secular block motion is
not perfect because of the statistical nature of the fault distribution
and the termination of the strike-slip fault zones at 1000 km length

C© 2003 RAS, GJI, 153, 595–608

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/153/3/595/671898 by guest on 07 February 2022



602 F. F. Pollitz

354 356 358 0 2 4 6

-6

-4

-2

0

2

4

6
0.1

0.
1

0.1

0.10.1
0.1

0.25

0.
25

0.
25

0.
25

0.25
0.25

Moment release rate
Synthetic Model

354 356 358 0 2 4 6

-6

-4

-2

0

2

4

6

0.05

0.05

0.05

0.05

0.05

0.1

0.1

-0
.1

-0.05

-0.05 -0
.0

5

-0.05
-0.05

.

mθφ
'.

mφφ
'.

-0.30 -0.20 -0.10 0.00 0.10 0.20 0.30

1014 N m (km2 yr)-1

Figure 6. Representation of the two independent moment release rates in terms of smooth Hermite–Gauss functions up to degree 20. These distributions were
derived from the random distribution and geometry of synthetic faults (Fig. 3) and their corresponding recurrence intervals. Contour lines are drawn (in units
of 1014 N m km−2 yr) at values −0.1, −0.05, +0.1, +0.25 for ṁ′

φφ and at ±0.05, ±0.1 for ṁ′
θφ .

(perfect block motion would require infinite length for the strike-slip
fault zones).

Given the distribution of faulting and the recurrence intervals, one
may construct maps of the distribution of moment release rate. Such
maps were constructed on the 14 × 14 deg2 area outlined in Fig. 3 by
expanding the moment release rate in terms of Hermite–Gauss (HG)
functions (see eq. 24) up to degree 20. Under the spherical geom-

etry of Fig. 3, Fig. 6 shows the distribution of the two independent
synthetic moment release rates per unit area:

ṁ ′
φφ(r̂) =

∫ H

0
ṁφφ(r) dr

ṁ ′
θφ(r̂) =

∫ H

0
ṁθφ(r) dr, (23)
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Instantaneous velocity field and rate of moment release 603

Figure 7. Black arrows: the synthetic velocity field vobs
k at 100 randomly distributed observation sites rk evaluated for an infinite sequence of past earthquakes

(eq. 21) using the random fault network parametrized by {�ν , T ν , tν |ν = 1700}. Different cases correspond to relaxation on the Earth model with viscosity:
(a) ηm = 2 × 1019 Pa s, (b) ηm = 8 × 1018 Pa s, (c) ηm = 6.4 × 1019 Pa s. A constant crust-to-mantle viscosity ratio ηc/ηm = 2.5 is assumed. Grey arrows:
the velocity fields derived from inversion of the synthetic velocity fields, calculated from the corresponding distributions of ṁ′

φφ and ṁ′
θφ in Figs 9(a)–(c) and

eq. (8).

where H = 15 km. These smooth distributions show that the em-
ployed random distributions of faulting well represent the various
fault zones (regions A–E) with nearly uniform sampling.

4.2 Instantaneous velocity field

Fig. 7(a) show the instantaneous velocity field vobs
k at 100 randomly

distributed surface observations sites rk within the 14 × 14 deg2 sub-
region (Fig. 3) calculated from eq. (21) for one set of random fault
realizations. One remarkable property of the velocity distribution is
that, sufficiently far from any of the fault zones, the velocity field ex-
hibits roughly block motion similar to the secular motion. This may
not be entirely surprising since it is known in similar geometries that
the compounded effect of relaxation from past earthquakes yields
such block motion (Bott & Dean 1973; Savage & Prescott 1978;
Pollitz 2001). It demonstrates, however, that large instantaneous ve-
locities are generated far from the sources of faulting even though
faulting events occur infrequently. Figs 7(b) and (c) show the ve-
locity field derived from the same distribution of faulting but on a
viscoelastic structure with ηm = 8 × 1018 Pa s (Fig. 7b) or ηm = 6.4 ×
1019 Pa s (Fig. 7c), assuming ηc/ηm = 2.5. The amplitude and pattern
of synthetic velocity is generally the same as for the case of inter-
mediate viscosity in Fig. 7(a). Fig. 8 shows the velocity field cal-
culated from another realization of faulting with the structure ηm =
2 × 1019 Pa s, ηc/ηm = 2.5. It exhibits the same general pattern
as that in Fig. 7(a), showing that the sampling of our random fault
model space is dense enough to yield a robust velocity pattern. This
similarity further suggests that the regional response to distributed
faulting is statistically insensitive to the exact range of recurrence
intervals assigned to the faults. For example, one fault with an ex-
pected recurrence interval of 1500 years could be replaced with
two faults (in close proximity to one another) of expected recur-
rence interval 3000 years without appreciably altering the velocity
field; both realizations are associated with the same rate of moment
release.

