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Accepted 2003 March 21. Received 2003 March 17; in original form 2002 January 18

S U M M A R Y
Power laws are known to be associated with dynamic systems residing near the critical point
in the state space of the system. However, both models, that of phase transitions reached by the
tuning parameter (for example, the percolation models) and SOC (self-organised critical) mod-
els, although leading to power-law relations, still do not explaining causes of their appearance.

In this contribution it is assumed that nature is random in its deep structure. The concept of
the privilege, meaning the susceptibility of the state on to a change, is introduced. The model
describing the privilege is analysed and applied to some known models: the Cantor set, the
percolation theory and simple cellular automata. An adequate form of the privilege explains
the appearance of the inverse-power distributions in many phenomena in geophysics. There
is a relevance between the privilege concept and the results of a previous paper, in which the
influence of the non-linearity of a model on the output behaviour was investigated.

Key words: Fractals, inverse-power distribution, non-linear transformation, percolation, self-
organised criticality, stochastic models.

1 I N T RO D U C T I O N

We continue our previous attempt (Czechowski 2001) to understand
the causes of the appearance of inverse-power distributions in na-
ture. Strictly speaking, we assume that the structure of the medium,
or the behaviour of intrinsic processes, is purely random on the low-
est description levels, i.e. it may be characterized by purely random
distributions such as: Poisson, exponential or Gaussian distribu-
tions. Next, we investigate, using some simple but general mod-
els, when and why the output distributions could be power-law
-like.

Earthquakes are typical examples of phenomena that manifest
power-law behaviour, and many models have been applied to the
description of earthquakes. These include critical models, such as:
percolation models (Vere-Jones 1976; Lomnitz-Adler 1988; Stauf-
fer & Aharony 1992; Newman et al. 1994; Wu 1998; Turcotte
et al. 2000), SOC models (Bak et al. 1988; Ito & Matsuzaki 1990;
Sornette et al. 1990; Olami et al. 1992) or lately self-organized
spinodal (SOS) models (Klein et al. 1997, 2000; Rundle et al. 1997,
1999, 2000). The models of first-order phase transitions which cor-
respond to spinodal critical points in SOS have an additional ad-
vantage in that they could be described by a continuous approach.
This is important, particularly in the context of the discussion given
in Shaw & Rice (2000). We also claim that the discreteness is not
the basic cause of the power-like behaviour. In our previous paper
(Czechowski 2001) we have shown how the non-linearity of the
continuous model leads to inverse-power distributions.

Here, we start from the concept that the cause of inverse-
power (fractal) behaviour is some kind of privilege. It was shown
(Czechowski 1993; Czechowski 1994, 1995) that the coagulation

equation has an exponential solution for a constant fusion cross-
section and has an inverse-power solution for the fusion cross-
section proportional to the sum of sizes of two linking objects. The
exponential distribution is an example of purely random distribu-
tions (a discussion on the purely random distributions is presented
in Section 2 of the present paper), which originate randomly in pro-
cesses without any interactions and independent of the past. On
the other hand, the inverse-power distributions decrease much more
slowly than random distributions (Fig. 1), and therefore, they are
called long-tail distributions. The long tail means that greater events
are more probable here than they would be for a purely random dis-
tribution. This means that greater events are in some way privileged
in comparison with smaller events. If smaller and greater events have
the same probability of evolution then the distribution function will
be a Poisson one. This conclusion is a basis for further analysis in
this paper.

In Section 3 we briefly present the dependence of the solutions
of the coagulation equation on the form of the fusion cross-section.
This help us to understand the physical source of the privilege.

We introduce (in Section 4) a simple model in which the privilege
is taken into account and then we analyse the influence of the type
of the privilege function on the form of the solutions. In Section 5
we present applications of the model to the formation of the Cantor
set, to percolation models and to simple cellular automata. Section
6 shows how the privilege concept is linked to our previous paper
(Czechowski 2001) in which we analysed the influence of the non-
linearity of the model on the output distributions.

In the present paper, we will also use the designation ‘inverse-
power’ for distributions that are not strictly inverse-power but only
resemble them over some range of scales.
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Figure 1. Graphs of the three distributions: Poisson, exponential and
inverse-power, f (x) = [x/(n − 1) + 1]−n . For each of them f (0) = 1.

2 P U R E LY R A N D O M D I S T R I B U T I O N S

The Bernoulli trials scheme is a theoretical model describing n in-
dependent trials with a common binary outcome: a success with
probability p and a failure with probability q = 1 − p. Let a
random variable Sn denote the number of successes in n trials.
Then the probability distribution function is given by the binomial
distribution

P(Sn = k) =
(

n
k

)
pkqn−k . (1)

On the other hand, a random variable T(the waiting time or lifetime)
denoting the number of Bernoulli trials up to the first success has a
geometrical distribution

P(T > m) = qm . (2)

For a partly continuous case, when the number of Bernoulli trials
n → ∞ and p → 0 but np → λ remains constant, the binomial
distribution converges to the Poisson distribution

P(S∞ = k) = λk

k!
e−λk (3)

and the geometrical distribution of waiting time converges to an
exponential distribution,

P(T > t) = e−λt . (4)

The exponential (and the geometrical distribution in the discrete
case) distribution has the Markov property, i.e. it does not depend
on the past. Let f (t) be the probability that the waiting time counted
from 0 is longer then t, and let f (t | t1) be the conditional probability
that the waiting time counted from 0 is longer than t + t1 if it
is known that during t1 there were no successes. Then f (t | t1) =
f (t + t1)/ f (t1) is equal to f (t) only when f (t + t1) = f (t) f (t1).
This condition is fulfilled only by the exponential (or geometrical)
distribution.

For a continuous case, when n → ∞, p → 0 and k → ∞ but

(k − np)3

(npq)3/2n1/2
→ 0 (5)

the binomial distribution converges to the normal distribution:

1√
2πσ 2

e− 1
2 [(x−µ)/σ ]2

, (6)

where np →µ (the mean) and (npq)1/2 →σ (the standard deviation).
However, the origin of both the Poisson and the normal distribu-

tions, is somewhat of a more noble birth than ‘merely’ as a limiting

form of the binomial law. The Poisson law is based on three as-
sumptions of the Poisson process which lead to recursive differen-
tial equations (see Section 4). Whereas assumptions of the Wiener
process lead to the diffusion equation and its solution in the form of
the normal (Gaussian) distribution.

