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ABSTRACT

I introduce a partial differential equation to describe the process of prestack
reflection data transformation in the offset, midpoint, and time coordinates. The
equation is proved theoretically to provide correct kinematics and amplitudes on
the transformed constant-offset sections. Solving an initial-value problem with
the proposed equation leads to integral and frequency-domain offset continuation
operators, which reduce to the known forms of dip moveout operators in the case
of continuation to zero offset.

INTRODUCTION

The Earth subsurface is three-dimensional, while seismic reflection data from a multi-
coverage acquisition belong to a five-dimensional space (time, 2-D offset, and 2-D
midpoint coordinates). This fact alone indicates the additional connection that exists
in the data space. I show in this paper that it is possible, under certain assumptions,
to express this connection in a concise mathematical form of a partial differential
equation. The theoretical analysis of this equation allows us to explain and predict
the data transformation between different offsets.

The partial differential equation, introduced in this paper1, describes the process
of offset continuation, which is a transformation of common-offset seismic gathers
from one constant offset to another (Bolondi et al., 1982). Bagaini and Spagnolini
(1996) identified offset continuation (OC) with a whole family of prestack continuation
operators, such as shot continuation (Bagaini and Spagnolini, 1993), dip moveout as
a continuation to zero offset (Hale, 1991), and three-dimensional azimuth moveout
(Biondi et al., 1998). An intuitive introduction to the concept of offset continuation
is presented by Hill et al. (2001). A general data mapping prospective is developed
by Bleistein and Jaramillo (2000).

As early as in 1982, Bolondi et al. came up with the idea of describing offset
continuation and dip moveout (DMO) as a continuous process by means of a partial
differential equation (Bolondi et al., 1982). However, their approximate differential

1To my knowledge, the first derivation of the revised offset continuation equation was accom-
plished by Joseph Higginbotham of Texaco in 1989. Unfortunately, Higginbotham’s derivation never
appeared in the open literature.
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operator, built on the results of Deregowski and Rocca’s classic paper (Deregowski
and Rocca, 1981), failed in the cases of steep reflector dips or large offsets. Hale
(1983) writes:

The differences between this algorithm [DMO by Fourier transform] and
previously published finite-difference DMO algorithms are analogous to
the differences between frequency-wavenumber (Stolt, 1978; Gazdag, 1978)
and finite-difference (Claerbout, 1976) algorithms for migration. For ex-
ample, just as finite-difference migration algorithms require approxima-
tions that break down at steep dips, finite-difference DMO algorithms are
inaccurate for large offsets and steep dips, even for constant velocity.

Continuing this analogy, we can observe that both finite-difference and frequency-
domain migration algorithms share a common origin: the wave equation. The new
OC equation, presented in this paper and valid for all offsets and dips, plays a role
analogous to that of the wave equation for offset continuation and dip moveout algo-
rithms. A multitude of seismic migration algorithms emerged from the fundamental
wave-propagation theory that is embedded in the wave equation. Likewise, the fun-
damentals of DMO algorithms can be traced to the OC differential equation.

In the first part of the paper, I prove that the revised equation is, under certain
assumptions, kinematically valid. This means that wavefronts of the offset continu-
ation process correspond to the reflection wave traveltimes and correctly transform
between different offsets. Moreover, the wave amplitudes are also propagated cor-
rectly according to the true-amplitude criterion (Black et al., 1993).

In the second part of the paper, I relate the offset continuation equation to different
methods of dip moveout. Considering DMO as a continuation to zero offset, I show
that DMO operators can be obtained by solving a special initial value problem for the
OC equation. Different known forms of DMO (Hale, 1991) appear as special cases of
more general offset continuation operators.

The companion paper (Fomel, 2003b) demonstrates a practical application of dif-
ferential offset continuation to seismic data interpolation.

INTRODUCING THE OFFSET CONTINUATION
EQUATION

Most of the contents of this paper refer to the following linear partial differential
equation:

h

(
∂2P

∂y2
− ∂2P

∂h2

)
= tn

∂2P

∂tn ∂h
. (1)

Equation (1) describes an artificial (non-physical) process of transforming reflection
seismic data P (y, h, tn) in the offset-midpoint-time domain. In equation (1), h stands
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for the half-offset (h = (r−s)/2, where s and r are the source and the receiver surface
coordinates), y is the midpoint (y = (r + s)/2), and tn is the time coordinate after
normal moveout correction is applied:

tn =

√
t2 − 4h2

v2
. (2)

The velocity v is assumed to be known a priori. Equation (1) belongs to the class
of linear hyperbolic equations, with the offset h acting as a time-like variable. It
describes a wave-like propagation in the offset direction.

Proof of validity

A simplified version of the ray method technique (Červený, 2001; Babich, 1991) can
allow us to prove the theoretical validity of equation (1) for all offsets and reflector
dips by deriving two equations that describe separately wavefront (traveltime) and
amplitude transformation. According to the formal ray theory, the leading term of
the high-frequency asymptotics for a reflected wave recorded on a seismogram takes
the form

P (y, h, tn) ≈ An(y, h)Rn (tn − τn(y, h)) , (3)

where An stands for the amplitude, Rn is the wavelet shape of the leading high-
frequency term, and τn is the traveltime curve after normal moveout. Inserting (3)
as a trial solution for (1), collecting terms that have the same asymptotic order
(correspond to the same-order derivatives of the wavelet Rn), and neglecting low-
order terms, we arrive at the set of two first-order partial differential equations:

h

(∂τn
∂y

)2

−
(
∂τn
∂h

)2
 = − τn

∂τn
∂h

, (4)

(
τn − 2h

∂τn
∂h

)
∂An
∂h

+ 2h
∂τn
∂y

∂An
∂y

+ hAn

(
∂2τn
∂y2
− ∂2τn
∂h2

)
= 0 . (5)

Equation (4) describes the transformation of traveltime curve geometry in the OC
process analogously to how the eikonal equation describes the front propagation in
the classic wave theory. What appear to be wavefronts of the wave motion described
by equation (1) are traveltime curves of reflected waves recorded on seismic sections.
The law of amplitude transformation for high-frequency wave components related to
those wavefronts is given by equation (5). In terms of the theory of partial differential
equations, equation (4) is the characteristic equation for (1).

Proof of kinematic equivalence

In order to prove the validity of equation (4), it is convenient to transform it to the

coordinates of the initial shot gathers: s = y− h, r = y+ h, and τ =
√
τ 2
n + 4h2

v2
. The
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transformed equation takes the form(
τ 2 +

(r − s)2

v2

)(
∂τ

∂r
− ∂τ

∂s

)
= 2 (r − s) τ

(
1

v2
− ∂τ

∂r

∂τ

∂s

)
. (6)

Now the goal is to prove that any reflection traveltime function τ(r, s) in a constant
velocity medium satisfies equation (6).