The representation of the EIV field derived in Section 3.2 is an
ensemble average (e.g. Kittle 1958) over all possible realizations of
faulting. If the actual system is described by rupture of numerous
faults at random past times and a viscoelastic model, as in this

example, then one could describe the phase space of the system in
terms of a range of velocity distributions that could result from such
faulting. One could, in principle, define the entropy of such a system
in terms of the number of realizations of faulting that would yield a
restricted range in phase space; this would depend upon the number
of faults and their recurrence intervals as well as the viscoelastic
structure. I will not pursue this avenue of analysis further except
to note that the results to be presented in Section 5.2 suggest that
entropy tends to increase with increasing viscosity, other factors
being equal. In other words, the system tends towards statistical
equilibrium as the relaxation time(s) of the structure become large.

The velocity field depicted in Fig. 7(a) could well represent the
velocity field measured by a geodetic survey in a continental interior
over a short time interval. For example, similar velocity gradients are
observed in the Basin and Range province (Thatcher et al. 1999) and
Mongolia (Calais et al. 2002), regions far from a major plate bound-
ary. As long as this time interval did not include any earthquakes it
could be interpreted as the interseismic velocity field. Given the sta-
tistical nature of the faulting distribution and times of occurrence,
it is appropriate to interpret it as the expected interseismic velocity
field. If the EIV is an accurate description of this velocity field, then
eq. (6) should provide a good relationship between this velocity field
and the various ṁ ′

i j .

5 I N F E R E N C E O F M O M E N T
R E L E A S E R AT E S

5.1 Inversion

Using the relationship given in eq. (6) as the solution to the forward
problem, one may invert a regional velocity field for the distribution
of moment release rates ṁ ′

i j in the elastic portion of the viscoelastic
model, i.e. the upper 15 km of the model shown in Fig. 4. Vertical
resolution, however, is poor, and therefore I assume that each ṁi j

is independent of depth. I then seek to estimate the vertically inte-
grated moment release rates ṁ ′

i j defined in eq. (18). The relationship
between the EIV field vs(r) and the moment release rates is given
by eq. (8). It is convenient to parametrize this distribution over a
rectangular (x, y) grid with HG functions as follows:
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Figure 8. The velocity field vobs
k sampled at 100 observation sites as explained in Fig. 7 with ηm = 2 × 1019 Pa s and ηc/ηm = 2.5, but with a different

realization of the random fault network.

ṁ ′
i j =

∑
l≥0

∑
m≥0

ai jlmhl

(
x

L1

)
hm

(
y

L2

)

× exp

{
−1

2

[(
x

L1

)2

+
(

y

L2

)2
]}

, (24)

where l + m ≤ lmax for a fixed lmax = 20, the hm are normalized
Hermite polynomials such that∫ ∞

−∞
dx hl (x)hm(x) exp(−x2) = δlm (25)

and L1 and L2 are taken to be proportional to the dimensions of
the rectangular grid. In the applications presented here L1 = L2

are chosen such that ±7◦/L1 equals the last local maximum of the
HG function of degree lmax. (There is a one-to-one correspondence
between points on this rectangular grid and points on the boxed area
of Fig. 3 in a spherical geometry.)

Suppose that we have a surface velocity field {vobs
k } observed

at K corresponding sites {rk |k = 1, K}. In the inverse problem I
minimize a functional of the form

χ2 = [
�vT

1 �vT
2 · · · �vT

k

] · C · [
�vT

1 �vT
2 · · · �vT

K

]T

+ α
∑
i, j

∫ ∣∣∇ṁ ′
i j (r0)

∣∣2
d2r̂0

�vk = vs(rk) − vobs
k . (26)

The first term represents the data misfit and the second term rep-
resents the roughness of the lateral gradients in the distribution of

moment release rates, weighted by α. The elements of C can account
for a priori covariance structure among the synthetic observables;
for simplicity I choose uncorrelated data with unit standard devia-
tion: Ckk′ = δkk′ . With ṁ ′

i j parametrized by eq. (24) and vs by eq. (8),
minimization of eq. (26) with respect to the model parameters aijlm

leads to the normal equations

∑
β

1

2

(
∂2

∂γ ∂β

χ2

)
aβ = −1

2

∂χ2

∂aγ

, (27)

where β and γ span the set of model parameter indices {i , j , l, m}.
The Frechet derivatives (terms in parentheses in eq. (27)) are deter-
mined straightforwardly from eq. (26) and integral and recurrence
relations among the HG functions. In particular, the contribution of
the roughness term (i.e. that proportional to α in eq. (26)) is given
explicitly by eq. (19) of Friederich & Wielandt (1995).