Another way of the motivating why the distributions are purely
random can be based on the maximum-entropy principle (see
Montroll & Schlesinger 1983). A probabilistic interpretation of the
thermodynamic entropy function is given by the formula

S = −
∫

f (x) log f (x) dx, (7)

where f (x) is the distribution function. In the maximum-entropy for-
malism we seek the distribution function that maximizes the entropy
subject to auxiliary conditions:∫

m j (x) f (x) dx = ci , i = 1, 2, . . . , l, (8)

where ci are some known constants (m1(x) = 1, c1 = 1). For mi(x)
= xi−1 the auxiliary conditions are i-moment conditions. By the
method of Lagrange multipliers it could be shown that the distribu-
tion function that maximizes the entropy is given by the formula

f (r ) = exp(−1 − λ1 − λ2m2 − · · · − λlml ), (9)

where the Lagrange multipliers λi are determined by the auxiliary
conditions.

A microscopic interpretation of the maximum-entropy principle
can be derived from the fact that S is a measure of the probability of
the macroscopic state (see, e.g., Cercignani, chapter III, 9, 1975).
This corresponds to the measure of information contained in the
distribution function concerning the microscopic state, because a
more probable state consists of a greater number of microscopic
states with the same distribution function f and therefore such f
gives very little information concerning the microscopic state.

By taking into account only some auxiliary conditions we can
obtain different distribution functions which maximize the entropy
function (e.g. the purely random distribution functions). If we know
only the first moment c1 = 1, then the distribution function is
uniform:

f (x) =
{ 1

a
x ∈ [0, a]

0 x �∈ [0, a],
(10)

where we put λ1 = −1 + log a and λi = 0 for i = 2, 3, . . . , l.
When we assume additionally that we know the next moment c2

then the exponential distribution

f (x) = bexp(−bx), b = 1/c2, x ≥ 0, (11)

maximizes the entropy, where we have set λ1 = −1 − log b, λ2 =
b, m2 = x and λi = 0 for i = 3, 4, . . . , l.

The normal distribution

f (x) = 1√
2πσ 2

e− 1
2 (x/σ )2

(12)

maximizes the entropy when we take into account the first mo-
ment c1 = 1 and the third moment c3 = σ 2, then: λ1 = −1 −
log

√
2πσ 2, λ2 = 0, λ3 = 1/(2σ 2), m3 = x2 and λi = 0 for i = 4,

5, . . . , l.

3 T H E C OA G U L AT I O N E Q UAT I O N

The coagulation equation was applied to many different physical
phenomena, for example: coagulation of aerosol particles; growth of
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raindrops in meteorology; coagulation of planetesimals; and also to
fusion of cracks in the earthquake preparation process. The integral
(continuous) form of the equation is as follows:

∂ f

∂t
= 1

2

∫ y

0
B(y′, y − y′) f (t, y′) f (t, y − y′) dy′

− f (t, y)
∫ ∞

0
B(y, y′) f (t, y′) dy′, (13)

where B(y, y′) is the probability of fusion of two objects with sizes y
and y′, and f (t , y) is the size distribution function of objects in time
t. In was shown (Czechowski 1993) that for a constant coagulation
coefficient B(y, y′) (there is no privilege—small and large objects
fuse with the same rate) the solution of eq. (13) has the exponential
form

f (t, y) ∼ a(t)eb(t)y . (14)

On the other hand, for B(y, y′) ∼ y + y′ (then the probability
of fusion for larger objects is greater than for smaller objects—
larger objects are privileged) we can mention the solution of
the coagulation equation for planetesimals evolution (Safronov
1972):

f (t, y) ∼ c(t)y−3/2 (15)

for large y. The physical reason for such a form of B(y, y′) for grav-
itational bodies (planetesimals) is presented in Safronov (1972).
However, it is evident that the gravitational cross-section increases
with the growing body size. The example of planetesimals evolu-
tion is particularly valuable, because it directly joins the physical
privilege (given by gravitational forces) with the coefficient B(y,
y′) describing the rate of evolution of bodies.

Another application of the coagulation equation in geophysics
was the problem of crack fusion (Czechowski 1991, 1993, 1997).
It seems that for brittle materials, such as rocks, the fusion cross-
section may also be given by B(y, y′) ∼ y + y′, because larger
cracks induce greater stresses around its tips. Therefore, the process
of fusion of numerous microcracks leads to the inverse-power distri-
bution of crack sizes. Experimental investigations (e.g. Mogi 1962;
Sholz 1968; Hirata 1987; Hirata et al. 1987) confirm this form of
the distribution in rocks and ceramics. On the other hand, for duc-
tile materials, such as metals, the exponential form of the crack size
distribution was observed (see Curran et al. 1987), which suggests
a weaker influence of tip stresses on to the crack fusion, probably
due to the ductility.

The coagulation equation illustrates very well the role of the phys-
ical privilege in the creation of inverse-power distributions, but it
has some weakness: it describes fusion processes only. Therefore, in
the next section, we introduce a more general model which includes
the privilege concept.

4 T H E M O D E L

Let us assume that the evolution of the system is given by the Markov
process with continuous time and with discrete state space. Suppose
that the probability that the system is at state N at time t is pN (t).
Then for the system to be at state N at time t + �t , either it was at
state N at time t and no changes occurred in the subsequent short
time interval (t , t + �t), or else it was at state N − �N at time
t and a small change �N occurred in (t , t + �t). By choosing
�t sufficiently small we may ensure that the probability of greater
change occurrence is negligible.

Let the probability of N changing to N + �N in (t , t + �t) be
B(N )�t ; it follows that the probability of no change in (t , t + �t)
is 1 − B(N )�t . Then we have

pN (t + �t) = pN (t)[1 − B(N )�t] + pN−�N (t)B(N − �N )�t.