Let S and R be the source and the receiver locations, and O be a reflection point
for that pair. Note that the incident ray SO and the reflected ray OR form a triangle
with the basis on the offset SR (l = |SR| = |r− s|). Let α1 be the angle of SO from
the vertical axis, and α2 be the analogous angle of RO (Figure 1). The law of sines
gives us the following explicit relationships between the sides and the angles of the
triangle SOR:

|SO| = |SR| cosα2

sin (α2 − α1)
, (7)

|RO| = |SR| cosα1

sin (α2 − α1)
. (8)

Hence, the total length of the reflected ray satisfies

vτ = |SO|+ |RO| = |SR| cosα1 + cosα2

sin (α2 − α1)
= |r − s| cosα

sin γ
. (9)

Here γ is the reflection angle (γ = (α2 − α1)/2), and α is the central ray angle
(α = (α2 + α1)/2), which coincides with the local dip angle of the reflector at the
reflection point. Recalling the well-known relationships between the ray angles and
the first-order traveltime derivatives

∂τ

∂s
=

sinα1

v
, (10)

∂τ

∂r
=

sinα2

v
, (11)

we can substitute (9), (10), and (11) into (6), which leads to the simple trigonometric
equality

cos2
(
α1 + α2

2

)
+ sin2

(
α1 − α2

2

)
= 1− sinα1 sinα2 . (12)

It is now easy to show that equality (12) is true for any α1 and α2, since

sin2 a− sin2 b = sin (a+ b) sin (a− b) .

Thus we have proved that equation (6), equivalent to (4), is valid in constant
velocity media independently of the reflector geometry and the offset. This means that
high-frequency asymptotic components of the waves, described by the OC equation,
are located on the true reflection traveltime curves.

The theory of characteristics can provide other ways to prove the kinematic va-
lidity of equation (4), as described by Fomel (1994) and Goldin (1994).
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Figure 1: Reflection rays in a con-
stant velocity medium (a scheme).
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Comparison with Bolondi’s OC equation

Equation (1) and the previously published OC equation (Bolondi et al., 1982) differ
only with respect to the single term ∂2P

∂h2 . However, this difference is substantial.

From the offset continuation characteristic equation (4), we can conclude that
the first-order traveltime derivative with respect to offset decreases with decreasing
offset. The derivative equals zero at the zero offset, as predicted by the principle of
reciprocity (the reflection traveltime has to be an even function of offset). Neglecting(
∂τn
∂h

)2
in (4) leads to the characteristic equation

h

(
∂τn
∂y

)2

= − τn
∂τn
∂h

, (13)

which corresponds to the approximate OC equation of Bolondi et al. (1982). The
approximate equation has the form

h
∂2P

∂y2
= tn

∂2P

∂tn ∂h
. (14)

Comparing equations (13) and (4), we can note that approximation (13) is valid only
if (

∂τn
∂h

)2

�
(
∂τn
∂y

)2

. (15)

To find the geometric constraints implied by inequality (15), we can express the
traveltime derivatives in geometric terms. As follows from expressions (10) and (11),

∂τ

∂y
=

∂τ

∂r
+
∂τ

∂s
=

2 sinα cos γ

v
, (16)

∂τ

∂h
=

∂τ

∂r
− ∂τ

∂s
=

2 cosα sin γ

v
. (17)
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Expression (9) allows transforming equations (16) and (17) to the form

τn
∂τn
∂y

= τ
∂τ

∂y
= 4h

sinα cosα cot γ

v2
; (18)

τn
∂τn
∂h

= τ
∂τ

∂h
− 4h

v2
= − 4h

sin2 α

v2
. (19)

Without loss of generality, we can assume α to be positive. Consider a plane tangent
to a true reflector at the reflection point (Figure 2). The traveltime of a wave, reflected
from the plane, has the known explicit expression

τ =
2

v

√
L2 + h2 cos2 α , (20)

where L is the length of the normal ray from the midpoint. As follows from combining
(20) and (9),

cosα cot γ =
L

h
. (21)

We can now combine equations (21), (18), and (19) to transform inequality (15) to
the form

h� L

sinα
= z cotα , (22)

where z is the depth of the plane reflector under the midpoint. For example, for a
dip of 45 degrees, equation (14) will be satisfied only for offsets that are much smaller
than the depth of the reflector.

Figure 2: Reflection rays and tan-
gent to the reflector in a constant
velocity medium (a scheme).

z

x
h h

z

L

α

α

αz  cot

Offset continuation geometry: time rays

To study the laws of traveltime curve transformation in the OC process, it is con-
venient to apply the method of characteristics (Courant, 1962) to the eikonal-type
equation (4). The characteristics of equation (4) [bi-characteristics with respect to
equation (1)] are the trajectories of the high-frequency energy propagation in the
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imaginary OC process. Following the formal analogy with seismic rays, I call those
trajectories time rays, where the word time refers to the fact that the trajectories
describe the traveltime transformation (Fomel, 1994). According to the theory of
first-order partial differential equations, time rays are determined by a set of ordinary
differential equations (characteristic equations) derived from equation (4) :

dy

dtn
= −2hY

tnH
,
dY

dtn
=
Y

tn
,

dh

dtn
= − 1

H
+

2h

tn
,
dH

dtn
=

Y 2

tnH
, (23)

where Y corresponds to ∂τn
∂y

along a ray and H corresponds to ∂τn
∂h

. In this notation,

equation (4) takes the form

h (Y 2 −H2) = − tnH (24)

and serves as an additional constraint for the definition of time rays. System (23) can
be solved by standard mathematical methods (Tenenbaum and Pollard, 1985). Its
general solution takes the parametric form, where the time variable tn is the parameter
changing along a time ray:

y(tn) = C1 − C2 t
2
n ; h(tn) = tn

√
C2

2 t
2
n + C3 ; (25)

Y (tn) =
C2 tn
C3

; H(tn) =
h

C3 tn
(26)

and C1, C2, and C3 are independent coefficients, constant along each time ray. To find
the values of these coefficients, we can pose an initial-value problem for the system of
differential equations (23). The traveltime curve τn(y;h) for a given common offset
h and the first partial derivative ∂τn

∂h
along the same constant offset section provide

natural initial conditions. A particular case of those conditions is the zero-offset
traveltime curve. If the first partial derivative of traveltime with respect to offset is
continuous, it vanishes at zero offset according to the reciprocity principle (traveltime

must be an even function of the offset): t0 (y0) = τn(y; 0), ∂τn
∂h

∣∣∣
h=0

= 0 . Applying the

initial-value conditions to the general solution (26) generates the following expressions
for the ray invariants:

C1 = y + h
Y

H
= y0 −

t0 (y0)

t′0 (y0)
; C2 =

hY

τ 2
n H

= − 1

t0 (y0) t′0 (y0)
;

C3 =
h

τnH
= − 1

(t′0 (y0))2 , (27)

where t′0 (y0) denotes the derivative d t0
d y0

. Finally, substituting equations (27) into (26),
we obtain an explicit parametric form of the ray trajectories:

y1 (t1) = y +
hY

t2nH

(
t2n − t21

)
= y0 +

t21 − t20 (y0)

t0 (y0) t′0 (y0)
; (28)

h2
1 (t1) =

h t21
t3nH

(
t2n + t21

hY 2

tnH

)
= t21

t21 − t20 (y0)

(t0 (y0) t′0 (y0))2 . (29)
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Here y1, h1, and t1 are the coordinates of the continued seismic section. Equations (28)
indicates that the time ray projections to a common-offset section have a parabolic
form. Time rays do not exist for t′0 (y0) = 0 (a locally horizontal reflector) because in
this case post-NMO offset continuation transform is not required.