In principle, given a data set {vobs
k } one should solve the inversion

problem for all six components of the vertically averaged moment
release rates ṁ ′

i j . In practice, however, one is likely to have a priori
constraints based on geology and seismotectonics. I assume that,
when modelling synthetic velocity fields such as those presented in
Figs 7 and 8, the style of regional faulting is known to be strike-
slip faulting on east–west-trending vertical faults and rifting across
north–south-trending vertical faults. This allows us to restrict our
model space to two independent moment release rate elements. Us-
ing the synthetic velocity fields presented in the previous section
as data, I solve the inversion problem (26) for the distributions of
ṁ ′

θφ and ṁ ′
φφ over the 14 × 14 deg2 boxed area indicated in Fig. 3.
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Instantaneous velocity field and rate of moment release 605

Figure 9. Distribution of inverted moment release rates derived from inversion of the synthetic data sets of Figs 7(a)–(c) with the EIV model (eq. 8); separate
distributions were derived from each velocity field. Different cases correspond to relaxation on the Earth model with viscosity: (a) ηm = 2 × 1019 Pa s, (b)
ηm = 8 × 1019 Pa s, (c) ηm = 6.4 × 1019 Pa s. A constant crust-to-mantle viscosity ratio ηc/ηm = 2.5 is assumed. In each case, the roughness term of the misfit
function (eq. 26) has been uniquely chosen such that the inverted velocity field yields 97 per cent variance reduction with respect to the synthetic velocity field.
Contour lines are drawn (in units of 1014 N m km−2 yr) at values −0.1, −0.05, +0.1, +0.25 for ṁ′

φφ and at ±0.05, ±0.1 for ṁ′
θφ .

In order to model a rifting source I impose the constraint (Aki &
Richards 1980)

ṁ ′
rr = ṁ ′

θθ =
〈

λ

λ + 2µ

〉
ṁ ′

φφ, (28)

where 〈[ ]〉 denotes the value of the bracketed quantity averaged over
the depth range 0–H of the model. The smoothing parameter α is
uniquely chosen such that the variance reduction achieved with the
inverted model with respect to the data is 97 per cent. This provides
us with an objective method of comparing the results derived from
different data sets.

5.2 Results

Figs 9(a)–(c) shows the patterns of inverted {ṁ ′
φφ, ṁ ′

φφ} using the
velocity fields of Figs 7(a)–(c), respectively, as the observables. The
sets of grey arrows in Figs 7(a)–(c) show the corresponding in-
verted velocity fields. The inversion results depend, of course, upon
the viscosity structure of the Earth model because of the viscos-
ity dependence of the synthetic velocity fields. For the represented
viscosity range, the inverted distributions of moment release rates
recover well the input distribution (Fig. 6). I define the correlation

between inverted ṁ ′
i j (inverted) and synthetic input ṁ ′

i j (input) as

correlation =
∫

ṁ ′
i j (inverted)(r̂0)ṁ ′

i j (input)(r̂0) d2r̂0√∫
[ṁ ′

i j (inverted)(r̂0)]2d2r̂0

∫
[ṁ ′

i j (input)(r̂0)]2 d2r0

.

(29)

For viscosity structure corresponding to Figs 7(a) and 9(a) (ηm = 2 ×
1019 Pa s, ηc = 5 × 1019 Pa s), the correlations between inverted
and synthetic moment release rate are 0.83 for ṁ ′

φφ and 0.74 for
ṁ ′

θφ . Fig. 10 shows the dependence of these correlations on man-
tle viscosity ηm under the assumption that ηc /ηm = 2.5. For ηm ≥
0.6 × 1019 Pa s, the correlations with input ṁ ′

φφ and ṁ ′
θφ are ≥0.8 and

≥0.7, respectively. For ηm
>∼ 2 × 1019 Pa s, the correlations flatten

as a function of viscosity and maintain relatively high values as vis-
cosity is further increased. The reconstructive power of the method,
as measured by the correlations, is poorer at smaller viscosity val-
ues. This is because in that case the velocity distribution is more
sensitive to those faults which ruptured most recently and therefore
contribute a larger post-seismic relaxation signal early into their
next cycle. This leads to slightly more short-wavelength structure
in the synthetic velocity fields. A more important effect at low vis-
cosity is the tendency for much of the signal from past earthquakes
to have relaxed prior to the observation time. This low-amplitude
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Figure 10. Correlation between distributions {ṁ′
φφ, ṁ′

θφ} inverted assum-
ing either the EIV model (solid lines) or the secular model (dashed lines)
and the corresponding HG representation of the input distributions (Fig. 6),
as a function of ηm. A constant crust-to-mantle viscosity ratio ηc/ηm = 2.5
is assumed.

bias leads to somewhat lower synthetic velocities (compare Fig. 7a
with Figs 7b and c) and consequently a steep fall-off in correlation
as viscosity is lowered (Fig. 10).