(16)

On dividing both sides by �t and as �t approaches zero this
becomes

dpN (t)

dt
= −B(N )pN (t) + B(N − �N )pN−�N (t) (17)

for N = N 0 + �N , N 0 + 2 �N , . . . (or for �N = 1, N = N 0 + 1,
N 0 + 2, . . .). Since the set of states N is bounded from the bottom,
we should introduce the additional equation for N = N 0. We put
B(N 0 − �N ) = 0, therefore

dpN0 (t)

dt
= −B(N0)pN0 (t). (18)

Such a boundary condition is called a ‘natural’ one (van Kampen
1987), it does not appear in the equations, so it is enough to solve
the initial-value problem. Eq. (17) is the master equation for unistep
processes with steps on the right only. This equation also describes
the pure birth process.

The function B(N), which denotes the probability of changing
state N to state N + �N , can be used for describing the privilege,
when the privilege is the susceptibility of a given state on to a change.
For example, if B(N 2) > B(N 1) then we acknowledge that the state
N 2(N 2 > N 1) is privileged.

Let us investigate the influence of various forms of function B(N)
on to a form of solution pN (t). We assume natural boundary condi-
tions so we analyse the initial-value problem.

(a) Let B(N ) = λ = constant, i.e. all the states change with the
same probability—there is no privilege. Then,

dpN (t)

dt
= λ[pN−1(t) − pN (t)], N = 1, 2, . . . (19)

dp0(t)

dt
= −λp0(t) (20)

pN (0) = δN ,0. (21)

It is well known that the solution of eqs (16)–(18) is the Poisson
distribution

pN (t) = (λt)N

N !
e−λt (22)

and that eq. (19) results from three assumptions of the Poisson law
(see e.g. Stark & Woods 1986). The Poisson distribution (22) be-
haves like a wave travelling with velocity λ and undergoing dissipa-
tion. This form of the solution is in agreement with our main idea
that the evolution without any imposed privilege leads to a purely
random distribution.

(b) Let B(N ) = λN , i.e. the linear form of the privilege. Then,

dpN (t)

dt
= λ(N − 1)pN−1(t) − λN pN (t), N = 1, 2, . . . (23)

pN (0) = δN ,1. (24)

Eqs (23) are typical for pure birth processes where pN (t) is the
probability that the population is of size N and λ is a rate of birth
due to a single organism.

The solution of eqs (23) and (24) is the geometrical distribution:

pN (t) = e−λt (1 − e−λt )N−1. (25)
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This distribution does not resemble a wave due to a large variation
V (t) = eλt (eλt − 1) about the mean µ (t) = eλt . It is permanently
J -shaped. We conclude that introducing a linear privilege B(N ) =
λN also leads to the purely random distribution, i.e. to the geometri-
cal distribution. However, the geometrical distribution has a longer
tail that the Poisson distribution.

(c) Let B(N ) = N 2, a non-linear form of the privilege. Then,

dpN (t)

dt
= λ(N − 1)2 pN−1(t) − λN 2 pN (t), N = 1, 2, . . .

(26)

pN (0) = δN ,1. (27)

It is difficult to obtain a compact form of the solution of these re-
cursive differential equations. However, we can show that for a suf-
ficiently long time t the solution has a predominant term:

pN (t) = 2

N (N + 1)
e−λt [1 + a(N )e−3λt + b(N )e−8λt + · · ·]. (28)

From numerical analysis it results that functions a(N ), b(N ), . . .

do not change the inverse-power form (∼N−2) of the solution.
Figs 2(a)–(c) show solutions of eq. (26) with B(N ) = N α and the
initial function pN (0) = e−N . We conclude that for α > 1 and for suf-
ficiently long times the solutions take inverse-power forms (∼N−α)
damped in time.

In some applications of the model it is useful to take into account
boundary conditions. We assume the source of the lowest state N .
To be more exact we put p1(t) = constant for every time t. This
means that the transformation of the state N = 1 into higher states
is balanced by the source. It should be noted that then the probability
distribution pN (t) is not normalized to unity. Therefore, in this case,
we will assume pN (t) to be the density of particles in state N .

Let us assume the three cases as before but with the boundary
conditions.

(a′) Let B(N ) = λ, then

dpN (t)

dt
= λ[pN−1(t) − pN (t)], N = 1, 2, . . . (29)

p0(t) = c = constant t ≥ 0 (30)

pN (0) = 0 N > 0. (31)

It is easy to solve the recursive equations one after another and to
deduce a solution in the form

pN (t) = c − ce−λt
N∑

k=1

(λt)k−1

(k − 1)!
, (32)

which has the Poisson tail.
(b′) However, for the linear function B(N ) = λN and for the

boundary condition p1(t) = c = constant the solution is

pN (t) = c

N
(1 − e−λt )N + c(1 − e−λt )N−1e−λt (33)

and it tends asymptotically to the steady-state inverse-power solution
ps

N = cN−1 for t → ∞.
(c′) For a power form of B(N ) = λN α , α > 0, the numerical

solutions are presented in Figs 3(a)–(c). We observe similar be-
haviour of the solutions as in example (b’). Solutions converge to
steady-state solutions ∼N−α . For slower increasing functions B(N )
∼ N α (smaller α), the evolution is slower and the time to attain the
power-like form is longer.

We can conclude that by introducing the boundary condition of
the source type we obtain steady-state solutions. These are inverse-
power functions for B(N ) ∼ N α , for α > 0. Therefore, even a very

Figure 2. Solutions pN (t) of eq. (17) with the initial exponential function
for some values of time: (a) B(N ) = N . For each time t the exponential
distribution is obtained. (b) B(N ) = N 1.6. For t = 2.4 the power-like so-
lution is obtained. (c) B(N ) = N 2. For t = 1.8 we observe the power-like
solution. For larger times the solutions in (b) and (c) do not change the power
exponents.

weak privilege given by B(N ) ∼ N α with 0 < α 
 1 leads to
inverse-power solutions for a sufficiently long time t.

5 A P P L I C AT I O N S O F T H E M O D E L

This section presents eight examples of application of the model
introduced in the previous section. The first example is the geo-
physical model of the fault growth. We show what is the physical
privilege in the process. The next examples concern some artificial,
but very important, models.
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Figure 3. Solutions pN (t) of eq. (17) with the boundary condition of the
source type for some values of time: (a) B(N ) = N 1/2 ; (b) B(N ) = N ; (c)
B(N ) = N 2. For a power form of B(N ) ∼ Nα , α > 0 (privilege) an inverse-
power form of solutions is observed for sufficiently long time t. These are
steady-state solutions.