The actual parameter that determines a particular time ray is the reflection point
location. This important conclusion follows from the known parametric equations

t0(x) = tv secα = tv(x)
√

1 + u2 (t′v(x))2 , (30)

y0(x) = x+ utv tanα = x+ u2 tv(x)t′v(x) , (31)

where x is the reflection point, u is half of the wave velocity (u = v/2), tv is the
vertical time (reflector depth divided by u), and α is the local reflector dip. Taking
into account that the derivative of the zero-offset traveltime curve is

dt0
dy0

=
t′0(x)

y′0(x)
=

sinα

u
=

t′v(x)√
1 + u2 (t′v(x))2

(32)

and substituting equations (30) and (31) into (28) and (29), we get

y1 (t1) = x+
t21 − t2v (x)

tv (x) t′v (x)
; (33)

u2t2 (t1) = t21
t21 − t2v (x)

(tv (x) t′v (x))2 , (34)

where t2 (t1) = t21 + h2
1 (t1) /u2.

To visualize the concept of time rays, let us consider some simple analytic examples
of its application to geometric analysis of the offset-continuation process.

Example 1: plane reflector

The simplest and most important example is the case of a plane dipping reflector.
Putting the origin of the y axis at the intersection of the reflector plane with the
surface, we can express the reflection traveltime after NMO in the form

τn(y, h) = p
√
y2 − h2 , (35)

where p = 2 sinα
v

, and α is the dip angle. The zero-offset traveltime in this case is a
straight line:

t0 (y0) = p y0 . (36)

According to equations (28-29), the time rays in this case are defined by

y1 (t1) =
t21
p2 y0

; h2
1 (t1) = t21

t21 − p2 y2
0

p4 y2
0

; y0 =
y2 − h2

y
. (37)

The geometry of the OC transformation is shown in Figure 3.
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Figure 3: Transformation of the reflection traveltime curves in the OC process: the
case of a plane dipping reflector. Left: Time coordinate before the NMO correction.
Right: Time coordinate after NMO. The solid lines indicate traveltime curves at
different common-offset sections; the dashed lines indicate time rays.

Example 2: point diffractor

The second example is the case of a point diffractor (the left side of Figure 4). Without
loss of generality, the origin of the midpoint axis can be put above the diffraction point.
In this case the zero-offset reflection traveltime curve has the well-known hyperbolic
form

t0 (y0) =

√
z2 + y2

0

u
, (38)

where z is the depth of the diffractor and u = v/2 is half of the wave velocity. Time
rays are defined according to equations (28-29), as follows:

y1 (t1) =
u2 t21 − z2

y0

; u2 t2 (t1) = u2 t21 + h2
1 (t1) = u2 t21

u2 t21 − z2

y2
0

. (39)

Example 3: elliptic reflector

The third example (the right side of Figure 4) is the curious case of a focusing elliptic
reflector. Let y be the center of the ellipse and h be half the distance between the
foci of the ellipse. If both foci are on the surface, the zero-offset traveltime curve is
defined by the so-called “DMO smile” (Deregowski and Rocca, 1981):

t0 (y0) =
tn
h

√
h2 − (y − y0)2 , (40)
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Figure 4: Transformation of the reflection traveltime curves in the OC process. Left:
the case of a diffraction point. Right: the case of an elliptic reflector. Solid lines
indicate traveltime curves at different common-offset sections, dashed lines indicate
time rays.

where tn = 2 z/v, and z is the small semi-axis of the ellipse. The time-ray equations
are

y1 (t1) = y +
h2

y − y0

t21 − t2n
t2n

; h2
1 (t1) = h2 t

2
1

t2n

(
1 +

h2

(y − y0)2

t21 − t2n
t2n

)
. (41)

When y1 coincides with y, and h1 coincides with h, the source and the receiver are
in the foci of the elliptic reflector, and the traveltime curve degenerates to a point
t1 = tn. This remarkable fact is the actual basis of the geometric theory of dip
moveout (Deregowski and Rocca, 1981).

Proof of amplitude equivalence

Let us now consider the connection between the laws of traveltime transformation
and the laws of the corresponding amplitude transformation. The change of the
wave amplitudes in the OC process is described by the first-order partial differential
transport equation (5). We can find the general solution of this equation by applying
the method of characteristics. The solution takes the explicit integral form

An (tn) = A0 (t0) exp

∫ tn

to

h (∂2τn
∂y2
− ∂2τn
∂h2

) (
τn
∂τn
∂h

)−1
 dτn

 . (42)

The integral in equation (42) is defined on a curved time ray, and An(tn) stands for the
amplitude transported along this ray. In the case of a plane dipping reflector, the ray
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amplitude can be immediately evaluated by substituting the explicit traveltime and
time ray equations from the preceding section into (42). The amplitude expression
in this case takes the simple form

An (tn) = A0 (t0) exp

(
−
∫ tn

to

dτn
τn

)
= A0 (t0)

t0
tn
. (43)

In order to consider the more general case of a curvilinear reflector, we need to
take into account the connection between the traveltime derivatives in (42) and the
geometry of the reflector. As follows directly from the trigonometry of the incident
and reflected rays triangle (Figure 1),

h =
r − s

2
= D

cosα sin γ cos γ

cos2 α− sin2 γ
, (44)

y =
r + s

2
= x+D

cos2 α sinα

cos2 α− sin2 γ
, (45)

y0 = x+D sinα , (46)

where D is the length of the normal ray. Let τ0 = 2D/v be the zero-offset reflection
traveltime. Combining equations (44) and (46) with (9), we can get the following
relationship:

a =
τn
τ0

=
cosα cos γ(

cos2 α− sin2 γ
)1/2

=

(
1 +

sin2 α sin2 γ

cos2 α− sin2 γ

)1/2

=
h√

h2 − (y − y0)2
, (47)

which describes the “DMO smile” (40) found by Deregowski and Rocca (1981) in
geometric terms. Equation (47) allows for a convenient change of variables in equa-
tion (42). Let the reflection angle γ be a parameter monotonically increasing along
a time ray. In this case, each time ray is uniquely determined by the position of the
reflection point, which in turn is defined by the values of D and α. According to this
change of variables, we can differentiate (47) along a time ray to get

dτn
τn

= − sin2 α

2 cos2 γ
(
cos2 γ − sin2 α

) d (cos2 γ
)
. (48)

Note also that the quantity h
(
τn

∂τn
∂h

)−1
in equation (42) coincides exactly with the

time ray invariant C3 found in equation (27). Therefore its value is constant along
each time ray and equals

h

(
τn
∂τn
∂h

)−1

= − v2

4 sin2 α
. (49)

