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Abstract

Effective medium approximations for the frequency-dependent and complex-valued effective stiffness tensors of cracked/

porous rocks with multiple solid constituents are developed on the basis of the T-matrix approach (based on integral equation

methods for quasi-static composites), the elastic–viscoelastic correspondence principle, and a unified treatment of the local and

global flow mechanisms, which is consistent with the principle of fluid mass conservation. The main advantage of using the T-

matrix approach, rather than the first-order approach of Eshelby or the second-order approach of Hudson, is that it produces

physically plausible results even when the volume concentrations of inclusions or cavities are no longer small. The new

formulae, which operates with an arbitrary homogeneous (anisotropic) reference medium and contains terms of all order in the

volume concentrations of solid particles and communicating cavities, take explicitly account of inclusion shape and spatial

distribution independently. We show analytically that an expansion of the T-matrix formulae to first order in the volume

concentration of cavities (in agreement with the dilute estimate of Eshelby) has the correct dependence on the properties of the

saturating fluid, in the sense that it is consistent with the Brown–Korringa relation, when the frequency is sufficiently low. We

present numerical results for the (anisotropic) effective viscoelastic properties of a cracked permeable medium with finite

storage porosity, indicating that the complete T-matrix formulae (including the higher-order terms) are generally consistent with

the Brown–Korringa relation, at least if we assume the spatial distribution of cavities to be the same for all cavity pairs. We

have found an efficient way to treat statistical correlations in the shapes and orientations of the communicating cavities, and also

obtained a reasonable match between theoretical predictions (based on a dual porosity model for quartz–clay mixtures,

involving relatively flat clay-related pores and more rounded quartz-related pores) and laboratory results for the ultrasonic

velocity and attenuation spectra of a suite of typical reservoir rocks.
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1. Introduction

The successful interpretation of acoustic (infrason-

ic, sonic, ultrasonic) data recorded on a wide variety

of rocks may require a unified model, which accounts

for the effects of microstructure and fluid flow on the

overall wave characteristics. The present study rep-

resents a modest contribution to the development of

such a model. It is based on the observation that
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rocks are generally composed of multiple solid con-

stituents (crystals, minerals, fibres, fossils, etc.) and

interconnected cavities (pores, cracks, fractures, chan-

nels, etc.), having a wide range of sizes, shapes,

orientations, relative positions and number densities.

We think that any theory for the macroscopic prop-

erties of rocks should have a strong stochastic com-

ponent because randomness is one of the most

prominent features of these materials. The cavities

deserve particular attention because they represent the

strongest heterogeneities and may be partially or

completely saturated with a fluid (oil, gas, water,

etc.) that may be of great practical interest to us.

Because the fluid may flow from one cavity to

another, or within a single cavity, when a macroscop-

ic stress field is imposed on the system, the response

of a single cavity may be time-dependent. The flow

of fluid will lead to the dissipation of energy and so

a single cavity may exhibit an elastic or effective

viscoelastic behaviour. Many scientists (e.g.,

Klimentos and McCann, 1990; Best et al., 1994)

have observed that, when an ultrasonic pulse prop-

agates in a fluid-saturated porous/cracked rock, its

amplitude will be attenuated and its shape will

change because the different frequency components

travel with different speeds. From Neumann’s princi-

ple (e.g., Nowick, 1995), which states that any

symmetry exhibited by the point group of the mate-

rial must also be possessed by every physical prop-

erty of the material, it is suggestive that velocities and

attenuations may also depend on the direction of

pulse propagation, if there exists alignments in the

microstructure [though velocities and attenuations are

(stochastic) wave characteristics rather than material

properties]. Such anisotropy effects have in fact been

observed in the laboratory (e.g., Jakobsen and

Johansen, 1999, 2000; Domnesteanu et al., 2002).

To make sense of it all, we propose that small

deformations and waves in rocks should generally

be analysed on the basis of linear (stochastic) model

for viscoelastic, anisotropic composites.

Before we enter the complex realm of rocks as

dynamic composites, let us note that it is customary

to distinguish between two types of attenuation:

namely, intrinsic attenuation (where acoustic energy

is removed from the wave field by an elastic pro-

cesses, such as those related to fluid flow) and

apparent attenuation (where the acoustic energy is
only redistributed to other parts of the wave field, by

the multiple scattering of waves from heterogeneities

in the medium). Both these types of acoustic atten-

uation cause a propagating acoustic pulse to loose

energy (see Menke and Dubendorff, 1985), but it is

only in the case of apparent attenuation that the total

wave field energy is conserved. For an effective

medium theory of composites like rocks, it is nor-

mally assumed that the wavelengths are very large

compared with the scale of the microstructure, so that

the apparent attenuation (associated with the multiple

scattering of waves by the inclusions making up the

composites) can safely be ignored. This assumption is

not as restrictive as it appears since (the total)

ultrasonic attenuation in vacuum dry rocks have been

found to be negligible (see Tittmann, 1977). Al-

though Klimentos and McCann (1990) speculated

that grain scattering effects are responsible for a rapid

rise in the observed attenuation coefficients as the

frequency increases beyond 1 MHz or so, fluid flow

is often believed to be the main source of acoustic

attenuation in small rock samples (e.g., Biot,

1956a,b; Jones, 1986; Klimentos and McCann,

1990; Chapman et al., 2002). During the passage of

an acoustic pulse, coherent movements of small fluid

particles may occur at the macroscopic scale (Darcy

flow) as well as on the microscopic scale (squirt

flow). Darcy flow is a well-known phenomenon, and

its effects on the overall wave characteristics can

sometimes be described by the phenomenological

theory of Biot (1956a,b), provided that the rock is

composed of a single solid constituent and under high

confining pressure with microcracks closed (see Kli-

mentos and McCann, 1990; Best et al., 1994). The

phenomenon of squirt flow is typically that fluid

pressure is released from the more highly compressed

flat cavities to the less compressed rounded cavities,

with consequent effects on the overall wave speeds

and attenuations, though the initial response of a

fluid-saturated cavity under an imposed stress

depends on its orientation as well as its shape. The

effects of squirt flow are not included in the popular

theory of Biot (1956a,b), and so it is not surprising

that this theory has dramatically failed to explain the

relatively high attenuation values we can observe in

many rocks (that are assumed to be fully saturated

with fluid and homogeneous on the macroscopic

scale) containing cracks and/or other flat cavities
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(see Jones, 1986; Chapman et al., 2002), often

associated with multiple solid constituents (see

Klimentos and McCann, 1990; Best et al., 1994).

[A reviewer pointed out that relatively high attenua-

tion levels may be obtained on the basis of a Biot-

type of theory if we consider porous media that are

partially saturated (e.g., Carcione et al., submitted for

publication) and/or finely layered (e.g., Gurevich and

Lopatnikov, 1995).]

Dvorkin and Nur (1993) have developed a unified

model with the local and global flow mechanisms,

which is [not consistent with the theory of Gassmann

(1951), as it should be (see Thomsen, 1985), accord-

ing to Chapman et al. (2002)] valid for porous media

with a single solid constituent only and have another

serious drawback in common with Biot’s original

model: microstructural information is simply incor-

porated through the use of empirically determined

macroscopic parameters. In principle, it is possible to

remove this drawback (see Burridge and Keller,

1981) and/or extend Biot’s theory to complex porous

media (see Berryman and Milton, 1991; Berryman,

1992, 1998; Berryman and Wang, 1998), but the

works of many scientists (e.g., O’Connell and

Budiansky, 1977; Budiansky and O’Connell, 1980;

O’Connell, 1983; Hudson et al., 1996; Ravalec and

Gueguen, 1996; Endres and Knight, 1997; Endres,

1997; Xu, 1998; Pointer et al., 2000; Jakobsen et al.,

2000; Tod, 2001, 2002) suggest that a good theory

for rocks need not necessarily be based on Biot’s

approach at all.

If the goal is to predict velocity and attenuation

spectra in rocks as a function of their petrophysical

parameters (or visa versa), as is may be for an

application within seismic exploration or reservoir

monitoring (e.g., Samec and Blangy, 1992; McCann

et al., 1997; Koesoemadinata and McMechan, 2001),

one should probably focus on inclusion-based models.

Hudson et al. (1996), Pointer et al. (2000) and Tod

(2001, 2002) have shown that progress along the

inclusion-based line can be obtained if an extremely

simple model of the porous microstructure is

employed: namely, that where an anisotropic porous/

permeable medium is containing a dilute concentra-

tion of small-aspect ratio spheroidal cracks that are

distributed in space in accordance with an isotropic

correlation function. Although the above theories

based on Hudson’s crack model are extremely inter-
esting, there is an important need for a more general

model that can deal with multiple solid constituents

and interconnected cavities having a wider range of

shapes, orientations, spatial distributions and number

densities. Complexity is of course not a goal in itself

but required by nature (e.g., Klimentos and McCann,

1990; Jakobsen and Johansen, 1999, 2000).

While we shall refer to Hudson et al. (1996) several

times throughout the paper, we actually have in mind

only the first part of that paper (dealing with

connected cracks). The second part provided an

equant porosity model, ostensibly to address the

important storage porosity problem that has been the

subject of other papers (e.g., Hudson et al., 2001). To

provide an additional motivation for the present work

(which deals with connected cracks and equant po-

rosity in an unified manner), let us emphasize that the

equant porosity model of Hudson et al. (1996) is not

consistent with the (anisotropic Gassmann) Brown

and Korringa (1975) relation, according to Chapman

et al. (2002).

The outline of this paper is simple. First, we

generalize the T-matrix theory of Jakobsen et al.