Fractals are typical objects that are described by the inverse-power
distributions. So, according to our model, there should be a privilege
during creation of the fractal. For clarity we investigate the simplest
deterministic fractal—the Cantor set. We will show that the privilege
is simply included in the deterministic recipe for the fractal.

Percolation models may be recognized as toy models but they
are widely applied in many branches of science (e.g. they model
phase transitions and lead to power dependences). It seems that in
the percolation process, which is after all completely random, any
privilege should be absent. However, in the following three examples

(1-D, Bethe and 2-D percolation) we will prove, step by step, the
existence of the privilege and explain its grounds.

Cellular automata are another form of toy model, but they de-
scribe interacting complex systems. They lead to self-organized
criticality—the state which characterizes itself by the inverse-power
distribution of avalanches. Cellular automata are typical computer
models: the computer executes a simple rule many times. Therefore,
seeking a privilege is a difficult task here. However, we will try to do
this, step by step, in three last examples (1-D, Bethe and 2-D cellular
automaton) by mapping the percolation clusters on to avalanches in
cellular automata.

5.1 Fault evolution

We construct a model of a fault which includes the privilege con-
cept. We follow Heimpel’s (1996) model but we add a very important
element, i.e. the time evolution of the model. A model fault is char-
acterized as a surface composed of a large number of asperities,
defined as small, discrete contact surfaces of finite strength. The
rupture area grows by sequentially breaking asperities at the rupture
boundary. Each asperity-breaking subevent adds a bit of area �s to
the rupture surface, so that, at a given state N of the process, the
rupture area is N�s. Assuming that this is a Markov process we
obtain the equation for pN (t) :

dpN (t)

dt
= −B(N )pN (t) + B(N − 1)pN−1(t), (34)

where pN (t) is the probability that the rupture is in state N at time
t and B(N )�t is the probability that the rupture grows by �s in
�t . Heimpel (1996) showed, assuming for the asperity failure prob-
ability the mixture of the Weibull densities, that the rupture growth
probability B(N) is given by the formula

B(N ) = 1 − 1

1 + m(N ) [σ (N )/λ]γ
, (35)

where m(N) is the number of asperities along the rupture contour,
σ (N ) is the stress, λ determines the degree of mixing of Weibull
distributions and γ is the parameter of the Weibull distribution.
The parameters σ (N ) and m(N) are increasing functions of N , and
therefore Heimpel (1996) put forward the formula

B(N ) = 1 − 1

1 + (N/	)

, (36)

where 
 and 	 are constants. Here, we assume 
 = 1.5 because
m(N) is proportional to the rupture perimeter t(N ) ∼ N (such as
for clusters in 2-D percolation, see Section 5) and σ (N ) ∼ √

N
according to the stress intensity factor.

Fig. 4 shows solutions of eq. (34) with B(N) given by (36) for dif-
ferent times. The solution evolves from the initial shape δN ,1 through
exponential up to the power-like behaviour. The power exponent de-
creases: it is fitted to 1.51 for t = 120, 1.18 for t = 200, and 1.12 for
t = 300. These values are consistent with observational data (see
table 2 in Bonnet et al. 2001) where power exponents change from
1.76 to 3.2 for fault lengths, or from 0.88 to 1.6 for fault areas N .
Therefore, according to the model, such a wide range of power ex-
ponents may be connected with different stages of time evolution of
the fault. The deviation from the power-law behaviour for N > 100
(and t = 200, 300) results from too slow an increase of the function
B(N), which tends asymptotically to a constant value for large N .
When B(N) increases more slowly than a linear function, the solu-
tion of eq. (34) behaves as a travelling wave (see (a) in Section 4).
For N > 200 (which is not presented in Fig. 4) the solution has a
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Figure 4. Solutions of eq. (34) with B(N) given by eq. (36), where 
 = 1.5
and 	 = 100, for different times.

modal wave shape. However, the evolution of smaller faults leads
to power-like distributions of fault sizes.

5.2 Growth of the Cantor set

The Cantor set is a well-known example of an uncountable set of
points of measure zero. In fractal theory this set is considered to be
a deterministic fractal with fractal dimension D = log 2/log 3 =
0.630 93. The fractal dimension is defined as the power exponent at
the function (box-counting method):

Nn = Cr−D
n , (37)

where Nn is the number of boxes (rods in 1-D) of size rn required to
cover the fractal set. The box-counting method suggests the follow-
ing definition of a fractal (see Turcotte 1992, p. 6): the fractal is a
set of objects (fragments) with characteristic linear lengths rn (n =
1, 2, . . .), which fulfil relation (37). According to this definition, we
can treat the Cantor set as a set of covering boxes with characteristic
lengths rn.

Let us derive the equation for the growth of the Cantor set. The
set is composed of rods of lengths rk = 3k , k = 0, 1, . . . . We start
from the smallest fragments r 0 = 1. Let nk(t) be a number of rods
of length rk at time t. Then the number nk(t + �t) at time t + �t
is given by

nk(t + �t) = (1 − 2λk−1�t)nk(t) + λk−1nk−1(t)�t (38)

and therefore

dnk(t)

dt
= λk−1nk−1(t) − 2λk−1nk(t), (39)

where λk−1 is the probability that a pair of neighbouring rods rk−1

produces a rod rk . The factor of 2 in the second term on the right-
hand side denotes that λk = 2 λk−1 (because of the probability
λk = 1/ (number of pairs of neighbouring rods) =1/(n02−k−1))
and it describes some privilege.