Finally, as shown in Appendix ,

τn

(
∂2τn
∂y2
− ∂2τn
∂h2

)
= 4

cos2 γ

v2

(
sin2 α +DK

cos2 γ +DK

)
, (50)
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where K is the reflector curvature at the reflection point. Substituting (48), (49),
and (50) into (42) transforms the integral to the form

∫ tn

to

h (∂2τn
∂y2
− ∂2τn
∂h2

) (
τn
∂τn
∂h

)−1
 dτn =

= −1

2

∫ cos2 γ

cos2 γ0

(
1

cos2 γ′ − sin2 α
− 1

cos2 γ′ +DK

)
d
(
cos2 γ′

)
(51)

which we can evaluate analytically. The final equation for the amplitude transforma-
tion is

An = A0

√
cos2 γ − sin2 α√
cos2 γ0 − sin2 α

(
cos2 γ0 +DK

cos2 γ +DK

)1/2

=

= A0
τ0 cos γ

τn cos γ0

(
cos2 γ0 +DK

cos2 γ +DK

)1/2

. (52)

In case of a plane reflector, the curvature K is zero, and equation (52) coincides
with (43). In the general case can be rewritten as

An =
c cos γ

τn
√

cos2 γ +DK
, (53)

where c is constant along each time ray (it may vary with the reflection point location
on the reflector but not with the offset). We should compare equation (53) with the
known expression for the reflection wave amplitude of the leading ray series term in
2.5-D media (Bleistein et al., 2001):

A =
CR(γ)Ψ

G
, (54)

where CR stands for the angle-dependent reflection coefficient, G is the geometric
spreading

G = vτ

√
cos2 γ +DK

cos γ
, (55)

and Ψ includes other possible factors (such as the source directivity) that we can
either correct or neglect in the preliminary processing. It is evident that the curva-
ture dependence of the amplitude transformation (53) coincides completely with the
true geometric spreading factor (55) and that the angle dependence of the reflection
coefficient is not accounted for the offset continuation process. If the wavelet shape
of the reflected wave on seismic sections [Rn in equation (3)] is described by the delta
function, then, as follows from the known properties of this function,

Aδ (t− τ(y, h)) =

∣∣∣∣∣dtndt
∣∣∣∣∣ Aδ (tn − τn(y, h)) =

t

tn
Aδ (tn − τn(y, h)) , (56)
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which leads to the equality

An = A
t

tn
. (57)

Combining equation (57) with equations (54) and (53) allows us to evaluate the
amplitude after continuation from some initial offset h0 to another offset h1, as follows:

A1 =
CR(γ0)Ψ0

G1

. (58)

According to equation (58), the OC process described by equation (1) is amplitude-
preserving in the sense that corresponds to the definition of Born DMO (Bleistein,
1990; Liner, 1991). This means that the geometric spreading factor from the initial
amplitudes is transformed to the true geometric spreading on the continued section,
while the reflection coefficient stays the same. This remarkable dynamic property
allows AVO (amplitude versus offset) analysis to be performed by a dynamic com-
parison between true constant-offset sections and the sections transformed by OC
from different offsets. With a simple trick, the offset coordinate is transferred to the
reflection angles for the AVO analysis. As follows from (47) and (9),

τ 2
n

τ τ0

= cos γ . (59)

If we include the t2n
t t0

factor in the DMO operator (continuation to zero offset) and
divide the result by the DMO section obtained without this factor, the resultant
amplitude of the reflected events will be directly proportional to cos γ, where the
reflection angle γ corresponds to the initial offset. Of course, this conclusion is rigor-
ously valid for constant-velocity 2.5-D media only.

Black et al. (1993) suggest a definition of true-amplitude DMO different from that
of Born DMO. The difference consists of two important components:

1. True-amplitude DMO addresses preserving the peak amplitude of the image
wavelet instead of preserving its spectral density. In the terms of this paper, the
peak amplitude corresponds to the pre-NMO amplitude A from formula (54)
instead of corresponding to the spectral density amplitude An. A simple cor-
rection factor t

tn
would help us take the difference between the two amplitudes

into account. Multiplication by t
tn

can be easily done at the NMO stage.

2. Seismic sections are multiplied by time to correct for the geometric spreading
factor prior to DMO (or, in our case, offset continuation) processing.

As follows from (55), multiplication by t is a valid geometric spreading correction
for plane reflectors only. It is the amplitude-preserving offset continuation based on
the OC equation (1) that is able to correct for the curvature-dependent factor in
the amplitude. To take into account the second aspect of Black’s definition, we can
consider the modified field P̂ such that

P̂ (y, h, tn) = t P (y, h, tn) . (60)
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Substituting (60) into the OC equation (1) transforms the latter to the form

h

(
∂2P̂

∂y2
− ∂2P̂

∂h2

)
= tn

∂2P̂

∂tn ∂h
− ∂P̂

∂h
. (61)

Equations (61) and (1) differ only with respect to the first-order damping term ∂P̂
∂h

.
This term affects the amplitude behavior but not the traveltimes, since the eikonal-
type equation (4) depends on the second-order terms only. Offset continuation oper-
ators based on (61) conform to Black’s definition of true-amplitude processing.

Fomel and Bleistein (2001) describe an alternative approach to confirming the
kinematic and amplitude validity of the offset continuation equation. Applying equa-
tion (1) directly on the Kirchhoff model of prestack seismic data shows that the equa-
tion is satisfied to the same asymptotic order of accuracy as the Kirchhoff modeling
approximation (Haddon and Buchen, 1981; Bleistein, 1984).

INTEGRAL OFFSET CONTINUATION OPERATOR

Equation (1) describes a continuous process of reflected wavefield continuation in the
time-offset-midpoint domain. In order to find an integral-type operator that performs
the one-step offset continuation, I consider the following initial-value problem for
equation (1):

Given a post-NMO constant-offset section at half-offset h1

P (tn, h, y)|h=h1
= P

(0)
1 (tn, y) (62)

and its first-order derivative with respect to offset

∂P (tn, h, y)

∂h

∣∣∣∣∣
h=h1

= P
(1)
1 (tn, y) , (63)

find the corresponding section P (0)(tn, y) at offset h.