(2003) to include the frequency-dependent effects of

intercavity fluid flow. Then, we discuss some details

for application, including those associated with pos-

sible statistical correlations in shapes and orientations

of the cavities. Finally, we provide some numerical

examples indicating the power and flexibility of the

more general T-matrix approach. Specifically, we

discuss the concept of crack-induced anisotropy, and

use the new theory to match ultrasonic velocity and

attenuation measurements on clayey sandstones.
2. The T-matrix approach to rock physics

2.1. General considerations

There exists a variety of theoretical methods that

can be used attack the many-body problem in rock

physics and seismic reservoir characterization; that is,

to estimate the overall properties of a heterogeneous

material. Among the more interesting ones are the

method of smoothing (e.g., Hudson, 1980, 1981;

1994a,b; Jakobsen et al., 2000), the variational meth-

od (e.g., Willis, 1981; Ponte Castaneda and Willis,

1995) and the T-matrix approach (e.g., Zeller and
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Dederich, 1973; Domany et al., 1975; Nan et al.,

1998; Jakobsen et al., 2003).The choice of a particular

method may not only depend on the problem at hand

but also on the experience of the worker. Some of us

find the T-matrix approach particularly attractive be-

cause it is based on physically transparent integral

equation methods (Green’s function techniques) sim-

ilar to those used in quantum scattering theory, and

gives physically plausible results even when the

inclusion concentrations are no longer very small.

The importance of the problem of inclusions at finite

concentration is discussed by Molinari and Mouden

(1996).

Before we start to become more and more techni-

cal, let us briefly outline the physical significance and

advantage of the T-matrix approach used in this study.

This follows naturally if we note that Jakobsen et al.

(2003) derived an exact solution for the effective

stiffness tensor of a micro-inhomogeneous medium

in terms of a fourth-rank tensor field T, which (can be

represented by a 6� 6 T-matrix, for example if we use

the Kelvin notation of Appendix A) completely deter-

mines the (transitions out of the homogeneous strain

state associated with the arbitrary homogeneous ref-

erence medium) strain field at all points within a

representative volume. The highly developed iterative

or perturbative methods of modern physics can be

used in rock physics because the T-matrix of a solid

earth material satisfies a Lippmann–Schwinger type

of integral equation, similar to the central equation of

quantum mechanical scattering or many-body theory.

Jakobsen et al. (2003) showed that the T-matrix for

a general class of inclusion-based models can be

written exactly as an infinite series involving an

increasing number of t-matrices (taking into account

the interactions between all points within a single

inclusion in an exact manner) and other terms (asso-

ciated with the interaction between points located in

different inclusions). Jakobsen et al. (2003) assumed

that the net interactions between different inclusions

are small in some sense and truncated the series

expansion for the T-matrix of the material after the

second-order term involving two t-matrices only, in

order to avoid facing a difficult three-body problem

that can hardly be solved analytically.

As first emphasized by Zeller and Dederich (1973),

‘second order’ in the perturbation series for the T-

matrix of the material does not mean ‘second order’ in
the perturbation series for the effective stiffness ten-

sor, in the sense that a T-matrix approximation for the

effective stiffnesses based on two-point statistics may

contain terms of all order in the volume concentra-

tions of inclusions, in contrast with the approxima-

tions of Hudson (1980, 1981, 1994a,b) based on the

method of smoothing.

Following Jakobsen et al. (2003), we consider a

unified model for media with inclusions that are either

embedded in a homogeneous matrix material or else

make up a granular aggregate. The population of

inclusions is divided into families of inclusions having

the same shape/orientation, t-matrices t(n) (defined

below in terms of stiffness fluctuations) and volume

concentration v(n), labelled by n = 1,2,. . .,N. The term

inclusion is used generically and may not only denote

a solid particle (crystal, mineral, basic building block,

etc.) but also a cavity (pore, crack, fracture, channel,

etc.) that may or may not be filled with fluid (liquid,

gas). The effective stiffness tensor C* is given by

(Jakobsen et al., 2003)

C* ¼ Cð0Þ þ C1 : ðI4 þ C�1
1 : C2Þ�1; ð1Þ

C1 ¼
XN
r¼1

vðrÞtðrÞ; ð2Þ

C2 ¼
XN
r¼1

XN
s¼1

vðrÞ tðrÞ : G
ðrsÞ
d : tðsÞvðsÞ: ð3Þ

Here C(0) is the stiffness tensor for a homogeneous

reference medium, which can be (anisotropic) selected

rather arbitrary without violating the mechanical sta-

bility criterium (see Auld, 1990); I4 is the identity for

fourth-rank tensors (which can be represented by the

6� 6 unit matrix); Gd
(rs) is given by the strain Green’s

function (for a material with properties given by C(0))

integrated over a characteristic ellipsoid having the

same aspect ratio as p(sjr)(x� xV), which, in turn, gives

the probability density for finding an inclusion of type

s at point xVgiven that there is an inclusion of type r at

point x. The t-matrix for a single inclusion of type n is

given by (Zeller and Dederich, 1973; Jakobsen et al.,

2003)

tðnÞ ¼ ðCðnÞ � Cð0ÞÞ : ½I4 � GðnÞ : ðCðnÞ � Cð0ÞÞ	�1;

ð4Þ
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where G(n) is a fourth-rank tensor depending only on

C(0) and the shape/orientation of the nth inclusion

type. The G(n) tensor can in principle be evaluated for

inclusions having any shape/orientation (see Appen-

dix C), but we assume normally that the inclusions

are ellipsoidal in shape, so that the G(n) tensors are

given by an integral over a finite range. (The expres-

sion for the G(n) tensor for an ellipsoidal inclusion

can also be used to evaluate the Gd
(rs) tensor, provided

that the aspect ratio of the correlation function is

taken to be identical with that of the associated

inclusion.)

2.2. The physical significance of the t-matrix

The t-matrix t(n) for a single inclusion of type n

may be regarded as a kind of renormalized stiffness

fluctuation (C(n)�C(0)) (see Zeller and Dederich,

1973; McCoy, 1979; Jakobsen et al., 2003). To clarify

its physical interpretation, let us note that the strain

:(n) within a single inclusion of type n and the uniform

applied strain :(0) at infinity are related by (Zeller and

Dederich, 1973; Korringa, 1979; Jakobsen et al.,

2003)

ðCðnÞ � Cð0ÞÞ : eeeðnÞ ¼ tðnÞ : eeeð0Þ: ð5Þ

Setting

eeeð0Þ ¼ Sð0Þ : Sð0Þ; ð6Þ

where S(0) is the applied stress corresponding with the

strain :(0), we get

eeeðnÞ ¼ KðnÞ : Sð0Þ; ð7Þ

where

ðCðnÞ � Cð0ÞÞ : KðnÞ ¼ tðnÞ : Sð0Þ: ð8Þ

Combining Eqs. (4) and (8), we get

KðnÞ ¼ ½I4 � GðnÞ : ðCðnÞ � Cð0ÞÞ	�1
: Sð0Þ; ð9Þ

which agree with the result of Hornby et al. (1994).

The above results were originally obtained under the

assumption that we are dealing with purely elastic

inclusions. If n represents an anisotropic mineral, then

we normally know what to use for C(n). If n represents

a fully fluid-saturated cavity that is isolated with
respect to fluid flow, then C(n) is simply related to

the bulk modulus of the saturating fluid. If n repre-

sents a dry cavity, then we may set C(n) = 0, since a

dry cavity may formally be regarded as an elastic

continuum having vanishing stiffnesses (e.g., Nemat-

Nasser and Hori, 1993; Ponte Castaneda and Willis,

1995; Xu, 1998). If n represents a communicating

cavity, that is, a fully fluid-saturated cavity, which is

allowed to exchange fluid mass with other cavities,

due to local and/or global pressure gradients (caused

by the passage of a long acoustic wave), then we do

not immediately know what to use for C(n), but, from

Eqs. (8) and (9), we get

tðnÞ ¼ ðGðnÞÞ�1
: ðKðnÞ : Cð0Þ � I4Þ; ð10Þ

which means that we can find the t-matrix for a

communicating cavity provided that we know the

corresponding K-matrix. This is an agreeable feature

because the K-matrix can be found from the superpo-

sition of results from two different ‘gedanken’ experi-

ments involving both the dry and saturated version of

the cavity, as shown in Section 2.3.

Realizing that the response of some of the inclu-

sions within a rock-like composite may be viscoelastic

does not lead to an intractable problem, since the

solution of a viscoelastic problem can (under proper

circumstances, involving sufficiently low frequencies)

be obtained from the solution of the corresponding

elastic problem by appealing to the correspondence

principle (e.g., O’Connell and Budiansky, 1977;

Budiansky and O’Connell, 1980; Willis, 1981;

Brinson and Lin, 1998; Dunn, 1995; Brinson and

Lin, 1998; Gibiansky and Torquato, 1998), and

replacing the (real-valued and frequency-independent)

elastic moduli in the elastic solution by the

corresponding (complex-value and frequency-depen-

dent) viscoelastic moduli.

2.3. The t-matrix for a communicating cavity

The population of inclusions making up a rock-like

composite may generally be divided into Nc sets of

cavities and Ns sets of solid particles; that is, one may

always write N =Nc +Ns. Without any loss of gener-

ality, one may assume that the nth inclusion set consist

of cavities if 1 < nVNc and solid particles if

Nc < nVN. We have already discussed how to evalu-
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ate the t-matrices of various solid particles and cavi-

ties that are isolated with respect to fluid flow. The

goal of the present section is to include the effects of

fluid flow. Therefore, we shall assume that 1 < nVNc,

so that we are indeed dealing with a communicating

cavity.