The problem of growth of the Cantor set corresponds to the bound-
ary and the initial conditions:

n0(t) = c = constant t ≥ 0 (40)

nk(0) = 0 k > 0 (41)

Then the solution of eq. (39) is

nk(t) = c

2k

[
1 − e−2λt

k∑
j=1

(λt) j−1

( j − 1)!
2 j−1

]
. (42)

For a long time t we obtain the geometrical distribution nk ∼ 2−k .
However, when we rescale the k-axis on to the rk -axis we obtain an
inverse-power distribution:

nr (t) ∼ r−log 2/log 3, (43)

where r = 1, 3, 9, . . . , 3k , . . . .
In order to derive the equation for nr(t), where r = 1, 2, . . . (linear

scale for r) we can put

dnr (t)

dt
= −B(r )nr (t) + B(r − 1)nr−1(t) (44)

and use the condition

B(r ) = 2B

(
r

3

)
, (45)

where r corresponds to k, and r/3 corresponds to k − 1. Therefore,
B(r) has the form

B(r ) = r−log 2/log 3 = r 0.63093, (46)

which describes the privilege of greater rods.
From (c) of Section 4 we conclude that the solution of eq. (39)

with the condition (40) converges for increasing time to a steady-
state inverse-power solution nr ∼ r−log 2/log 3.

5.3 Percolation models

The percolation theory (apart from 1-D percolation) is a simple
model of second-order phase transitions which generally can be
defined as follows: a system exhibits a qualitative change at one
sharply defined parameter value, if the parameter is changed con-
tinuously. The behaviour of the systems close to the phase transi-
tion is usually described by power laws. For example, the cluster
size distribution ns ∼ s−τ for p near pc, where s is a cluster size.
The percolation model was also applied to a description of the frac-
ture process in rocks and of earthquakes (Lomnitz-Adler 1985;
Chelidze 1986; Wu 1998). Therefore, it would be very useful to
explain, using the privilege concept, the appearance of an inverse-
power distribution in percolation processes. We start from the sim-
plest case; the 1-D percolation.

5.4 1-D percolation

Let us examine site percolation on an infinitely long linear chain,
where lattice sites are placed at fixed distances. Each of these lat-
tice sites is randomly occupied with probability p. Clusters in one
dimension are chains of neighbouring occupied sites. Both left and
right ends of the cluster must be empty. Thus, the perimeter t of
the cluster is always 2, regardless of the cluster site. The number of
clusters of size s (per lattice site) is

ns = ps(1 − p)2. (47)

Let us imagine the percolation as an evolving process. We assume
that p is an increasing variable which substitutes time. Let p increase
to p + �p(�p denotes that one empty site becomes an occupied
site). Then the probability of finding a cluster with size s is

ns(p + �p) = (1 − 2B)ns(p) + s(1 − p)Bns−1(p), (48)

where B is the probability that a given empty site becomes occupied
during �p. The first term on the right-hand side denotes the proba-
bility that a cluster of size s does not increase during �p, i.e. none
of two empty sites on the perimeter becomes occupied. The sec-
ond term on right-hand side denotes that, due to the growth of p to
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p +�p, there appears a cluster of size s from smaller clusters. There
are s such possibilities. The first, when the cluster s − 1, which has
no neighbour clusters, increases on one site. The second, when the
cluster of size 1 is next to the cluster of size s − 2 and the empty
site between them becomes occupied. The third, when the cluster of
size 2 is next to the cluster of size s − 3 and the empty site between
them becomes occupied, and so on. The probability of each of these
possibilities is the same and is equal to the probability of finding
an ‘s-cluster’ composed of s − 1 occupied sites and one empty site
within the ‘cluster’ (e.g. ns−1(p) (1 − p)). The probability B in each
step of evolution is equal to �p/(1 − p) because the probability of
empty sites (1 − p) decreases in each step, Therefore, from eq. (48)
we have

ns(p + �p) − ns(p)

�p
= − 2

1 − p
ns(p) + sns−1(p) (49)

and as �p approaches zero this becomes

dns(p)

dp
= − 2

1 − p
ns(p) + sns−1(p). (50)

After easy transformations we obtain a more general form of
eq. (17), i.e.

dns(p)

dp
= −a(s, p)ns(p) + a(s − 1, p)ns−1(p) + b(s, p)ns−1(p),

(51)

where the coefficients

a(s, p) = 2

1 − p
(52)

b(s, p) = s(1 − p) − 2

1 − p
(53)

are functions of ‘time’ p.
Here, a(s, p) does not depend on s so, according to (a) in Sec-

tion 4, the solution should be the Poisson distribution. However,
the influence of the gain term b(s, p) ns−1(p), which is positive for
most of s (when p is away from pc = 1), leads to the geometrical
distribution which has a longer tail. The term b(s, p) describes the
privilege given by the fact that in the percolation problem the cluster
of size s is created not only by growth of the cluster s − 1 on one
site on their perimeter (which is described by a(s − 1, p)), but also
by linking of two neighbouring smaller clusters.

5.5 Bethe lattice

Besides the 1-D case, another case was solved exactly in the perco-
lation theory. This is percolation on the Bethe lattice (see Stauffer
& Aharony 1992). In spite of some shortcomings, the Bethe lattice
has some advantages. It is often possible to derive analytical for-
mulae for the properties of interest, and sometimes, surprisingly,
the predictions of such formulae agree well with those for 3-D
systems. Examples include conduction and permeability in a dis-
ordered Bethe lattice of coordination number 5, which estimates
a cubic network (see Sahimi 1995, p. 188). The percolation prob-
lem on the Bethe lattice also corresponds to a branching process of
crack formation (Vere-Jones 1976), which represents the problem
of earthquake rupture.

We want to derive an equation of type (51) for this percolation
problem. Let us note that the number of clusters of size s is given
by

ns(p) = gs ps(1 − p)t(s), (54)

where gs is the number of different configurations for s-clusters on
the Bethe lattice, t(s) = (z − 2)s + 2 is the perimeter of s-clusters
(t is not dependent on the configuration) and z is the coordination
number (number of branches). For simplicity we assume z = 3.