5.3 Secular velocity model

An alternative interpretation of the synthetic velocity fields is that
they represent the secular velocity field. Assuming that this is the
case, one may re-cast the inverse problem by using eq. (11) to rep-
resent the instantaneous velocity field. I have inverted the synthetic
velocity fields as before, using eq. (11) in the intermediate step to
relate the � vk to the HG expansion coefficients. The resulting dis-
tributions of moment release rate at ηm = 2 × 1019 Pa s are shown
in Fig. 11, and the synthetic to inverted distribution correlations as
a function of ηm are presented in Fig. 10. These figures demon-
strate that the reconstructive power of the secular model is much
poorer than the EIV model at all viscosities considered. There are
large artefacts in both ṁ ′

φφ and ṁ ′
θφ far away from the locus of their

true maxima (Fig. 6). The difference between the EIV model re-
sults (Fig. 9) and the secular model (Fig. 11) is a consequence of
the very different characteristics of the Green functions that define
the instantaneous velocity in the two approaches (eqs 8 and 11). In
the secular model (eq. 11), the response to sources of deformation
ṁ ′

i j (r0) are largest at r̂0 and attenuate substantially with distance
from r̂0. In the EIV model (eq. 8), the corresponding response is,
in fact, identically zero at r̂0 and increases to a maximum at a cer-
tain distance from r̂0 (a few elastic plate thickness according to
calculations of Pollitz 1997) before falling off very gradually with
increasing distance. In other words, in order to fit a given velocity
field the sources of deformation in the secular model must be placed
near the significant strain gradients, whereas the EIV model does not
necessarily require sources in the straining regions themselves be-
cause of the long-range property of its Green functions. Thus, some
of the artefacts in the moment release distributions in Fig. 11 are
located at the western/eastern margins (longitude near ±7◦), where
the synthetic data field (Fig. 7a) has a large amplitude despite being

far away from the true sources of deformation. The inaccuracies
produced by placing sources in these remote areas is compensated
by severe artefacts placed in other regions that happen to be devoid
of data (for example, at latitude 2◦N, longitude 3–5◦E).

6 C O N C L U S I O N S

The instantaneous velocity field is interpreted here as an ensemble
average: the summed contributions of post-seismic relaxation from
numerous dislocation sources distributed in the lithosphere, com-
pounded over a history of quasi-periodic previous ruptures. The
viscoelastic structure controls the temporal scale of the velocity
field. The characteristic decay times of the viscoelastic deformation
are wavelength-dependent, and at long wavelength these times are
>∼10–20 times the Maxwell relaxation time of the dominant ductile
component, depending on the details of the viscoelastic model. If
Maxwell relaxation times of 10–40 yr apply to a region and recur-
rence intervals are ∼1000 yr, then a single dislocation contributes
a signal to the velocity field that varies only moderately with time.
This justifies the use of a statistical measure of deformation, and
I define the expected interseismic velocity field to describe the re-
sponse of an ensemble of faults distributed over a large area and
rupturing during a large number of past slip events. Assuming con-
tinual past rupture of individual faults, each with a definite mean
recurrence time, I derive a simple relationship between the EIV field
and the rate of moment release in the lithosphere.

The synthetic examples presented here demonstrate the
following.

(1) Velocity gradients similar to those observed in continental
interiors can be produced on a viscoelastic model with 100s of
faults distributed over ∼106 km2 with a mean recurrence interval of
1500 yr.

(2) The EIV formulation allows reconstruction of time-averaged
moment release rate provided that the Maxwell relaxation time is
sufficiently long. In the considered cases, ηm

>∼ 6 × 1018 Pa s, which
implies a Maxwell relaxation time of >∼13 yr, approximately 1 per
cent of the mean recurrence interval assigned to the faults.

(3) The instantaneous velocity field may exhibit velocity gradi-
ents even in localities where dislocation sources are absent.