By linear superposition (see Mukerji and Mavko,

1994), the strain inside a cavity of type n that is

completely saturated with fluid under pressure pf
(n),

under the imposed stress S(0) at infinity, is given by

the strain within the corresponding dry cavity under

the imposed stress (S(0) + I2 p f
(n)) minus the strain

within a similarly shaped and oriented cavity with

hydrostatic stress I2p f
(n) applied both at infinity and

inside the cavity, where I2 is the identity for second-

rank tensors (which can be represented by the 3� 3

unit matrix). If we use this argument in conjunction

with Eqs. (7) and (9), we get

KðnÞ : Sð0Þ¼ K
ðnÞ
d : ðS

ð0Þ
þ I2p

ðnÞ
f Þ�Sð0Þ : I2p

ðnÞ
f ; ð11Þ

where

K
ðnÞ
d ¼ ðI4 þ GðnÞ : Cð0ÞÞ�1

: Sð0Þ; ð12Þ

is the K-matrix of a dry cavity of type n. Eq. (12) is

consistent with (the observation that dry cavities can

formally be treated as inclusions having vanishing

stiffnesses) Eq. (9).

From the linearity of our problem, we know that

there exists a second-rank tensor Y(n), which relates

the fluid pressure in the nth cavity set to the applied

stress; that is,

p
ðnÞ
f ¼ YðnÞ : Sð0Þ: ð13Þ

By using Eqs. (11) and (13) in conjunction with the

fact that S(0) is arbitrary, we find that

KðnÞ ¼ K
ðnÞ
d þ ðKðnÞ

d � Sð0ÞÞ : ðI2 
 YðnÞÞ; ð14Þ

where the symbol 
 denotes the dyadic tensor product

and means that

ðI2 
 YðnÞÞijkl ¼ dijðYðnÞÞkl: ð15Þ
If we insert the expression (14) for K(n) into the

expression (10) for t(n), we get

tðnÞ ¼ t
ðnÞ
d þðGðnÞÞ�1

: ðKðnÞ
d � Sð0ÞÞ : ðI2 
 YðnÞÞ :Cð0Þ;

ð16Þ
where

t
ðnÞ
d ¼ ðGðnÞÞ�1

: ðKðnÞ
d : Cð0Þ � I4Þ: ð17Þ

Since Eq. (17) imply that

t
ðnÞ
d : Sð0Þ ¼ ðGðnÞÞ�1

: ðKðnÞ
d � Sð0ÞÞ; ð18Þ

we can write Eq. (17) more elegantly as

tðnÞ ¼ t
ðnÞ
d þ t

ðnÞ
d : Sð0Þ : ðI2 
 YðnÞÞ : Cð0Þ: ð19Þ

By inserting the expression (12) for Kd
(n) into Eq. (17)

for td
(n), we see that

t
ðnÞ
d ¼ �Cð0Þ : ðI4 þ GðnÞ : Cð0ÞÞ�1; ð20Þ

which is consistent with Eq. (4). Thus, the problem

has been reduced to the evaluation of Y(n), which is

the cavity fluid pressure polarization tensor in our

vocabulary.

To find Y(n) in the case of a communicating cavity,

we obviously need to introduce elements of fluid

dynamics. If ṽ (n) and qf
(n) is the porosity and density

of the nth cavity set, respectively, then the total fluid

mass mf is given by

mf ¼
XNc

r¼1

ṽðrÞqðrÞ
f : ð21Þ

Since our theory allows for finite concentrations of

arbitrarily shaped cavities, the total fluid mass does

not have to be very small. This is in contrast with the

theory of Hudson et al. (1996), where the analogous

expression for the total fluid mass involves only the

very small volume of fluid one can expect to find

inside a small number of very thin cracks. In other

words, Hudson et al. (1996) did not include the

essential storage porosity in their fluid dynamical

considerations, like we do in the present study.

Following Hudson et al. (1996), we now require

that the fluid mass in an arbitrary volume is conserved
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and that the average flow of fluid is regulated by

Darcy’s law. This means that

Bmf

Bt
¼ j � qf

gf
G �jpf

� �
; ð22Þ

where pf is the average (local) fluid pressure, qf is the

fluid mass density, gf is the viscosity of the fluid and

& is a second-rank tensor of permeability parameters.

If the permeability tensor is isotropic, then the above

equation reduces to that derived by Hudson et al.

(1996). More generally, the above expression

accounts for the fact that fluid may flow easier in

some directions than others, depending on the degree

of alignment in the microstructure. The tensor &

represents the overall permeability of the material

(including all cavities) and is assumed to be spatially

invariant. For later reference, let us note that the fluid

pressure and density of the nth cavity set are related

by (Hudson et al., 1996)

q0

qðnÞ
f

¼ 1� p
ðnÞ
f

jf

; ð23Þ

where q0 is the density of the unstressed fluid and jf is

the fluid bulk modulus. If a quasi-static stress field is

imposed on the macroscopic specimen, then the

pressure pf
(n) in the fluid changes, due both to a change

in porosity and to fluid flow. From Eqs. (7) and (11),

we find the following first-order expression for the

change in porosity:

ṽðnÞ � vðnÞ

vðnÞ
¼ ðKðnÞ

d Þuupqðrð0Þ
pq þ dpqp

ðnÞ
f Þ � Sð0Þuupqdpqp

ðnÞ
f ;

ð24Þ

where v(n) is the unstressed porosity of the nth cavity

set. We assume that the mass flow out of the nth set of

cavities is controlled by an expression similar to that

of Hudson et al. (1996):

BðqðnÞ
f ṽðnÞÞ
Bt

¼ � vðnÞq0

jfs
ðpðnÞf � pf Þ; ð25Þ

where s is a (squirt flow) relaxation time constant that

can be estimated for the kind of microstructures

studied by Hudson et al. (1996) and otherwise needs

to be determined empirically. The analysis of Hudson

et al. (1996) suggests that s is normally proportional
to the fluid viscosity gf and sometimes inversely

proportional to a permeability constant. If s is pro-

portional to the viscosity gf, then our final results

will be functions of the product xgf, in agreement

with the observations of Jones (1986). An interesting

justification for the use of an ansatz like that in Eq.

(25) (was recently provided by Hudson) can be

found in an appendix to the paper of Tod (2001).

We have assumed that s is independent of the shape/

orientation index n, but it is only the implementation

of the theory which becomes more difficult if we

relax on this assumption, that may or may not be a

good one (see O’Connell and Budiansky, 1977;

Chapman et al., 2002). The analysis of Chapman

(2002) suggests that s is dependent on the scale-size

(or surface area) of the cavity, suggesting that the

present theory can easily be extended to model

fractured porous/cracked media under the assumption

that the scale-size of the fractures is much larger than

that of the pores/cracks. We shall however (assume

that the cavities we are dealing with have roughly the

same scale-size) use the ansatz (25) in the present

study, though we realize that there may perhaps be a

need for further work on the development of local

flow models. A comparison of theoretical predictions

and experimental observations may also be useful in

this connection.

We now introduce a second-rank tensor Y, which

relates the average fluid pressure and applied stress by

pf ¼ Y : Sð0Þ: ð26Þ

Assuming that the propagating plane wave has

frequency x, we find from Eq. (23) that

YðnÞ ¼ Y� ixsjf I2 : K
ðnÞ
d

1þ ixcðnÞs
; ð27Þ

cðnÞ ¼ 1þ jf ðKðnÞ
d � Sð0ÞÞuuvv; ð28Þ

to first order in pf
(n)/jf and (ṽ (n)� v(n))/v(n). To find

the Y tensor for substitution into Eq. (27), we first

derive an expression for mf by combining Eqs. (21)

and (24). We then substitute for pf
(n) in terms of pf and

S(0) by using Eqs. (13), (26) and (27). The resulting

expression for mf is inserted into a Fourier represen-

tation of the evolution law (22); we replace the
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operators B/Bt and B/Bxi with ix and � iki, respec-

tively, where ki is a component of the wave number

vector k. Since the intermediate calculations at this

point are quite similar to those described in the paper

of Hudson et al. (1996), we give here only the final

result for Y:

Y ¼ �HðRa;RbÞ
XNc

r¼1

vðrÞI2 : K
ðrÞ
d

1þ ixcðrÞs
; ð29Þ

HðRa;RbÞ

¼ jf 1� jfS
ð0Þ
uuvv

� �
Ra þ jfRb �

ikukvCuvjf

gfx

� ��1

;

ð30Þ

Ra ¼
XNc

r¼1

vðrÞ

1þ ixcðrÞs
; ð31Þ

Rb ¼
XNc

r¼1

vðrÞðKðrÞ
d Þuuvv

1þ ixcðrÞs
: ð32Þ

By using Eqs. (19), (27) and (29), we find that

tðnÞ ¼ t
ðnÞ
d þ HðRa;RbÞZðnÞ þ ixsjfX

ðnÞ

1þ ixcðnÞs
; ð33Þ

where

XðnÞ ¼ �t
ðnÞ
d : Sð0Þ : ðI2 
 I2Þ : K

ðnÞ
d : Cð0Þ; ð34Þ

and

ZðnÞ ¼�t
ðnÞ
d : Sð0Þ : I2 
 I2ð Þ :

XNc

r¼1

vðrÞK
ðrÞ
d

1þ ixcðrÞs

 !
: Cð0Þ:

ð35Þ

It is clear from Eqs. (12) and (20) that

K
ðnÞ
d : Cð0Þ ¼ �Sð0Þ : t

ðnÞ
d : ð36Þ

Thus, we may also write Eqs. (34) and (35) in terms

of td
(n) as

XðnÞ ¼ t
ðnÞ
d : Sð0Þ : ðI2 
 I2Þ : Sð0Þ : t

ðnÞ
d ; ð37Þ
and

ZðnÞ ¼ t
ðnÞ
d : Sð0Þ : ðI2 
 I2Þ : Sð0Þ :

XNc

r¼1

vðrÞt
ðrÞ
d

1þ ixcðrÞs

 !
;

ð38Þ
respectively.
3. Some details for application

3.1. On the replacement of summation with

integration

Summation over inclusions can, for computational

convenience, be replaced by multiple integration over

inclusion shapes and orientations. (The inclusion size

may also be relevant, but not if we ignore scattering

attenuation and accept the ansatz (25) for the mass

flow out of a single cavity). This is the continuous

limit used by Shafiro and Kachanov (1997) and

others. Tod (2001), for example, did his calculations

in this continuous limit, but assumed that the shapes

and orientations of the flat cracks he was dealing with

were independent on each other. [More realistically,

one can expect the shape of a crack to depend upon its

orientation relative to an applied anisotropic stress

field (Tod, 2002).]