Equation (1) belongs to the hyperbolic type, with the offset coordinate h being a
“time-like” variable and the midpoint coordinate y and the time tn being “space-like”
variables. The last condition (63) is required for the initial value problem to be well-
posed (Courant, 1962). From a physical point of view, its role is to separate the two
different wave-like processes embedded in equation (1), which are analogous to inward
and outward wave propagation. We will associate the first process with continuation
to a larger offset and the second one with continuation to a smaller offset. Though
the offset derivatives of data are not measured in practice, they can be estimated from
the data at neighboring offsets by a finite-difference approximation. Selecting a prop-
agation branch explicitly, for example by considering the high-frequency asymptotics
of the continuation operators, can allow us to eliminate the need for condition (63).
In this section, I discuss the exact integral solution of the OC equation and analyze
its asymptotics.
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The integral solution of problem (62-63) for equation (1) is obtained in with the
help of the classic methods of mathematical physics (Fomel, 1994, 2001). It takes the
explicit form

P (tn, h, y) =
∫ ∫

P
(0)
1 (t1, y1)G0(t1, h1, y1; tn, h, y) dt1 dy1

+
∫ ∫

P
(1)
1 (t1, y1)G1(t1, h1, y1; tn, h, y) dt1 dy1 , (64)

where the Green’s functions G0 and G1 are expressed as

G0(t1, h1, y1; tn, h, y) = sign(h− h1)
H(tn)

π

∂

∂tn

{
H(Θ)√

Θ

}
, (65)

G1(t1, h1, y1; tn, h, y) = sign(h− h1)
H(tn)

π
h
tn
t21

{
H(Θ)√

Θ

}
, (66)

and the parameter Θ is

Θ(t1, h1, y1; tn, h, y) =
(
h2

1/t
2
1 − h2/t2n

) (
t21 − t2n

)
− (y1 − y)2 . (67)

H stands for the Heaviside step-function.

From equations (65) and (66) one can see that the impulse response of the offset
continuation operator is discontinuous in the time-offset-midpoint space on a surface
defined by the equality

Θ(t1, h1, y1; tn, h, y) = 0 , (68)

which describes the “wavefronts” of the offset continuation process. In terms of
the theory of characteristics (Courant, 1962), the surface Θ = 0 corresponds to the
characteristic conoid formed by the bi-characteristics of equation (1) – time rays
emerging from the point {tn, h, y} = {t1, h1, y1}. The common-offset slices of the
characteristic conoid are shown in the left plot of Figure 5.

As a second-order differential equation of the hyperbolic type, equation (1) de-
scribes two different processes. The first process is “forward” continuation from
smaller to larger offsets, the second one is “reverse” continuation in the opposite
direction. These two processes are clearly separated in the high-frequency asymp-
totics of operator (64). To obtain the asymptotic representation, it is sufficient to

note that 1√
π
H(t)√
t

is the impulse response of the causal half-order integration opera-

tor and that H(t2−a2)√
t2−a2 is asymptotically equivalent to H(t−a)√

2a
√
t−a (t, a > 0). Thus, the

asymptotical form of the integral offset-continuation operator becomes

P (±)(tn, h, y) = D
1/2
± tn

∫
w

(±)
0 (ξ;h1, h, tn)P

(0)
1 (θ(±)(ξ;h1, h, tn), y1 − ξ) dξ

± I
1/2
± tn

∫
w

(±)
1 (ξ;h1, h, tn)P

(1)
1 (θ(±)(ξ;h1, h, tn), y1 − ξ) dξ . (69)

Here the signs “+” and “−” correspond to the type of continuation (the sign of

h− h1), D
1/2
± tn and I

1/2
± tn stand for the operators of causal and anticausal half-order
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Figure 5: Constant-offset sections of the characteristic conoid - “offset continuation
fronts” (left), and branches of the conoid used in the integral OC operator (right).
The upper part of the plots (small times) corresponds to continuation to smaller
offsets; the lower part (large times) corresponds to larger offsets.

differentiation and integration applied with respect to the time variable tn, the sum-
mation paths θ(±)(ξ;h1, h, tn) correspond to the two non-negative sections of the char-
acteristic conoid (68) (Figure 5):

t1 = θ(±)(ξ;h1, h, tn) =
tn
h

√
U ± V

2
, (70)

where U = h2 + h2
1 − ξ2, and V =

√
U2 − 4h2 h2

1; ξ is the midpoint separation (the

integration parameter), and w
(±)
0 and w

(±)
1 are the following weighting functions:

w
(±)
0 =

1√
2 π

θ(±)(ξ;h1, h, tn)√
tn V

, (71)

w
(±)
1 =

1√
2 π

√
tn h1√

V θ(±)(ξ;h1, h, tn)
. (72)

Expression (70) for the summation path of the OC operator was obtained previously
by Stovas and Fomel (1996) and Biondi and Chemingui (1994). A somewhat different
form of it is proposed by Bagaini and Spagnolini (1996). I describe the kinematic
interpretation of formula (70) in Appendix B.

In the high-frequency asymptotics, it is possible to replace the two terms in equa-
tion (69) with a single term (Fomel, 2003a). The single-term expression is

P (±)(tn, h, y) = D
1/2
± tn

∫
w(±)(ξ;h1, h, tn)P

(0)
1 (θ(±)(ξ;h1, h, tn), y1 − ξ) dξ , (73)
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where

w(+) =

√
θ(+)(ξ;h1, h, tn)

2 π

h2 − h2
1 − ξ2

V 3/2
, (74)

w(−) =
θ(−)(ξ;h1, h, tn)√

2 πtn

h2
1 − h2 + ξ2

V 3/2
. (75)

A more general approach to true-amplitude asymptotic offset continuation is devel-
oped by ?.

The limit of expression (70) for the output offset h approaching zero can be eval-
uated by L’Hospitale’s rule. As one would expect, it coincides with the well-known
expression for the summation path of the integral DMO operator (Deregowski and
Rocca, 1981)

t1 = θ(−)(ξ;h1, 0, tn) = lim
h→0

tn
h

√
U − V

2
=

tn h1√
h2

1 − ξ2
. (76)

I discuss the connection between offset continuation and DMO in the next section.

OFFSET CONTINUATION AND DMO

Dip moveout represents a particular case of offset continuation for the output offset
equal to zero. In this section, I consider the DMO case separately in order to compare
the solutions of equation (1) with the Fourier-domain DMO operators, which have
been the standard for DMO processing since Hale’s outstanding work (Hale, 1983,
1984).

Equation (64) transforms to the time-wavenumber domain with the help of integral
tables:

P̃ (tn, h, k) = H(tn)
(
P̃0(tn, h, k) + tn P̃1(tn, h, k)

)
, (77)

where

P̃0 =
∂

∂tn

∫ tn

(h1/h) tn
P̃

(0)
1 (|t1| , k) J0

k
√√√√(h2

t2n
− h2

1

t21

)
(t2n − t21)

 dt1 , (78)

P̃1 =
∫ tn

(h1/h) tn
h1 P̃

(1)
1 (|t1| , k) J0

k
√√√√(h2

t2n
− h2

1

t21

)
(t2n − t21)

 dt1
t21

, (79)

P̃
(j)
1 (t1, k) =

∫
P

(j)
1 (t1, y1) exp(−iky1) dy1 (j = 0, 1) , (80)

P̃ (tn, h, k) =
∫
P (tn, h, y) exp(−iky) dy (j = 0, 1) . (81)
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Setting the output offset to zero, we obtain the following DMO-like integral oper-
ators in the t–k domain:

P̃ (t0, 0, k) = H(t0)
(
P̃0(t0, k) + t0 P̃1(t0, k)