As in the preceding section, we derive the form of ns(p + �p) :

ns(p + �p) = (1 − t B)ns(p) + gs ps−1(1 − p)(1 − p)t s B, (55)

where the first term on the right-hand side denotes the probability
that an s-cluster does not increase during �p, i.e. none of t empty
sites on the perimeter becomes occupied. The second term on the
right-hand side describes the formation of s-cluster due to growth
of the (s − 1)-cluster by one occupied site or due to linking of two
smaller clusters. It is equal to the number of ‘s-clusters’ composed
of s − 1 occupied sites and one empty site, times s possibilities of
the choice of an empty site in this cluster, times B. This term is equal
to

gs

gs−1
(1 − p)2s Bns−1(p). (56)

The ratio gs/gs−1 can be determined using the known solution for the
Bethe lattice, i.e. ns(pc) ∼ s−5/2 for large s (see Stauffer & Aharony
1992), where pc = 1/(z − 1) = 1

2 is the percolation threshold for
z = 3. Then, we can put

gs

gs−1
= s−5/2

ps
c(1 − pc)t(s)

ps−1
c (1 − pc)t(s−1)

(s − 1)−5/2
= 4

(
1 − 1

s

)5/2

(57)

for large s. Therefore, the equation for ns(p) is

dns(p)

dp
= − t(s)

1 − p
ns(p) + t(s − 1)

1 − p
ns−1(p) + b(s, p)ns−1(p),

(58)

where

b(s, p) = s[4(1 − 1/s)5/2(1 − p)2 − 1] − 1

1 − p
. (59)

It is easy to show that for p away from pc (and p < pc) the coefficient
b(s, p) is positive for large s.

5.6 2-D percolation

The 2-D case is much more complex than the percolation on the
Bethe lattice because s-clusters have a few or more different perime-
ters. Therefore, the number of s-clusters per lattice site is given by
the sum over all possible perimeters t (see Stauffer & Aharony 1992):

ns(p) =
∑
t(s)

gst ps(1 − p)t(s) ≡
∑

t

nst (p), (60)

where gst is the number of different configurations of s-clusters with
perimeter t. There seems to be no exact solutions for general t and s
available at present, and this is why the percolation cluster problem
has not yet been solved exactly.

However, it is easy (see eq. 55) to derive the equation for the
number of s-clusters with a given perimeter t; i.e. for nst(p + �p) :

nst (p + �p) = (1 − t B)nst (p) + gst ps−1(1 − p)(1 − p)t s B. (61)

Therefore,

dnst (p)

dp
=

[
− t(s)

1 − p
+ s

p

]
nst (p) (62)

and after summing over t:

dns(p)

dp
=

[
− t̄(s)

1 − p
+ s

p

]
ns(p), (63)

where we have introduced the average perimeter t̄(s) = ∑
t tnst (p)/
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ns(p). In order to obtain the formula for b(s, p) (such as for the Bethe
lattice), we use the two results of the percolation theory (see Stauffer
& Aharony 1992):

ns(p) ∼ s−τ exp [−s(pc − p)w] (64)

and

t̄(s, p) ∼ s(1 − p)

[
1

p
− w(pc − p)w−1

]
, (65)

which are valid for p < pc and for large s. Then,

b(s, p) = s

p

ns(p)

ns−1(p)
− t̄(s − 1, p)

1 − p
(66)

= s

p

(
1 − 1

s

)τ

exp [−(pc − p)w] − s − 1

p

[
1 − wp(pc − p)w−1

]
,

(67)

where w = 91/36 and τ = 187/91 for p → pc and τ → 1 for p →
0. The equation for ns(p) has the form

dns(p)

dp
= − t̄(s)

1 − p
ns(p) + t̄(s − 1)

1 − p
ns−1(p) + b(s, p)ns−1(p).

(68)

The term b(s, p) has a similar behaviour as an adequate term for the
Bethe and 1-D lattice and describes the same privilege.

We have shown that the percolation process can be described by
the master equation modified by the additional term b(s, p)ns−1(p).
The function B(N ) = t(s)/(1 − p) describing the privilege is given
by the perimeter t(s) (or the average perimeter) of the s-cluster. The
longer perimeter really means greater probability of growth of the s-
cluster on one site, because each of t(s) empty sites on the perimeter
may become the occupied site when p increases to p + �p. The
perimeter t(s) = 2 for 1-D percolation and t(s) ∼ s for the Bethe
percolation and for 2-D percolation. Therefore, if we omit the term
b(s, p)ns−1(p), we obtain (see Section 4) the Poisson distribution
for 1-D percolation and the geometrical distribution for the Bethe
and 2-D percolation.

However, in the percolation process there is an additional gain
term of s-clusters. The s-clusters can be created not only by growth
of the (s − 1) -cluster on one site (which is described by the term
t(s − 1)ns−1(p)/(1 − p)), but also by linking of neighbouring
smaller clusters when a site on the intersection of their perimeters
will become occupied. This is included in the additional term b(s,
p)ns−1(p). The function b(s, p) has a similar behaviour for the three
types of percolation: it is an increasing (linear) function of s, it is
positive for p < pc (and for sufficiently big s) and it is negative for
p = pc (for all s). The additional privilege (when b(s, p) is positive)
leads to the geometrical distribution for 1-D percolation (which has
a longer tail then the Poisson distribution), and to the power-like dis-
tribution for the Bethe percolation and 2-D percolation. Therefore,
we have shown how the privilege concept explains the appearance
of inverse-power distributions in percolation models.

5.7 Cellular automata

The next important class of models that lead to fractal statistics
are SOC models. We consider only the simplest cellular automata
model on a 1-D grid, the Bethe grid and a 2-D square grid, in anal-
ogy to the percolation problems. In the percolation theory, greater
clusters are privileged because they have longer perimeters and, ad-
ditionally, they have more ways (due to the factor of gs or gst) of
creating greater clusters by linking clusters, than smaller clusters.

The avalanches in cellular automata define some ‘potential’ dy-
namic clusters; the group of neighbouring boxes that will become
unstable in the event, if one selected box becomes unstable. There-
fore, we will treat such a ‘potential’ cluster in a similar way to the
percolation cluster (in the same geometry) and adequate privilege
arguments should be valid.

5.8 1-D cellular automata

Consider a linear grid of boxes. There are three states for each box:
0, 1 and 2. Use the following rules: when a box has two particles
(state 2) it is unstable and they are redistributed to the two adjacent
boxes, and so on. Particles are lost from the ends of the linear grid.
The size of a multiple event (avalanche) is the number of boxes that
become unstable in the event.

In some sense the cellular automata resembles the percolation
model, but here the multiple events (avalanches) are not static objects
as clusters (of occupied sites) in percolation. They are dynamic
objects composed of neighbouring boxes, which ‘potentially’ could
take part in the multiple event. We call them the ‘potential’ clusters.