Alternatively, one may continue to sum over the

inclusion shapes but integrate over inclusion orienta-

tions. This is the quasi-continuous limit used by

Gubernatis and Krumhansl (1975) and others. Jakob-

sen et al. (2002), for example, calculated the effective

elastic constants of anisotropic composites like shales

in this quasi-continuous limit, by assigning a separate

orientation distribution function to each shape factor.

If the goal is to make rapid progress in the general

case, where it may not only be required to account for

statistical correlations in the inclusion shapes and

orientations but also to account for the effects of

spatial correlations, then it is probably a good idea

to stick to the quasi-continuous limit. The quasi-

continuous limit offers an adequate theoretical plat-

form for dealing with real rocks characterized by a

discrete spectrum of cavity aspect ratios with multiple

(and widely separated) peaks in the broad interval

separating a perfectly spherical pore from a typical flat

Hudson-crack (e.g., Cheng and Toksoz, 1979;

O’Connell, 1983; Ravalec and Gueguen, 1996).
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To summarize the above, we shall assume we are

dealing with a continuous spectrum of cavity orienta-

tions but a discrete spectrum of cavity aspect ratios or

shape factors. In the spirit of Cheng and Toksoz

(1979), we re-divide the population of cavities into

new sets of cavities, each set (labelled by j = 1,. . .,Jc)
characterized by a common aspect ratio a( j), porosity
/( j) and orientation distribution function O( j)(X). For

any quantity A(r) depending on the orientation/shape

index r, we may let

XNc

r¼1

vðrÞAðrÞ !
XJc
j¼1

/ðjÞĀðjÞ; ð39Þ

where

ĀðjÞ ¼
Z

dXOðjÞðXÞAðaðjÞ;XÞ; ð40Þ

represents the orientation average of A(a( j), X) and X
symbolizes the three Euler angles (see Jakobsen et al.,

2003) determining the orientation of the cavity rela-

tive to the crystallographic axes of the material with

properties given by C(0). To get the normalization

correct, we ensure that

XJc
j¼1

/ðjÞ ¼
XNc

r¼1

vðrÞ; ð41Þ

andZ
dX OðjÞðXÞ ¼ 1: ð42Þ

Without any loss of generality, we may always write

the formula for the first-order correction as

C1 ¼
XJc
j¼1

/ðjÞ t̄ ðjÞ; ð43Þ

but the corresponding formula for the second-order

correction;

C2 ¼
XJc
j¼1

XJc
k¼1

/ðjÞ t̄ðjÞ : Ḡ
ðjkÞ
d : /ðkÞt̄ ðkÞ; ð44Þ

is only valid if the spatial distribution of cavities is

independent of the orientations (as we assume in the
following). In Eq. (44), we have introduced the

tensor Ḡd
(jk), which is given by the usual expression

for the G tensor of an ellipsoidal inclusion (Appen-

dix C), provided that the aspect ratio of the associ-

ated inclusion is set equal to ad
(jk), which, in turn, is

the aspect ratio of the characteristic ellipsoid deter-

mining the symmetry of the (translation invariant)

conditional probability density p̄(kjj)(x� xV) for find-

ing a cavity with aspect ratio a(k) centred at point xV
given that there is an cavity with aspect ratio a( j)

centred at point x, independent of the cavity orien-

tations. It remains to derive an expression for the

orientation average of the t-matrix for a single

communicating cavity.

3.2. On the use of isotropic reference media

The theory does not require that C(0) is isotropic,

but the analysis becomes much simpler if we assume

that this is indeed the case. To see this, let us start with

an evaluation of the c factors. From Eqs. (28) and

(12), we get

cðaðjÞ;XÞ ¼ 1þ jf ½KdðaðjÞ;XÞ � Sð0Þ	uuvv; ð45Þ

and

KdðaðjÞ;XÞ ¼ ½I4 þ GðaðjÞ;XÞ : Cð0Þ	�1
: Sð0Þ; ð46Þ

respectively.

Since Kd must obey the usual transformation law

for fourth-rank tensors, we can always write

KdðaðjÞ;XÞ ¼ RðXÞD½KdðaðjÞ;XÞ	local; ð47Þ

where [Kd(a
( j), X)]local refers to the value of Kd(a

( j),

X) in the local coordinate system with axes coinciding

with the principal axes of the nth type of ellipsoidal

cavities;

½KdðaðjÞ;XÞ	local

¼ fI4 þ ½GðaðjÞ;XÞ	local : ðCð0ÞÞlocalg�1
: ðSð0ÞÞlocal;

ð48Þ
and

RðXÞ ¼ aðXÞ 
 aðXÞ 
 aðXÞ 
 aðXÞ; ð49Þ
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where a(X) is a transformation tensor function of X,

which satisfies the following orthogonality relation

(see Jeffreys and Jeffreys, 1972):

aðXÞ � aðXÞ ¼ I2: ð50Þ

However, we need to assume that C(0) is isotropic to

ensure that

½GðaðjÞ;XÞ	local ¼ GðaðjÞ; 0Þ; ð51Þ

(cf. Mura, 1982), which implies that

½KdðaðjÞ;XÞ	local ¼ KdðaðjÞ; 0Þ; ð52Þ

due to the relationship between G and Kd in Eq. (46).

When we combine the above result with the transfor-

mation relation (47) and the orthogonality relation

(50), we get

½KdðaðjÞ;XÞ	uuvv ¼ ½KdðaðjÞ; 0Þ	uuvv; ð53Þ

which implies that

cðaðjÞ;XÞ ¼ cðaðjÞ; 0Þucj; ð54Þ

since c is defined as shown in Eq. (45). The above

relation means that the c factor for a cavity that may

have any shape is independent of its orientations. This

agrees with the findings of Hudson et al. (1996),

which were only valid for flat cavities or cracks.

From the expression (33) for the t-matrix of a

single communicating cavity, and Eq. (54) for c, we
get

t̄ðjÞ ¼ t̄
ðjÞ
d þ HðRa;RbÞZ̄

ðjÞ þ ixsjfX̄
ðjÞ

1þ ixcjs
: ð55Þ

If we impose the rule (39) on the expressions (38),

(31), (32) [and also use Eq. (53) in connection with

Rb], we get

Z̄ ðjÞ ¼ t̄
ðjÞ
d : Sð0Þ : ðI2 
 I2Þ : Sð0Þ :

XJc
j¼1

�ðjÞt̄
ðjÞ
d

1þ ixcjs

 !
;

ð56Þ

Ra ¼
XJc
j¼1

/ðjÞ

1þ ixcjs
; ð57Þ
Rb ¼
XJc
j¼1

/ðjÞ½KdðaðjÞ; 0Þ	uuvv
1þ ixcjs

; ð58Þ

respectively. Thus, we have reduced a rather compli-

cated problem to the averaging of the fourth-rank

tensors td and X using a separate orientation distribu-

tion function for each aspect ratio or shape factor,

labelled by j= 1,. . .,Jc.

3.3. Evaluation of t̄d
( j)

From Eq. (20), we get

tdðaðjÞ;XÞ ¼ �Cð0Þ : ½I4 þ GðaðjÞ;XÞ : Cð0Þ	�1: ð59Þ

Since we have assumed C(0) to be isotropic, it follows

that

tdðaðjÞ;XÞ ¼ RðXÞ : tdðaðjÞ; 0Þ; ð60Þ

(cf. Eq. 51), which means that

t̄
ðjÞ
d ¼ R̄

ðjÞ
: tdðaðjÞ; 0Þ; ð61Þ

where

R̄
ðjÞ ¼

Z
dX OðjÞðXÞRðXÞ; ð62Þ

represents an averaging operator or tensor of eight

rank. Since t-matrix satisfies the same symmetry

relations as the elastic stiffness tensor; namely,

ðtdÞijkl ¼ ðtdÞjikl ¼ ðtdÞijlk ¼ ðtdÞklij; ð63Þ

it follows that we can find the orientation average of

td(a
( j), X) in the same way as Morris (1969) and

Sayers (1994) found that of the elastic stiffness tensor.

Following the above workers, we now specify

X=(n, /, w) where h, / and w are three Eulerian

angles and n= cosh; and expand O( j)(X) in terms of

spherical harmonics:

OðjÞðn;/;wÞ ¼
Xl
l¼0

Xl
m¼�l

Xl
n¼�l

W
ðjÞ
lmnZlmnðnÞe�im/e�inw;

ð64Þ
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where Zlmn is a generalized Legendre function and

W
ðjÞ
lmn ¼

1

4p2

Z 2p

0

dw
Z 2p

0

d/

�
Z 1

�1

dn OðjÞðn;/;wÞZlmnðnÞeim/einw: ð65Þ

Since the t-matrix is actually a tensor of fourth rank,

its orientation average depends only on the coeffi-

cients Wlmn
( j) of the expansion of O( j)(n, /, w) for

lV 4. If the orientation distribution is symmetric

about the axis h = 0, then O( j) is a function of n
only and all the parameters Wlmn

( j) are zero unless

m = n = 0. [The assumption of axial symmetry is not

strictly required, since Sayers (1994) also considered

media with orthorhombic symmetry.] In addition,

O( j)(n) =O( j)(� n) and so Wl00
( j) is zero unless

l is even. The formulae for the Wl00
( j) are fairly

simple, e.g.,

W
ðjÞ
200 ¼

ffiffiffi
5

2

r Z 1

�1

dn OðjÞðnÞP2ðnÞ; ð66Þ

W
ðjÞ
400 ¼

ffiffiffi
9

2

r Z 1

�1

dn OðjÞðnÞP4ðnÞ; ð67Þ

where Pn(n) is the Legendre polynomial of order n.