)
, (82)

where

P̃0(t0, k) = − ∂

∂t0

∫ ∞
t0

P̃
(0)
1 (|t1| , k) J0

(
k h1

t1

√
t21 − t20

)
dt1 , (83)

P̃1(t0, k) = −
∫ ∞
t0

h1 P̃
(1)
1 (|t1| , k) J0

(
k h1

t1

√
t21 − t20

)
dt1
t21

, (84)

the wavenumber k corresponds to the midpoint axis y, and J0 is the zeroth-order
Bessel function. The Fourier transform of (83) and (84) with respect to the time
variable t0 reduces to known integrals (Gradshtein and Ryzhik, 1994) and creates
explicit DMO-type operators in the frequency-wavenumber domain, as follows:

˜̃
P 0(ω0, k) = i

∫ ∞
−∞

P̃
(0)
1 (|t1| , k)

sin (ω0 |t1|A)

A
dt1 , (85)

˜̃
P 1(ω0, k) = i

∫ ∞
−∞

h1 P̃
(1)
1 (|t1| , k)

sin (ω0 |t1|A)

A

dt1
t21

, (86)

where

A =

√√√√1 +
(k h1)2

(ω0 t1)2
, (87)

˜̃
P j(ω0, k) =

∫
P̃j(t0, k) exp(iω0t0) dt0 . (88)

It is interesting to note that the first term of the continuation to zero offset (85)
coincides exactly with the imaginary part of Hale’s DMO operator (Hale, 1984).
However, unlike Hale’s, operator (82) is causal, which means that its impulse response
does not continue to negative times. The non-causality of Hale’s DMO and related
issues are discussed in more detail by Stovas and Fomel (1996).

Though Hale’s DMO is known to provide correct reconstruction of the geome-
try of zero-offset reflections, it does not account properly for the amplitude changes
(Black et al., 1993). The preceding section of this paper shows that the additional
contribution to the amplitude is contained in the second term of the OC operator
(64), which transforms to the second term in the DMO operator (82). Note that
this term vanishes at the input offset equal to zero, which represents the case of the
inverse DMO operator.

Considering the inverse DMO operator as the continuation from zero offset to a
non-zero offset, we can obtain its representation in the t-k domain from equations (77-
79) as

P̃ (tn, h, k) = H(tn)
∂

∂tn

∫ tn

0
P̃0 (|t0| , k) J0

(
k h

tn

√
t2n − t20

)
dt0 , (89)
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Fourier transforming equation (89) with respect to the time variable t0 according
to equation (88), we get the Fourier-domain version of the “amplitude-preserving”
inverse DMO:

P̃ (tn, h, k) =
H(tn)

2π

∂

∂tn

∫ ∞
−∞

˜̃
P 0(ω0, k)

sin (ω0 |tn|A)

ω0A
dω0 , (90)

A =

√√√√1 +
(k h)2

(ω0 tn)2
. (91)

Comparing operator (90) with Ronen’s version of inverse DMO (Ronen, 1987),
one can see that if Hale’s DMO is denoted by Dt0 H, then Ronen’s inverse DMO
is HT D−t0 , while the amplitude-preserving inverse (90) is Dtn HT. Here Dt is the

derivative operator
(
∂
∂t

)
, and HT stands for the adjoint operator defined by the dot-

product test
(Hm,d) = (m,HTd), (92)

where the parentheses denote the dot product:

(m1,m2) =
∫ ∫

m1(tn, y)m2(tn, y) dtn dy . (93)

In high-frequency asymptotics, the difference between the amplitudes of the two
inverses is simply the Jacobian term d t0

d tn
, asymptotically equal to t0

tn
. This differ-

ence corresponds exactly to the difference between Black’s definition of amplitude
preservation (Black et al., 1993) and the definition used in Born DMO (Bleistein,
1990; Liner, 1991), as discussed above. While operator (90) preserves amplitudes in
the Born DMO sense, Ronen’s inverse satisfies Black’s amplitude preservation crite-
ria. This means Ronen’s operator implies that the “geometric spreading” correction
(multiplication by time) has been performed on the data prior to DMO.

To construct a one-term DMO operator, thus avoiding the estimation of the offset
derivative in (72), let us consider the problem of inverting the inverse DMO opera-
tor (90). One of the possible approaches to this problem is the least-squares iterative
inversion, as proposed by Ronen (1987). This requires constructing the adjoint op-
erator, which is Hale’s DMO (or its analog) in the case of Ronen’s method. The
iterative least-squares approach can account for irregularities in the data geometry
(Ronen et al., 1991; Ronen, 1994) and boundary effects, but it is computationally ex-
pensive because of the multiple application of the operators. An alternative approach
is the asymptotic inversion, which can be viewed as a special case of preconditioning
the adjoint operator (Liner and Cohen, 1988; Chemingui and Biondi, 1996). The goal
of the asymptotic inverse is to reconstruct the geometry and the amplitudes of the
reflection events in the high-frequency asymptotic limit.

According to Beylkin’s theory of asymptotic inversion, also known as the gener-
alized Radon transform (Beylkin, 1985), two operators of the form

D(ω) =
∫
X(t, ω)M(t) exp [iωφ(t, ω)] dt (94)
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and
M̃(t) =

∫
Y (t, ω)D(ω) exp [−iωφ(t, ω)] dω (95)

constitute a pair of asymptotically inverse operators (M̃(t) matching M(t) in the
high-frequency asymptotics) if

X(t, ω)Y (t, ω) =
Z(t, ω)

2π
, (96)

where Z is the “Beylkin determinant”

Z(t, ω) =

∣∣∣∣∣∂ω∂ω̂
∣∣∣∣∣ for ω̂ = ω

∂φ(t, ω)

∂t
. (97)

With respect to the high-frequency asymptotic representation, we can recast (90)
in the equivalent form by moving the time derivative under the integral sign:

P̃ (tn, k) ≈ H(tn)

2 π
Re

[∫ ∞
−∞

A−2 ˜̃P 0(ω0, k) exp (−iω0 |tn|A) dω0

]
(98)

Now the asymptotic inverse of (98) is evaluated by means of Beylkin’s method (94)-
(95), which leads to an amplitude-preserving one-term DMO operator of the form

˜̃
P 0(ω0, k) = Im

[∫ ∞
−∞

BP̃
(0)
1 (|t1| , k) exp (iω0 |t1|A) dt1

]
, (99)

where

B = A2 ∂

∂ω0

(
ω0
∂(tnA)

∂tn

)
= A−1 (2A2 − 1) . (100)

The amplitude factor (100) corresponds exactly to that of Born DMO (Bleistein,
1990) in full accordance with the conclusions of the asymptotic analysis of the offset-
continuation amplitudes. An analogous result can be obtained with the different
definition of amplitude preservation proposed by Black et al. (1993). In the time-and-
space domain, the operator asymptotically analogous to (99) is found by applying
either the stationary phase technique (Liner, 1990; Black et al., 1993) or Goldin’s
method of discontinuities (Goldin, 1988, 1990), which is the time-and-space analog of
Beylkin’s asymptotic inverse theory (Stovas and Fomel, 1996). The time-and-space
asymptotic DMO operator takes the form