The ‘potential’ clusters in 1-D cellular automata are simply the
clusters of adjacent boxes in state 1. This means that they are exactly
the same as clusters of occupied sites in the 1-D percolation model.

5.9 Bethe lattice cellular automata

Consider the Bethe lattice with coordination number z. Then each
site can be at z + 1 states (0, 1, . . . , z). The state z is unstable:
z particles are redistributed to the z adjacent sites. The ‘potential’
clusters here are the clusters of neighbouring sites of state z − 1.
Therefore, the ‘potential’ clusters can be identified with clusters of
occupied sites in percolation on the Bethe lattice. Eq. (58) for the
evolution of the number of clusters may be used here if the ‘time’
�p is to be replaced by the probability that the state i of the site
changes on to the state i + 1 (i = 0, 1, . . . , z − 1) and then we put
B = (probability that the state z − 2 of a given site changes on to
the state z − 1)/(number of sites with the states <z − 1).

5.10 2-D Bak–Tang–Wiesenfeld cellular automaton

We consider a square grid of n boxes. Particles are added to and lost
from the grid using the following procedure: a particle is randomly
added to one of the boxes; when a box has four particles (state 4) it is
unstable and the four particles are redistributed to the four adjacent
boxes, or are partly lost from the grid when we consider edge boxes
or corner boxes.

In 2-D cellular automata, ‘potential’ clusters are much more com-
plex. They can be composed not only of boxes of state 3, but also
of boxes of states 2, 1 and even 0 arranged in a ‘specific configura-
tion’. It seems that, as in the 2-D percolation, the perimeter of the
‘potential’ cluster is (on average) proportional to its size. Therefore,
here we can use some conclusions concerning the privilege from
2-D percolation, although we cannot propose an equation of type
(68) for the evolution of ‘potential’ clusters.

The ‘specific configurations’ of boxes in different states on the
grid in 2-D cellular automata around the critical state appear after
the complex process of activity of cellular automata, i.e. after many
avalanches which rearrange the system.

In order to demonstrate that the privilege at the cellular automa-
ton may have similar roots as the privilege for percolation models
we should show that the ‘specific configurations’, which are cre-
ated by the cellular automaton, are (statistically) similar to random
configurations (because the percolation process is random) in the
sense that they both lead to similar inverse-power distributions.
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Figure 5. A grid created by SOC. White boxes denote state 3, black state 0.

0 10 20 30 40 50
0

10

20

30

40

50

Figure 6. A randomly created grid. White boxes denote state 3, black state 0.
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Figure 7. Graph of the Sum(s) = ∑
i n(i)

s /s which illustrates the avalanche
size distribution obtained from the grid created by SOC. The fitted power
exponent is 1.955 99.

Figure 8. Graph of the Sum(s) = ∑
i n(i)

s /s which illustrates the avalanche
size distribution obtained from randomly created grid. The fitted power ex-
ponent is 1.956 25.

To this end, we analyse two series of computer simulations. In the
first, the critical distribution of states of boxes is created by itself
during the self-organization process of the cellular automata. Next,
the critical state of the grid is analysed by investigation of avalanches
initiated by each box of state 3 (one after another; after each step
(avalanche) the state of the grid was restored to the initial state).
Fig. 7 presents the sum,

∑
i n(i)

s /s over the number i of simulations,
of avalanches with size s, divided by their size (because each of
the boxes with state 3 from the ‘potential’ cluster can trigger the
avalanche). The inverse-power function with the power exponent
1.955 99 is fitted (least-squares fit) to the results.

In the second series, particles are randomly added to boxes omit-
ting the boxes of state 3. This procedure is executed as long as the
number of boxes of state 3, 2, 1, 0 is the same as in the critical state
of the grid in the first series of simulations. Next, we investigate the
avalanches initiated by each box of state 3 (one after another; after
each step (avalanche) the state of the grid was restored to the initial
state). Fig. 8 shows an adequate distribution of the sum,

∑
i n(i)

s /s.
Here, the power exponent is 1.956 25.

We conclude that although distributions of states on the grids look
different in the two series of simulations (Figs 5 and 6), however,
the exponents are practically the same.

It follows that although interactions between boxes in cellular
automata may lead to some ‘specific configurations’ of states, how-
ever, the random state of the grid gives similar statistics. This simply

means that the privilege (which has similar roots to the privilege for
percolation models) of the cellular automaton, which results from
a random distribution of cell states, is a good approximation to the
real privilege hidden in Bak–Tang–Wiesenfeld cellular automaton
activity.

6 R E L E VA N C E O F T H E P R I V I L E G E
A P P ROA C H T O T H E N O N - L I N E A R I T Y
A P P ROA C H

In our previous paper (Czechowski 2001) we have shown how a non-
linearity of the model transforms an input purely random distribution
on to the inverse-power output. It is interesting to find the relevance
between the privilege which is given by the form of B(N) in eq. (17)
and the non-linearity of the model from the previous paper.

The continuous version (discrete N→ continuous y) of the master
equation (eq. 17) is the Fokker–Planck equation:

∂ f (t, y)

∂t
+ ∂[ f (t, y)B(y)]

∂y
− 1

2

∂2[ f (t, y)B(y)]

∂y2
= 0 (69)

f (0, y) = e−y . (70)

Figs 9(a)–(c) present solutions of eq. (69) for the initial-value prob-
lem, f (0, y) = e−y , and for B(N ) = yα , α = 1, 2, 3. The behaviour
of the solutions is analogous to that in the discrete model, i.e. for
α > 1 we obtain the inverse-power form of the solution.