It follows from the work of Sayers (1994) that the

components t̄IJ
( j) and tIJ

( j)(0) (I,J = 1,2,3,4,5,6) of t̄d
( j)

and td(a
( j), 0), respectively, are (in the notation of

Kelvin) related by

t̄
ðjÞ
11 ¼ t̄

ðjÞ
22 ¼ kðjÞ þ 2lðjÞ þ 4

ffiffiffi
2

p

105
p2

� ½2
ffiffiffi
5

p
a
ðjÞ
3 W

ðjÞ
200 þ 3a

ðjÞ
1 W

ðjÞ
400	; ð68Þ

t̄
ðjÞ
33 ¼ kðjÞ þ 2lðjÞ � 16

ffiffiffi
2

p

105
p2

� ½
ffiffiffi
5

p
a
ðjÞ
3 W

ðjÞ
200 � 2a

ðjÞ
1 W

ðjÞ
400	; ð69Þ

t̄
ðjÞ
12 ¼ kðjÞ � 4

ffiffiffi
2

p

315
p2

� ½2
ffiffiffi
5

p
ð7aðjÞ2 � a

ðjÞ
3 ÞW ðjÞ

200 � 3a
ðjÞ
1 W

ðjÞ
400	; ð70Þ
t̄
ðjÞ
13 ¼ t̄

ðjÞ
23 ¼ kðjÞ þ 4

ffiffiffi
2

p

315
p2

� ½
ffiffiffi
5

p
ð7aðjÞ2 � a

ðjÞ
3 ÞW ðjÞ

200 � 12a
ðjÞ
1 W

ðjÞ
400	; ð71Þ

t̄
ðjÞ
55 ¼ t̄

ðjÞ
44 ¼ lðjÞ � 2

ffiffiffi
2

p

315
p2

� ½
ffiffiffi
5

p
ð7aðjÞ2 þ 2a

ðjÞ
3 ÞW ðjÞ

200 þ 24a
ðjÞ
1 W

ðjÞ
400	; ð72Þ

t̄
ðjÞ
66 ¼ ðt̄ðjÞ11 � t̄

ðjÞ
12Þ; ð73Þ

where

15kðjÞ ¼ t
ðjÞ
11ð0Þþ t

ðjÞ
33ð0Þþ5t

ðjÞ
12ð0Þþ8t

ðjÞ
13ð0Þ � 8t

ðjÞ
55ð0Þ;
ð74Þ

30lðjÞ¼7t
ðjÞ
11ð0Þþ2t

ðjÞ
33ð0Þ�5t

ðjÞ
12ð0Þ�4t

ðjÞ
13ð0Þþ24t

ðjÞ
55ð0Þ:
ð75Þ

and

a
ðjÞ
1 ¼ t

ðjÞ
11ð0Þ þ t

ðjÞ
33ð0Þ � 2t

ðjÞ
13ð0Þ � 8t

ðjÞ
55ð0Þ; ð76Þ

a
ðjÞ
2 ¼ t

ðjÞ
11ð0Þ � 3t

ðjÞ
12ð0Þ þ 2t

ðjÞ
13ð0Þ � 4t

ðjÞ
55ð0Þ; ð77Þ

a
ðjÞ
3 ¼ 4t

ðjÞ
11ð0Þ � 3t

ðjÞ
33ð0Þ � t

ðjÞ
13ð0Þ � 4t

ðjÞ
55ð0Þ: ð78Þ

Here, k( j) and l( j) represent the isotropic part of the

fourth-rank tensor t̄( j), while ai
( j) (i = 1,2,3) represents

the anisotropic part. The isotropic part of a tensor is

per definition invariant under symmetry transforma-

tions belonging to the SO(3) group. Group theory is

commonly used in other parts of physics to make

sense of the internal symmetries of a complex system.

3.4. Evaluation of X̄( j)

From Eq. (37), we get

XðaðjÞ;XÞ
¼ tdðaðjÞ;XÞ : Sð0Þ : ðI2 
 I2Þ : Sð0Þ : tdðaðjÞ;XÞ:

ð79Þ
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Since we have assumed C(0) to be isotropic, it follows

from Eqs. (60) and (79) that

XðaðjÞ;XÞ ¼ RðXÞDXðaðjÞ; 0Þ; ð80Þ

which means that

X̄
ðjÞ ¼ R̄

ðjÞ
DXðaðjÞ; 0Þ: ð81Þ

It is clear from the structure of Eq. (79) and the

symmetries of td in Eq. (63) that

Xijkl ¼ Xjikl ¼ Xijlk ¼ Xklij: ð82Þ

All these mean that we can find the orientation

average of the X-tensor in the same way as we found

that of the td-tensor, that is, by using the analytical

results of Sayers (1994).
Table 1

Mechanical properties of selected rock components

Component q
(kg/m3)

c11
(GPa)

c33
(GPa)

c55
(GPa)

c66
(GPa)

c13
(GPa)

Quartz 2650 9.70 9.70 4.43 4.43 8.34

Clay 2520 17.15 5.26 1.48 6.63 2.71

Water 1000 2.20 2.20 0.00 0.00 2.20

The values we have used for the mass densities and elastic moduli

(in the notation of Voigt) for the fluid and solid components were

taken from the papers of Jakobsen et al. (2000) and Sams and

Andrea (2001), respectively.
4. Numerical examples and discussion

4.1. Crack-induced anisotropy

Crack-induced anisotropy is of extreme importance

in a large number of geophysical applications ranging

from earthquake prediction to petroleum and geother-

mal exploration (Cheng, 1993). The 10th International

Workshop on Seismic Anisotropy has left us with the

impressions that the concept of shear wave splitting

though a cracked or fractured medium is still being

regarded as a useful diagnostic of such a medium.

Until quite recently, the commonly used crack-in-

duced anisotropy model was that of Hudson (1980,

1981), which is limited to a special class of micro-

structures with isotropic two-point correlation func-

tions for the statistics of the distributions of centers of

flat cracks (Douma, 1988; Hudson, 1994a) at dilute

concentrations (Cheng, 1993), which are not only

embedded in an isotropic matrix material (Hudson,

1994b) but also isolated with respect to fluid flow

(Thomsen, 1995). In the generalization of Hudson’s

original crack model provided by Hudson et al.

(1996), the cracks are no longer isolated with respect

to fluid flow, but the important storage porosity was

partially ignored in the fluid dynamical considera-

tions, and we still have these other assumptions that

restrict the range of applicability of the theory.
With the introduction of the T-matrix approach to

rock physics, we can now deal with a more general

class of microstructures with anisotropic two-point

correlation functions for the statistics of the distribu-

tions of centers of arbitrarily shaped inclusions or

cavities at finite concentration; in a way that involves

the use of an arbitrary (anisotropic) reference medium

and takes into account the storage porosity in the fluid

dynamical equations. Tod (2001) writes that the

model of connected cracks proposed by Hudson et

al. (1996) for the transfer of fluid between cracks by

non-compliant pores makes the assumption that the

distortion of the pores is negligible compared with

that of the cracks during the passage of a wave and

that the porosity is low, so that we neglect compres-

sion of the pore fluid. Clearly, this is a rather restric-

tive assumption that has now been ‘partially’ removed

in the process of developing a unified theory of rocks

as viscoelastic composites. By ‘partially’ we mean

that there are plenty of rooms of alternative solutions,

depending on the assumptions one make about the

relative length-scale-sizes of the cracks and the pores,

among other things.

The T-matrix approach is quite general but needs to

be adapted to reflect the microstructures of real rocks

as seen in the laboratory or in the field. To illustrate

that there has been a kind of progress, we shall soon

investigate the effects of various non-trivial crack

distributions on the overall properties of a dual poros-

ity medium, involving a mixture of spherical pores and

flat pores that are randomly oriented. But first we need

establish what happens to such a medium when the

crack density is zero, so that we have a useful reference

for comparison. In order to mimic the behaviour of

something like a sandstone, we let C(0) represent the

elastic stiffness constants of pure quartz (Table 1). The
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pore shape aspect ratios of the uncracked medium are

given by a(1) = 1 and a(2) = 0.05, and we use /(1) =

0.2094 and /(2) = 0.0314 for the corresponding vol-

ume concentrations (the only non-zero porosities). We

assume initially that all the two-point correlation

functions (determining the relative positions of the

pores) are spherically symmetric; that is, we set

ad
(kj) = 1 (k, j= 1,2). Since we are mainly interested in

the effects of squirt flow, we assume that the perme-

ability is not too high; that is, we set G = I2 mDa.

Somewhat arbitrary (but perhaps not completely unre-

alistic; Chapman, 2001), we write s = 1e� 5 s for the

squirt flow relaxation time constant. According to

Pointer et al. (2000), the viscosity of water (the

saturating fluid) is 10� 3 Pa s.