P0(t0, y) = D
1/2
−t0

∫
w0(ξ;h1, t0)P

(0)
1 (θ(−)(ξ;h1, 0, t0), y1 − ξ) dξ , (101)

where the weighting function w0 is defined as

w0(ξ;h1, t0) =

√
t0
2π

h1 (h2
1 + ξ2)

(h2
1 − ξ2)2

. (102)
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OFFSET CONTINUATION IN THE LOG-STRETCH
DOMAIN

The log-stretch transform, proposed by Bolondi et al. (1982) and further developed
by many other researchers, is a useful tool in DMO and OC processing. Applying a
log-stretch transform of the form

σ = ln
∣∣∣∣tnt∗
∣∣∣∣ , (103)

where t∗ is an arbitrarily chosen time constant, eliminates the time dependence of
the coefficients in equation (1) and therefore makes this equation invariant to time
shifts. After the double Fourier transform with respect to the midpoint coordinate
y and to the transformed (log-stretched) time coordinate σ, the partial differential
equation (1) takes the form of an ordinary differential equation,

h

d2 ̂̂P
dh2

+ k2 ̂̂P
 = iΩ

d
̂̂
P

dh
, (104)

where ̂̂
P (h) =

∫ ∫
P (tn = t∗ exp(σ), h, y) exp(iΩσ − iky) dσ dy . (105)

Equation (104) has the known general solution, expressed in terms of cylinder
functions of complex order λ = 1+iΩ

2
(Watson, 1952)

̂̂
P (h) = C1(λ) (kh)λ J−λ(kh) + C2(λ) (kh)λ Jλ(kh) , (106)

where J−λ and Jλ are Bessel functions, and C1 and C2 stand for some arbitrary
functions of λ that do not depend on k and h.

In the general case of offset continuation, C1 and C2 are constrained by the two
initial conditions (62) and (63). In the special case of continuation from zero offset,
we can neglect the second term in (106) as vanishing at the zero offset. The remaining
term defines the following operator of inverse DMO in the Ω, k domain:

̂̂
P (h) =

̂̂
P (0)Zλ(kh) , (107)

where Zλ is the analytic function

Zλ(x) = Γ(1− λ)
(
x

2

)λ
J−λ(x) = 0F1

(
; 1− λ;−x

2

4

)

=
∞∑
n=0

(−1)n

n!

Γ(1− λ)

Γ(n+ 1− λ)

(
x

2

)2n

, (108)

Γ is the gamma function and 0F1 is the confluent hypergeometric limit function
(Petkovsek et al., 1996).
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The DMO operator now can be derived as the inversion of operator (107), which is
a simple multiplication by 1/Zλ(kh). Therefore, offset continuation becomes a multi-
plication by Zλ(kh2)/Zλ(kh1) (the cascade of two operators). This fact demonstrates
an important advantage of moving to the log-stretch domain: both offset continuation
and DMO are simple filter multiplications in the Fourier domain of the log-stretched
time coordinate.

In order to compare operator (107) with the known versions of log-stretch DMO,
we need to derive its asymptotic representation for high frequency Ω. The required
asymptotic expression follows directly from the definition of function Zλ in equa-
tion (108) and the known asymptotic representation for a Bessel function of high
order (Watson, 1952):

Jλ(λz)
λ→∞≈

(λz)λ exp
(
λ
√

1− z2
)

eλ Γ(λ+ 1) (1− z2)1/4
{

1 +
√

1− z2
}√1−z2

. (109)

Substituting approximation (109) into (108) and considering the high-frequency limit
of the resultant expression yields

Zλ(kh) ≈


1 +

√
1−

(
kh
λ

)2

2


λ

exp

(
λ

[
1−

√
1−

(
kh
λ

)2
])

(
1−

(
kh
λ

)2
)1/4

≈ F (ε) eiΩψ(ε) , (110)

where ε denotes the ratio 2 k h
Ω

,

F (ε) =

√√√√1 +
√

1 + ε2

2
√

1 + ε2
exp

(
1−
√

1 + ε2

2

)
, (111)

and

ψ(ε) =
1

2

(
1−
√

1 + ε2 + ln

(
1 +
√

1 + ε2

2

))
. (112)

The asymptotic representation (110) is valid for high frequency Ω and |ε| ≤ 1.
The phase function ψ defined in (112) coincides precisely with the analogous term in
Liner’s exact log DMO (Liner, 1990), which provides the correct geometric properties
of DMO. Similar expressions for the log-stretch phase factor ψ were derived in different
ways by Zhou et al. (1996) and Canning and Gardner (1996). However, the amplitude
term F (ε) differs from the previously published ones because of the difference in the
amplitude preservation properties.

A number of approximate log DMO operators have been proposed in the lit-
erature. As shown by Liner (1990), all of them but exact log DMO distort the
geometry of reflection effects at large offsets. The distortion is caused by the im-
plied approximations of the true phase function ψ. Bolondi’s OC operator (Bolondi



23

et al., 1982) implies ψ(ε) ≈ − ε2

8
, Notfors’ DMO (Notfors and Godfrey, 1987) im-

plies ψ(ε) ≈ 1−
√

1 + (ε/2)2, and the “full DMO” (Bale and Jakubowicz, 1987) has

ψ(ε) ≈ 1
2

ln [1− (ε/2)2]. All these approximations are valid for small ε (small offsets
or small reflector dips) and have errors of the order of ε4 (Figure 6). The range of
validity of Bolondi’s operator is defined in equation (22).

Figure 6: Phase functions of
the log DMO operators. Solid
line: exact log DMO; dashed line:
Bolondi’s OC; dashed-dotted line:
Bale’s full DMO; dotted line: Not-
fors’ DMO.
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In practice, seismic data are often irregularly sampled in space but regularly sam-
pled in time. This makes it attractive to apply offset continuation and DMO operators
in the {Ω, y} domain, where the frequency Ω corresponds to the log-stretched time
and y is the midpoint coordinate. Performing the inverse Fourier transform on the
spatial frequency transforms the inverse DMO operator (107) to the {Ω, y} domain,
where the filter multiplication becomes a convolutional operator:

P̂ (Ω, h, y) =
F̂ (Ω)√

2 π

∫
|ξ|<h

h

h2 − ξ2
P̂0(Ω, y − ξ) exp

(
−iΩ

2
ln

(
1− ξ2

h2
1

))
dξ . (113)

Here F̂ (Ω) is a high-pass frequency filter:

F̂ (Ω) =
Γ(1/2− iΩ/2)√

1/2 Γ(−iΩ/2)
. (114)

At high frequencies F̂ (Ω) is approximately equal to (−iΩ)1/2, which corresponds to

the half-derivative operator
(
∂
∂σ

)1/2
, which, in turn, is equal to the

(
tn

∂
∂tn

)1/2
term

of the asymptotic OC operator (69). The difference between the exact filter F̂ and
its approximation by the half-order derivative operator is shown in Figure 7. This
difference is a measure of the validity of asymptotic OC operators.