The connection between the Fokker–Planck and the Ito equation
may be found using the Ito formula (see, e.g., Gardiner 1985, ch. 4).
Then, the Ito equation, which corresponds to eq. (69), has the form:

dy(t) = B(y) dt +
√

B(y) dW (t), (71)

where W (t) is the Wiener process. The Ito equation corresponds to
the Langevine equation. For the Ito interpretation we have

dy

dt
= B(y) +

√
B(y)ξ (t). (72)

The Langevine equation is an example of a random differential
equation with a random force given by the white noise ξ (t) and
modified by the function of the state,

√
B(y). The equation can be

analysed with a deterministic or stochastic initial function y(0).
When we omit the random force term (diffusion term) in eq. (72)

then we obtain a simple random initial problem which was analysed
in Czechowski (2001):

dy

dt
= B(y) (73)

y(0) = x, (74)

where x is a random variable with exponential probability density
f (x) = e−x . It is shown in Czechowski (2001) that for a linear
form of B(y) ∼ y, the distribution function of y(t , x) also has an
exponential form, but for non-linear B(y) = cyα and for α > 1 the
solution of eq. (73) has a power-like distribution (for sufficiently
large y):

f (t, y) = 1

[1 + c(α − 1)yα−1t]α/(α−1)

× exp

{ −y

[1 + c(α − 1)yα−1t]1/(α−1)

}
(75)

while the solution is given by
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Figure 9. Solutions of the Fokker–Planck equation for some values of time:
(a) B(y) = y (b) B(y) = y2 (c) B(y) = y3. For larger values of time the
solutions in (b) and (c) do not change the power exponents.

y(t, x) = x

[1 − c(α − 1)xα−1t]1/(α−1)
. (76)

The cause of such a substantial change of the distribution function
from exponential to inverse-power is the strong non-linearity in the
dependence of y(t , x) on the initial random value x (this problem
was investigated in Czechowski 2001). From eq. (76), for α > 1 the
solution y(t , x) goes to infinity along the vertical asymptote. In this
way we have found agreement between the problem (73), (74) and
the solutions of the Fokker–Planck equation (or the master equation)
when we take into account the initial problem.

Additionally, the Liouville theorem proves that the distribution
function f (t , y) of the solution y(t , x) satisfies the Liouville
equation:

∂ f (t, y)

∂t
+ ∂[ f (t, y)B(y)]

∂y
= 0 (77)

f (0, y) = e−y . (78)

Of course, this equation may be interpreted as the Fokker–Planck
equation without the diffusion term. This is in agreement with the
assumption given before eq. (73) that we omit the random force term.
Therefore, regarding the diffusion term we return to the Fokker–
Planck equation, bringing to an end our circle of relevance.

The non-linear form of B(y) = yα in eq. (73) determines the
inverse-power form (∼y−α) of the distribution function f (t , y), and
similarly, the non-linear form of the privilege function B(y) = yα

determines the inverse-power form (∼y−α , see Fig. 9) of the solution
f (t , y) of the Fokker–Planck equation.

In this way we have shown, on one hand, how the privilege is
described by non-linear functions and, on the other hand, how the
non-linearities in many models (see Czechowski 2001) may gain a
physical description given by the privilege concept.

7 C O N C L U S I O N S

In order to take into account the privilege, we have introduced the
model based on the master equation for the pure birth processes.
According to the form of the function B(N), which describes the
privilege, we have obtained various forms of solutions. For natural
boundary conditions, inverse-power solutions appeared for B(N ) =
N α when α > 1. However, when we introduced the boundary
conditions of the source type, we obtained inverse-power solu-
tions (steady-state solutions) for α > 0 (i.e. even for a very weak
privilege).

The model is quite general. It describes any Markov processes in
which discrete states of the system can be arranged in a sequence
(and there is no return to preceding states). For a continuous space
of states, the model resolves itself to the Fokker–Planck equation
but it retains its own behaviour.

It should be noted that there is a relevance between the present
model and our previous non-linear approach (Czechowski 2001).
The Fokker–Planck equation corresponds to an adequate Ito equa-
tion and a Langevine equation which is an example of a random
differential equation. If in the non-linear approach we choose as the
model, y = g(x), the random initial problem (73) and (74) then,
according to the Liouville theorem, we find the linking between the
two approaches. In this way we have shown, on the one hand, how
the privilege is described by non-linear functions and, on the other
hand, how the non-linearities in many models may gain a physical
description given by the privilege concept.

We have applied our model to a simple geophysical model of
the fault evolution and to the formation process of: the Cantor set,
clusters in percolation (1-D percolation, Bethe-lattice percolation
and 2-D percolation) and ‘potential’ clusters in cellular automata. It
appears that a weak privilege B(N ) = N 0.63093 is sufficient for cre-
ation of a fractal (the Cantor set) because the boundary condition of
the source type was taken into account. On the other hand, the nat-
ural boundary condition must be used for the percolation problem.
Then, the linear privilege (for the Bethe lattice and 2-D lattice) is
too weak to create inverse-power distributions (it leads to the geo-
metrical distribution). We have shown that the inverse-power form
of the number of s-clusters is connected with the fact that clusters
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are not isolated on the grid and so larger clusters can form by linking
smaller clusters.

We have identified the creation of avalanches in cellular automata
with the creation of clusters in percolation. This is quite obvious
for the 1-D problem or for the Bethe lattice; however, for the 2-D
lattice this is a very difficult problem, because ‘potential’ clusters
are composed of sites of different states. However, we have shown
that the critical state of the whole lattice need not be created by the
specific form of cellular automata activity, but it could be formed
in a purely random way (such as in the percolation problem). Then,
distributions of avalanches are practically the same. This means that
the ‘potential’ dynamic clusters (avalanches) could be treated like
the percolation clusters.

It has not been our goal to give an alternative description of per-
colation processes or cellular automata. We have intended to extract
and to understand the hidden privilege, which, according to our hy-
pothesis, is responsible for inverse-power distributions. It has been
especially important due to the fact that the percolation is a simple
model of phase transitions and cellular automata represent a sim-
ple description of complex interacting systems. It was know that,
apart of non-linearities (and connected with them chaos and strange
attractors), phase transitions and interactions were considered to
be responsible for the appearance of inverse-power distributions. It
seems that the enclosing of these three different causes into a unified
description (by the privilege) brings some order to our knowledge
in this field.

The connection of these approaches with other types of equations,
such as the Fokker–Planck, Ito, Langevine and Liouville equations,
increases the universality of the explanation. The model may be used
for a description of many phenomena in physics, geophysics, biology
and economics. We hope that the extraction of the real privilege will
be possible and will explain the appearance of fractal distributions
in the phenomena.

The paper presents an approach which joins together discrete
models, continuum models, hierarchical models and critical mod-
els, and it shows the influence of the privilege on the output distri-
butions.
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