The results we have obtained for the reference

medium described above are given in Fig. 1, which is

composed of two subfigures. Fig. 1a shows the three

complex-valued stiffness constants we have calculat-

ed as a function of frequency for the isotropic

medium; only two of these are independent com-

plex-valued parameters. [The real and imaginary

parts of the stiffness coefficients are also related via

Kramers–Kronig relations (e.g., Goldberger and

Watson, 1964; Bourbie et al., 1987; Gross and

Zhang, 1992) depending on nothing but linearity

and causality, but these are not needed in the present

study]. The dashed curves shows the real-valued

results we have obtained by first using the T-matrix

approximations for dry cavities and then using the

Brown and Korringa (1975) relation to simulate the

effects of fluid pressure equalization at low frequen-

cies. The dotted curves show the real-valued results

we have obtained (for the same model) by using the

T-matrix approximations for fluid-saturated pores

having the same stiffness tensor as water. The nu-

merical results indicate that the T-matrix approxima-

tion used to make Fig. 1a work satisfactory in the

limits of low and high frequencies. In Appendix D, it

is shown analytically that an expansion of the T-

matrix approximation to first order in the porosity is

always consistent with the Brown–Korringa relation.

Fig. 1b shows the wave speeds and attenuations we

have obtained as a function of frequency from the

complex-valued stiffness constants in Fig. 1a. We

have used the wave equations of Carcione (1995)

described in Appendix E. The results suggest that

there is very little (if any) dispersion and attenuation
at seismic frequencies. However, we should not

forget that there is a significant amount of uncertainty

associated with the squirt flow time relaxation time

constant. The effect of changing the value of s is to

move the spectra along the frequency axis; the shape

of the plots will however remain the same.

Fig. 2 is similar to Fig. 1, but now we have added a

relatively high concentration of flat cracks that are

nearly fully aligned. In addition to the parameters

specified above, we took a(3) = 0.001 and /(3) =

6.2832�10� 4, which corresponds to a crack density

of 0.15. By nearly fully aligned, we mean that the

cracks are oriented in accordance with a Gaussian

orientation distribution function (that is symmetric

around an axis defining the zonal axis of the effective

medium of hexagonal symmetry) having a standard

deviation of p/16. Clearly, the T-matrix approxima-

tions still behave as expected in the limits of low and

high frequency. But now there is a significant amount

of dispersion and attenuation at the lower frequencies,

approaching those of importance in seismic explora-

tion and reservoir monitoring.

Fig. 3 is similar to Fig. 2, but now the standard

deviation of the crack orientation distribution function

is equal with p/3. Clearly, the low- and high-frequen-

cy limits as expected, but the degree of crack-induced

anisotropy has diminished strongly, although the ab-

solute values of the velocities and attenuations has

been strongly affected by the weakly aligned cracks.

Fig. 4 is similar to Fig. 3, but now all crack

orientation distribution functions are taken to be

equally plausible, so that the crack orientation distri-

bution function represents nothing but a normalization

constant. As expected, the cracked porous medium

behaves now as an isotropic viscoelastic medium. The

T-matrix approximations still behaves as expected at

low and high frequencies. We note that the compres-

sional-waves are attenuated to a higher degree than

the shear-waves.

Fig. 5 is similar to Fig. 4 but the two-point corre-

lation function are no longer spherically symmetric.

Specifically, we took ad
(ij) = 0.5 if i = j and ad

(11) = 2 if

i p j, where i, j = 1,2,3. It is perhaps surprising that the

results in Fig. 5 are consistent with the Brown–

Korringa relation, despite the fact that we have relaxed

on the assumption that the spatially distribution of

cracks is the same for all crack pairs. [It may be noted

that we have actually observed small deviations from



M. Jakobsen et al. / Journal of Applied Geophysics 54 (2003) 219–246232



M. Jakobsen et al. / Journal of Applied Geophysics 54 (2003) 219–246 233
the dashed Brown–Korringa lines in other models

where the spatial distributions of cavities are different

for different pairs of interacting cavities, but not at

small volume concentrations. We all agree that a good

theory for the macroscopic properties of anisotropic

porous/permeable media should be consistent with the

Brown–Korringa relation, when the frequency is suf-

ficiently low. The problem is to develop an inclusions-

based model that does not only satisfy this requirement

but is also valid at finite concentrations of communi-

cating cavities (see Thomsen, 1985). When the volume

concentration of inclusions increases, the phenomenon

of strain propagation between different inclusions

becomes increasingly important (see Gubernatis and

Krumhansl, 1975; Jakobsen et al., 2003). In our theory,

the fluid-saturated cavities can interact both via strain

propagation and fluid flow. It appears to be difficult to

show analytically that the higher-order T-matrix

approximations (that takes into account strain propa-

gation between communicating cavities) are consistent

with the Brown–Korringa relation. It is only for the

first-order T-matrix approximations (that ignores strain

propagation between communicating cavities) that we

are able to demonstrate the consistency with Brown

and Korringa analytically, as shown in Appendix D.]

Taking into account all the papers that have been

published in this field, Fig. 5 appears to be unique in

showing that crack-induced wave-speed and attenua-

tion anisotropy may occur even if all the cracks

orientations are equally plausible, provided that the

spatial distribution of cracks is statistically anisotropic.

The above results were obtained for a relatively

high-porosity medium containing a single set of

cracks. However, we can easily extend the model to

include several sets of cracks, each crack set being

characterized by its own shape factor and orientation

distribution function. A comparison of Figs. 3, 4 and 5

suggests that it may be difficult to tell from measure-

ments of seismic anisotropy if it is some of the crack

orientation distribution functions that lacks spherical

symmetry or some of the two-point correlation func-

tions. If all crack orientations are initially equally
Fig. 1. The isotropic viscoelastic properties of the uncracked reference

anisotropy from a modern perspective. A matrix material of quartz is here c

spherical pores; the second set consists of (randomly oriented) flat pores. D

refer to the model where the cavities are completely saturated with fluid (w

means x/(2p). (a) Frequency-dependent and complex-valued effective stif
plausible, then the effect of an applied anisotropic

stress field may not only be to (change the shapes of

the cracks and) break the spherical symmetry of the

crack orientation distribution function (see Tod,

2002), but also to change the symmetries of the

two-point correlation functions (see Ponte Castaneda

and Zaidman, 1994). Thus, there are plenty of rooms

for more work along this line.

A viscoelastic medium of hexagonal symmetry is

not fully characterized by the principal wave speeds

and attenuations. We have therefore included an

example showing the full slowness and attenuation

surfaces for such a medium at a fixed frequency. The

results shown in Fig. 6 were obtained by first picking

the complex-valued stiffness constants corresponding

with a frequency of 1.2519�104 Hz from Fig. 2

(associated with a dual porosity medium containing

nearly fully aligned cracks) and then using the wave

equations discussed in Appendix E. It is interesting to

note that the symmetry of the medium is more

strongly reflected in the attenuation surface than in

the slowness surface. [Carcione et al. (1998a) also

found that the attenuation is more anisotropic than the

slowness, but they did not have a physical model for

the medium.]

4.2. Clayey sandstones as viscoelastic composites

Sandstone reservoirs account for nearly 60% of

oil reserves. In general, sandstones contain clay,

which significantly affect their acoustic properties.

Most previous attempts to develop effective medium

models for clayey sandstones have focused on the

wave speeds (e.g., Xu and White, 1995; Sams and

Andrea, 2001) and ignored the attenuations. This

situation should definitely change since seismic at-

tenuation is a potentially useful parameter for char-

acterizing and monitoring hydrocarbon reservoirs in

conjunction with seismic velocity (see Klimentos and

McCann, 1990; Samec and Blangy, 1992; Carcione

et al., 1998b; Koesoemadinata and McMechan,

2001).
medium we use when studying the phenomenon of crack-induced

ontaining two sets of communicating pores. The first set consists of

ashed curves refer to the Brown–Korringa relation. Dotted curves

ater in this case) but isolated with respect to fluid flow. Frequency

fness constants. (b) Principal wave-speed and attenuation spectra.



Fig. 2. The effect of nearly fully aligned cracks. The same as in Fig. 1, apart from the cracks. The red and blue curves refer to c11, c44, c12 and

c33, c66, c13, respectively.
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Fig. 3. The effect of weakly aligned cracks. Nearly the same as in Fig. 2, but for a wider distribution of crack orientations.
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Fig. 4. The effect of cracks that are not aligned. Nearly the same as in Fig. 3, but all crack orientations are now equally plausible.
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Fig. 5. The effect of spatial distribution. Nearly the same as in Fig. 4, but now the two-point correlation functions are no longer spherically

symmetric and not even the same for all pairs of interacting cavities.
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Fig. 6. Viscoelastic plane wave characteristics. We can here see the slowness and attenuation surfaces of the medium of hexagonal symmetry

associated with Fig. 2 at a fixed frequency of 1.2519�104 Hz. The dotted, solid and dashed curves refer to the SH, qP and qSV modes,

respectively.
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The few attempts that have been made to take fluid

dynamics into account (e.g., Klimentos and McCann,

1990; Carcione et al., 2000) have generally been
Fig. 7. Compressional wave speed and attenuation spectra for clayey sands

experimental observations obtained under high confining pressure (40 MP
based on the pioneering work of Biot (1956a,b),

which require the dry rock properties as input. While

dry rock properties can easily be measured in the
tone sample A4BP. Solid curves are theoretical predictions; stars are

a, simulated reservoir pressure conditions) with microcracks closed.