(4) There is an important distinction between the interseismic
velocity field and the secular velocity field. In particular, a model
of secular velocity does not allow satisfactory reconstruction of the
average rate of moment release in a region populated by numerous
faults.

McKenzie & Jackson (1983) have pointed out that distributed
faulting within a deformation zone will be stable only under special
conditions (for example, a long, straight strike-slip fault in a shear
zone). Such conditions will not generally be met by an unconstrained
model of distributed ṁ′, i.e. the fault geometry consistent with ṁ′

in a given locality will generally not be constant with time. In the
EIV formulation one must therefore assume that the equivalent fault
geometry at all localities is approximately constant over the rupture
history for which significant relaxation signals are contributed. For
the viscoelastic structure believed to apply to the western US, this
would mean constant fault geometry on timescales of ∼104 yr.

The relationship provided by eq. (6) is, in part, a kinematic model
because it results in estimation of moment release rates. It is also a
dynamic model because it is derived from a physical model of crustal
deformation. However, this dynamic model is incomplete because
deformation sources have not been related to tectonic driving forces.
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Figure 11. Distribution of inverted moment release rates derived from inversion of the synthetic data set of Fig. 7(a) (ηm = 2 × 1019 Pa s and ηc/ηm = 2.5)
with the secular model (eq. 11).

As is the case with purely kinematic models (e.g. Spakman & Nyst
2002), the present model is intended to provide the intermediate step
in the process starting with observation of the instantaneous velocity
field, then inference of moment release rates, and finally discerning
the nature of tectonic forces that drive the long-term deformation
pattern.

A C K N O W L E D G M E N T S

I am grateful to Jim Savage, Marleen Nyst and Wayne Thatcher
for their comments and discussion of a preliminary draft of this

paper. This paper benefited from constructive comments by two
anonymous reviewers and the Associate Editor.

R E F E R E N C E S

Aki, K. & Richards, P.G., 1980. Quantitative Seismology, Vol. 1, Freeman,
San Francisco.

Anderson, L.W. & Hawkins, F.F., 1984. Recurrent Holocene strike-slip fault-
ing, Pyramid Lake fault zone, western Nevada, Geology, 12, 681–684.

Bell, J.W., dePolo, C.M., Ramelli, A.R., Sarna-Wojcicki, A.M. & Meyer,
C.E., 1999. Surface faulting and paleoseismic history of the 1932 Cedar

C© 2003 RAS, GJI, 153, 595–608

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/153/3/595/671898 by guest on 07 February 2022



608 F. F. Pollitz

Mountain earthquake area, west-central Nevada, and implications for
modern tectonics of the Walker Lane, Geol. Soc. Am. Bull., 111, 791–
807.

Bills, B.G., Currey, D.R. & Marshall, G.A., 1994. Viscosity estimates for the
crust and upper mantle from patterns of lacustrine shoreline deformation
in the Eastern Great Basin, J. geophys. Res., 99, 22 059–22 086.

Bott, N.H.P. & Dean, D.S., 1973. Stress diffusion from plate boundaries,
Nature, 243, 339–341.

Calais, E., Vergnolle, M. & Deverchere, J., 2002. Are postseismic effects
of the M = 8.4 Bolnay earthquake (July 12, 1905) still influencing
GPS velocities in the Mongolia–Baikal area, Geophys. J. Int., 149, 157–
168.

England, P. & McKenzie, D.R., 1982. A thin viscous sheet model for conti-
nental deformation, Geophys. J. R. astr. Soc., 70, 295–321.

England, P. & Molnar, P., 1997. Active deformation of Asia: from kinematics
to dynamics, Science, 278, 647–650.

Flesch, L.M., Holt, W.E., Haines, A.J. & Shen-Tu, B., 2000. Dynamics of
the Pacific–North America plate boundary in the Western United States,
Science, 287, 834–836.

Friederich, W. & Wielandt, E., 1995. Interpretation of seismic surface waves
in regional networks: joint estimation of wavefield geometry and local
phase velocity—method and tests, Geophys. J. Int., 120, 731–744.

Hashimoto, M. & Jackson, D.D., 1993. Plate tectonics and crustal deforma-
tion around the Japanese Islands, J. geophys. Res., 98, 16 149–16 166.

King, G., Oppenheimer, D. & Amelung, F., 1994. Block versus continuum
deformation in the western United States, Earth planet. Sci. Lett., 128,
55–64.

Kittle, C., 1958. Elementary Statistical Mechanics, Wiley, New York.
Kostrov, B.V., 1974. Seismic moment and energy of earthquakes, and seismic

flow of rock, Izvest. Phys. Earth, 1, 13–21.
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