Fig. 8. Theory vs. experiment in our treatment of clayey sandstones as viscoelastic composites. We here model compressional wave speeds and

attenuations at 1 MHz for a suite of clayey sandstones having porosities and clay contents (smaller than 18% and 15%) within the assumed

range of our theory. The pressure condition is similar to that in Fig. 7.
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laboratory, these are not practically measureable when

constructing seismic models from well logs (Xu,

1998). As stated in the introduction, it is not clear if

a good theory for real rocks needs to be based on the

approach of Biot. After all, Klimentos and McCann

(1988) have demonstrated that the slow P-wave

quickly disappear when a sandstone is filled with

intrapore clay. Due to the complexity of these porous

media, we suggest one should try to model clayey

sandstones as viscoelastic composites.
Table 2

Petrographic and compressional wave data for complex porous media of

Sample Porosity

(%)

Permeability

(mD)

Clay content

(%)

2V2M1 15.46 0.05 15.0

2H2M1 2.72 0.00 0

2V1M1 2.43 0.00 0

8VM1 9.96 0.01 7

9HM1 13.47 0.06 14

9VM1 17.18 0.13 15

9V2M1 16.71 0.44 8

33HM1 17.13 2.21 12

A1BP 16.50 41.74 15

A4BP 16.11 50.51 15

A6BP 15.41 52.42 15

3H1S1 13.11 3.67 7

3H2S1 15.72 87.55 5

11H2S1 15.13 11.06 4

14HS1 11.39 0.46 6

14H2S1 5.98 0.00 3

15HS1 10.22 0.16 9

We compare observed (obs) and calculated (calc) P-wave characteristics fo

ultrasonic frequencies under simulated reservoir pressure conditions (40 M
When developing inclusion-based models for

clayey sandstones that takes fluid dynamics into

account, it may be a good idea to use the micro-

structure implied by one of the more established

static approaches as a starting point. According to

Goldberg and Gurevich (1998), the most physically

sound static approaches assume that the presence of

clay in a sandstone manifests itself by the presence

of pores with a low aspect ratio. The velocity model

for clay-sand mixtures introduced by Xu and White
interest to the petroleum industry

Vp
obs

(m/s)

Vp
calc

(m/s)

Ap
obs

(dB/cm)

Ap
calc

(dB/cm)

4152 4116 3.15 3.8

5934 5815 0.01 0.05

5835 5840 0.08 0.04

4705 5003 1.79 0.92

4498 4392 4.92 2.69

4362 3905 6.83 4.74

4381 4296 1.57 2.38

3933 4055 2.68 3.71

4149 3989 3.63 4.32

4152 4037 3.30 4.10

4246 4122 3.38 3.73

4666 4697 2.10 1.39

4564 4536 0.47 1.43

4794 4635 1.65 1.13

4666 4898 1.60 0.99

5225 5478 0.19 0.27

4895 4916 4.63 1.71

r clayey sandstones. The acoustic measurements were performed at

Pa confining pressure), by Klimentos and McCann (1990).
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(1995) is particularly attractive, because it only

complicates things up to a point, but may neverthe-

less capture the most essential physics involved. In

this model, the total pore space is assumed to consist

of two parts: (1) pores associated with quartz grains

and (2) pores associated with clays. The essential

feature of the model is the assumption that the clay-

related pores are significantly flatter than the quartz-

related pores. This makes sense since the clay

minerals are much flatter than the quartz grains

(see Hornby et al., 1994). The model of Xu and

White (1995) ignores the effect of clay distribution

on the elastic properties of sandstones. On one hand,

this looks like a serious drawback since the various

clay distributions may result in markedly different

elastic properties (see Sams and Andrea, 2001). On

the other hand, the exact location of clay particles

within a sandstone is normally unknown, and the

effect of averaging over a set of equally plausible

distributions may be to bring the more sophisticated

models of Sams and Andrea (2001) closer to the

simple one of Xu and White (1995).

Since the goal of this section is merely to

provide some examples of the flexibility and poten-

tial power of the T-matrix approach to rock physics,

we shall assume that the microstructures of clayey

sandstones are more or less as simple as suggested

by Xu and White (1995). In an attempt to model the

data of Klimentos and McCann (1990), three types

of inclusions were embedded in a homogeneous

matrix of quartz. The first type of inclusions repre-

sents the anisotropic clay minerals. We then have

the quartz-related pores (a(1)c 0.15) and the clay-

related pores (a(2)c 0.05). Following Xu and White

(1995), we assumed that the relative proportion of

clay-related pores is proportional with the clay-

content. By trial and error, we have found that

when the squirt flow time relaxation constant s is

equal to 10� 7 s or so, we obtain more or less the

same kind of velocity and attenuation spectra as

recovered from ultrasonic laboratory data by Kli-

mentos and McCann (1990).

Fig. 7 shows that the dual-porosity model for

clayey sandstones implies a rather narrow attenua-

tion spectrum. We here took a(2) = 0.027. With the

present value of s, the attenuation peak is in the

MHz range, with no attenuation at seismic frequen-

cies. As stated earlier, we can move the attenuation
spectrum along the frequency axis (without changing

its shape) simply by changing the value of the

(poorly known) parameter s. The results from the

previous subsection on crack-induced anisotropy

suggest that the effect of using a broader spectrum

of pore shape aspect ratios is to broaden the atten-

uation spectrum, and so clay-related squirt flow may

nevertheless be relevant for seismic exploration,

depending on number of flat cavities within these

materials.

Fig. 8 shows the results from a rather successful

attempt to match the ultrasonic P-wave velocities and

attenuations measured at a frequency of 1 MHz on

the rocks in Table 2 on the basis of the above dual

porosity model. The mechanical properties we have

assumed for the various rock components are shown

in Table 1. The agreement is seen to be more than

adequate for the wave speeds and reasonable for the

attenuations. What is needed (from the experimental-

ists) to obtain further progress is a more detailed

quantitative information about the pore shape spectra

of real rocks.
5. Conclusion

The T-matrix approach of standard many-body

theory allows us to include the effects of intercavity

fluid flow when calculating the overall properties of

rock-like composites involving multiple solid constit-

uents and cavities having all sorts of shapes, orienta-

tions, number densities and spatial distributions. It

produces results that are consistent with the Brown–

Korringa relation at low frequencies. Therefore, we

believe that we are on the right track towards a unified

theory of rocks as viscoelastic composites. The meth-

od and code we have developed may lead to a better

ability to predict petrophysical properties (including

the permeability) from remote seismic measurements

(including the attenuation).
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Appendix A. The Kelvin notation

The Kelvin notation (e.g., Helbig, 1994; Nowick,

1995) represents an isomorphism between the tensor

and matrix components that can be explained as

follows. First, for a given tensor {Aijkl}, pairs of

indices ij and kl are converted to single indices a
and b by the standard convention 11!1, 22! 2,

33! 3, 23, 32, ! 4, 13, 31, ! 5, 12, 21, ! 6. Next,

each tensor element Aijkl is associated with a matrix

element Aab by the rules

Aijkl ¼ Aab; a; b V 3; ðA� 1Þ

Aijkl ¼
ffiffiffi
2

p
Aab; a or b > 3; ðA� 2Þ

Aijkl ¼ 2Aab; a; b > 3: ðA� 3Þ

The resulting (Kelvin) matrices are of rank 6. If we

use the Kelvin notation rather than the Voigt notation,

all operations with the 6� 6 matrices can be per-

formed according to the usual matrix rules.
Appendix B. Effective medium approximations

based on the average t-matrix

If we assume that the distribution of inclusions is

the same for all inclusions pairs, in the sense that

Gd
(rs) =Gd for all r and s, then Eq. (1) reduces to

C* ¼ Cð0Þ þ C1 : ðI4 þ Gd : C1Þ�1; ðB� 1Þ

which implies that

Cð0Þ þ C1 � C1 : Gd : C1 þ O½ðvðrÞÞ3	; ðB� 2Þ

or

C* ¼ Cð0Þ þ C1 � O½ðvðrÞÞ2	: ðB� 3Þ

Recall that C(0) can be selected rather arbitrarily. If

we for a moment assume that C(0) is the tensor of

elastic constants for a matrix phase, which contains all

the other phases as inclusions, then the estimate (B-1)

reduces to that developed recently by Ponte Castaneda

and Willis (1995); the estimate (B-2) reduces to

something new, which in fact includes all the theories

(or crack models) of Hudson (1980, 1981, 1994a,b) as

special cases; and the estimate (B-3) agrees with the

dilute result Eshelby (1957).

Since it has been written that the assumption of an

infinitesimally small aspect ratio in the crack model of

Hudson (1980, 1981) (which forms the basis for the

works of Hudson et al., 1996; Pointer et al., 2000;

Tod, 2001, 2002) is a major drawback that should not

exist in future models (see Douma, 1988), let us

emphasize that such an assumption does not exist in

the present models.

The numerical results of Cheng (1993) and Jakob-

sen et al. (2002) suggest that the first-order approxi-

mat ion (Eq. (B-3) ) and the second-order

approximation (Eq. (B-2)) will become invalid as

soon as the crack density (porosity) increases beyond

0.1 (10%) or so. This is an unfortunate feature since

rocks of interest to the petroleum industry frequently

has crack densities (porosities) as high as 0.3 (40%) or

even higher (see Thomsen, 1995). The first- and

second-order approximations may not be suitable for
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dealing with multiple solid constituents either, partic-

ularly not with mixtures of rounded quartz minerals

and flat anisotropic clay minerals (see Jakobsen et al.,

2003).

In many applications, it may be a good idea to use

the general T-matrix approximation (Eq. (1)) or its

simplified version (Eq. (B-1)). The fact that these

approximations contain terms of all orders in the

volume concentrations of inclusions gives us a lim-

ited encouragement to proceed with their application

in circumstances where the first- and second-order

approximations completely fail. More encouragement

is provided by the analytical and numerical results of

Jakobsen et al. (2003). Ponte Castaneda and Willis

(1995) have shown that one can find the highest

possible inclusion concentration where the simplified

approximation (Eq. (B-1)) is strictly valid if we

know the shape of the inclusions and their spatial

distribution. For the special case of a homogeneous

matrix material containing just one type of inclu-

sions, the maximum possible value for the aspect

ratio ad of the correlation function for given aspect

ratio a(2) and volume concentration v(2) of the inclu-

sions (phase 2) is (given by Ponte Castaneda and

Willis, 1995) ajmin = adv
(2), and correspondingly the

maximum possible value of ad for given a(2) and v(2)

is a | max = a(2)/v(2).
Appendix C. Evaluation of the G tensor

Jakobsen et al. (2003) show that

GðrÞ
pqrs ¼ � 1

4
ðEðrÞ

pqrs þ EðrÞ
pqsr þ EðrÞ

qprs þ EðrÞ
qpsrÞ; ðC� 1Þ

where

EðrÞ
pqrs ¼

Z p

0

dh sin h
Z 2p

0

d/D�1
qs ðkÞkpkrAðrÞðh;/Þ;

ðC� 2Þ
and Dpr

� 1(k) is the inverse matrix of the Fourier

transform of the displacement Green’s function, and

AðrÞðh;/Þ ¼ 1

pAXðrÞA

Z l

0

dkk2
Z

XðrÞ
dxe�ik�x

�
Z

XðrÞ
dxVeik�xV; ðC� 3Þ
where k, h and / are the spherical coordinates in k

space, and ki the Cartesian components of k. Obvi-

ously, A(r) represent a shape/orientation factor inde-

pendent of the elastic constants. For a sphere, A(r) = 1/

4p and G(r) becomes identical with the v tensor, which

is associated with crack–crack interactions in Hud-

son’s crack model. For an oblate spheriodal inclusion,

the purely geometric factor is given by (Jakobsen et

al., submitted for publication)

AðrÞðhÞ ¼ 1

4p
b21b3

½b21sin2h þ b23cos
2h	3=2

: ðC� 4Þ

Further progress along this line may now easily be

obtained by first combining Eqs. (C-2) and (C-4), and

then solve the resulting integrals by using symbolic

and/or numerical methods. For other treatments and,

partially, more general theorems of the inclusion

problem, see Ponte Castaneda and Willis (1995),

Kroner (1986, p. 262) and Mura (1982). The tensor

G(r) is simply given by �P(r), where P(r) is a tensor

well known for the works of Willis and his associates.

Mura (1982) gives expressions for the G(r) tensors for

all sorts of inclusions, including cracks in isotropic

and anisotropic media.
Appendix D. The low-frequency limit

Brown and Korringa (1975) derived an expression

for the saturated (undrained) compliances in terms of

the dry result;

Sijkl* ¼ Sdijkl þ
ðSd*� Sð0ÞÞijuuðSd*� Sð0ÞÞvvkl

/0ðSð0Þuuvv � 1=jf Þ � ðSd*� Sð0ÞÞuuvv
;

ðD� 1Þ

where /0 ¼
PJc

j¼1 /ðjÞ is the total porosity. The

relation (D-1) was derived from the following

equation:

S* : Sð0Þ¼ Sd* : ðSð0ÞþI2pf Þ � Sð0Þ : I2pf ; ðD� 2Þ

which has the same structure as Eq. (11).

Although the above relations were derived from

first principles, Brown and Korringa (1975) did not

use a specific model for the porous microstructure but
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assumed the frequency to be sufficiently low so that

the pore fluid pressure is equilibrated throughout the

pore space. It is now clear that this may or may not be

a good approximation at seismic frequencies, depend-

ing on the geometry of the porous microstructure.

As pointed out by Xu (1998), both Eqs. (D-1) and

(D-2) represent a generalization of Gassmann’s (1951)

famous relation for isotropic porous media, and can be

used to check if an inclusion-based theory for the

effective stiffnesses of an anisotropic porous media

have the correct dependence on the elastic properties of

the saturating fluid at low frequencies. In this appendix,

we shall investigate if the first-order approximation

(Eq. (B-3)) is consistent with the following equation:

S* ¼ Sd*þ ðSd*� Sð0ÞÞ : ðI2 
YÞ; ðD� 3Þ

which follows from Eqs. (D-2) and (26), in conjunction

with the fact that S(0) is arbitrary.

From Eq. (B-3), we get

S*cðCð0Þ þ C1Þ�1;

¼ ½ðI4 þ C1 : Sð0ÞÞ : Cð0Þ	�1;

¼ Sð0Þ : ðI4 þ C1 : Sð0ÞÞ�1;

cSð0Þ : ðI4 � C1 : Sð0ÞÞ;

¼ Sð0Þ � Sð0Þ : C1 : Sð0Þ: ðD� 4Þ

From Eqs. (2) and (19), we get

C1 ¼ Cd
1 þ C

f
1; ðD� 5Þ

where

Cd
1 ¼

X
r

vðrÞt
ðrÞ
d ðD� 6Þ

and

C
f
1 ¼

X
r

vðrÞt
ðrÞ
d : Sð0Þ : ðI2 
 YðnÞÞ : Cð0Þ: ðD� 7Þ

Eqs. (D-4) and (D-5) imply that

S*cSd*� Sð0Þ : C
f
1 : Sð0Þ; ðD� 8Þ
where

Sd* ¼ Sð0Þ � Sð0Þ : Cd
1 : Sð0Þ: ðD� 9Þ

From Eq. (27), it is clear that

lim
x!0

YðnÞ ¼ Y: ðD� 10Þ

Eqs. (D-6), (D-7) and (D-10) give

lim
x!0

C
f
1 ¼ Cd

1 : Sð0Þ : ðI2 
 YÞ : Cð0Þ: ðD� 11Þ

It follows from Eqs. (D-8) and (D-11) that

lim
x!0

S*cSd*� Sð0Þ : Cd
1 : Sð0Þ : ðI2 
 YÞ: ðD� 12Þ

Eqs. (D-12) and (D-9) imply that

lim
x!0

S*cSd*þ ðSd*� Sð0ÞÞ : ðI2 
 YÞ; ðD� 13Þ

which agree with the Brown–Korringa relation

(Eq. (D-3)).
Appendix E. Long waves in viscoelastic composites

The time-reduced equation of motion for harmonic

vibrations of angular frequency N in any continuum

(not subjected to any body forces) may be given in the

form

j � Sðx;xÞ ¼ ixpðx;xÞ; ðE� 1Þ

where S(x, x) is the stress tensor and p(x, x) is the

momentum density vector. The above equation is

independent of material properties. These enter

through the constitutive relations for the stress, e.g.,

Sðx;xÞ ¼ Cðx;xÞ : eeeðx;xÞ; ðE� 2Þ

and the additional relation

pðx;xÞ ¼ ixqðxÞuðx;xÞ; ðE� 3Þ

for the momentum density, where q(x) is the mass

density of the medium and u(x, x) is its displacement.

Eq. (E-2) (becomes a convolution in the time domain)

is called the Boltzmann superposition principle, and

represents the most general constitutive relation for an
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anisotropic and linear viscoelastic medium (see Car-

cione, 1995).

We now assume that the local stiffness tensor C(x,

x) and the local density q(x) vary in a random manner

on a length-scale, which is small compared with all

other length-scales including that associated with the

wavelength of an acoustic wave. If similar relations

hold for at the macroscopic scale; namely,

j � hSðx;xÞi ¼ ixhpðx;xÞi; ðE� 4Þ

hSðx;xÞi ¼ C*ðxÞ : heeeðx;xÞi; ðE� 5Þ

hpðx;xÞi ¼ ixq*ðxÞhuðx;xÞi; ðE� 6Þ

then our job is to determine the effective stiffness

tensor C*(x) and the effective density q*(x), from

the statistical information we have about the fluctua-

tions in local stiffnesses and density. In the above

equations, the brackets h�i denote the ensemble aver-

age. If the random composite is statistically homoge-

neous (as we assume in the following), then C*(x)

may be estimated on the basis of a static theory of

composites in conjunction with the elastic–viscoelas-

tic correspondence principle (discussed earlier), and

q*(x) is simply given by the (frequency-independent)

spatially averaged density for the micro-inhomoge-

neous material as a whole (e.g., Willis, 1981; Hudson,

1994a).

A general solution for the mean displacement field

representing viscoelastic plane waves is of the form

huðx; tÞi ¼ Ueiðxt�k�xÞ; ðE� 7Þ

where U is a constant complex polarization vector.

For homogeneous waves, the components of the wave

number vector can be written as

k ¼ ðj � iaÞl̂uk l̂; ðE� 8Þ

where

l̂ ¼ liêi; ðE� 9Þ

defines the propagation direction through the direction

cosines li. For a homogeneous plane wave, planes of

constant phase are parallel to planes of constant
amplitude. The dispersion relation is given by (Auld,

1990; Carcione, 1995)

det½Cijkl* ðxÞljll � q*V 2dik 	 ¼ 0; ðE� 10Þ

where

V ¼ x
k
; ðE� 11Þ

is the complex velocity.

Using Eq. (11), the components of the slowness

and attenuation vectors can be expressed in terms of

the complex velocity as (given by Carcione, 1995)

s ¼ Re
1

V

� �
l̂; ðE� 12Þ

and

a ¼ �xIm
1

V

� �
l: ðE� 13Þ

The phase velocity is the reciprocal of the slowness

and is given in component form by (Carcione, 1995)

Vp ¼ Re
1

V

� �� ��1

l̂: ðE� 14Þ

The quality factor Q is defined as the ratio of the peak

strain energy density to the average loss energy

density (Auld, 1990), and is given by (Carcione,

1995)

Q ¼ Re½V 2	
Im½V 2	 : ðE� 15Þ

The handbook of Carcione (2001) represents an

alternative reference for Eqs. (E-10) (E-11) (E-12)

(E-13) (E-14) (E-15) among others.
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