Inverting operator (113), we can obtain the DMO operator in the {Ω, y} domain.

DISCUSSION

The differential model for offset continuation is based on several assumptions. It is
important to fully realize them in order to understand the practical limitations of this
model.
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Figure 7: Amplitude (left) and phase (right) of the time filter in the log-stretch
domain. The solid line is for the exact filter; the dashed line for its approximation by
the half-order derivative filter. The horizontal axis corresponds to the dimensionless
log-stretch frequency Ω.

• The constant velocity assumption is essential for theoretical derivations. In prac-
tice, this limitation is not too critical, because the operators act locally. DMO
and offset continuation algorithms based on the constant-velocity assumptions
are widely used in practice (Hale, 1995).

• The single-mode assumption does not include multiple reflections in the model.
If multiple events (with different apparent velocities) are present in the data,
they might require extending the model. Convolving two (or more) differen-
tial offset continuation operators, corresponding to different velocities, we can
obtain a higher-order differential operator for predicting multiple events.

• The continuous AVO assumption implies that the reflectivity variation with
offset is continuous and can be neglected in a local neighborhood of a particular
offset. While the offset continuation model correctly predicts the geometric
spreading effects in the reflected wave amplitudes, it does not account for the
variation of the reflection coefficient with offset.

• The 2.5-D assumption was implicit in the derivation of the offset continuation
equation. According to this assumption, the reflector does not change in the
cross-line direction, and we can always consider the reflection plane in two
dimensions.
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CONCLUSIONS

I have introduced a partial differential equation (1) and proved that the process
described by it provides for a kinematically and dynamically equivalent offset con-
tinuation transform. Kinematic equivalence means that in constant velocity media
the reflection traveltimes are transformed to their true locations on different offsets.
Dynamic equivalence means that, in the OC process, the geometric spreading term in
the amplitudes of reflected waves transforms in accordance with the laws of geometric
seismics, while the angle-dependent reflection coefficient stays the same.

The offset continuation equation can be applied directly to design OC operators
of the finite-difference type. To construct integral OC operators, an initial value
problem is solved for the offset continuation equation (1). For the special cases of
continuation to zero offset (DMO) and continuation from zero offset (inverse DMO),
the OC operators are related to the known forms of DMO operators: Hale’s Fourier
DMO, Born DMO, and Liner’s “exact log DMO.” The discovery of these relations
sheds additional light on the problem of amplitude preservation in DMO.
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APPENDIX A

SECOND-ORDER REFLECTION TRAVELTIME
DERIVATIVES

This appendix contains a derivation of equations connecting second-order partial
derivatives of the reflection traveltime with the geometric properties of the reflector
in a constant velocity medium. These equations are used in the main text of this
paper to describe the amplitude behavior of offset continuation. Let τ(s, r) be the
reflection traveltime from the source s to the receiver r. Consider a formal equality

τ(s, r) = τ1 (s, x(s, r)) + τ2 (x(s, r), r) , (A-1)

where x is the reflection point parameter, τ1 corresponds to the incident ray, and τ2

corresponds to the reflected ray. Differentiating (A-1) with respect to s and r yields

∂τ

∂s
=

∂τ1

∂s
+
∂τ

∂x

∂x

∂s
, (A-2)

∂τ

∂r
=

∂τ2

∂r
+
∂τ

∂x

∂x

∂r
. (A-3)

According to Fermat’s principle, the two-point reflection ray path must correspond
to the traveltime stationary point. Therefore

∂τ

∂x
≡ 0 (A-4)

for any s and r. Taking into account (A-4) while differentiating (A-2) and (A-3), we
get

∂2τ

∂s2
=

∂2τ1

∂s2
+B1

∂x

∂s
, (A-5)

∂2τ

∂r2
=

∂2τ2

∂r2
+B2

∂x

∂r
, (A-6)

∂2τ

∂s∂r
= B1

∂x

∂r
= B2

∂x

∂s
, (A-7)

where

B1 =
∂2τ1

∂s∂x
; B2 =

∂2τ2

∂r∂x
.

Differentiating equation (A-4) gives us the additional pair of equations

C
∂x

∂s
+B1 = 0 , (A-8)

C
∂x

∂r
+B2 = 0 , (A-9)

where

C =
∂2τ

∂x2
=
∂2τ1

∂x2
+
∂2τ2

∂x2
.
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Solving the system (A-8) - (A-9) for ∂x
∂s

and ∂x
∂r

and substituting the result into (A-5)
- (A-7) produces the following set of expressions:

∂2τ

∂s2
=

∂2τ1

∂s2
− C−1B2

1 ; (A-10)

∂2τ

∂r2
=

∂2τ2

∂r2
− C−1B2

2 ; (A-11)

∂2τ

∂s∂r
= −C−1B1B2 . (A-12)

In the case of a constant velocity medium, expressions (A-10) to (A-12) can be applied
directly to the explicit equation for the two-point eikonal

τ1(y, x) = τ2(x, y) =

√
(x− y)2 + z2(x)

v
. (A-13)

Differentiating (A-13) and taking into account the trigonometric relationships for the
incident and reflected rays (Figure 1), one can evaluate all the quantities in (A-10)
to (A-12) explicitly. After some heavy algebra, the resultant expressions for the
traveltime derivatives take the form

∂τ

∂s
=
∂τ1

∂s
=

sinα1

v
;

∂τ

∂r
=
∂τ2

∂r
=

sinα2

v
; (A-14)

∂τ1

∂x
=

sin γ

v cosα
;

∂τ2

∂x
= − sin γ

v cosα
; (A-15)

B1 =
∂2τ1

∂s ∂x
=

cosα1

v D cosα

(
−1− sin γ

cosα
sinα1

)
; (A-16)

B2 =
∂2τ2

∂r ∂x
=

cosα2

v D cosα

(
−1 +

sin γ

cosα
sinα2

)
; (A-17)

B1B2 =
cos6 γ

v2D2 a4
; B1 +B2 = −2

cos3 γ

v D a2

(
2 a2 − 1

)
; (A-18)

∂2τ1

∂x2
=

cos2 γ +DK

vD cos3 α
cosα1 ;

∂2τ2

∂x2
=

cos2 γ +DK

vD cos3 α
cosα2 ; (A-19)

C =
∂2τ1

∂x2
+
∂2τ2

∂x2
= 2 cos γ

cos2 γ +DK

vD cos3 α
. (A-20)

Here D is the length of the normal (central) ray, α is its dip angle (α = α1+α2

2
,

tanα = z′(x)), γ is the reflection angle
(
γ = α2−α1

2

)
, K is the reflector curvature at

the reflection point (K = z′′(x) cos3 α), and a is the dimensionless function of α and
γ defined in (47).

The equations derived in this appendix were used to obtain the equation

τn

(
∂2τn
∂y2
− ∂2τn
∂h2

)
= 4

(
τ
∂2τ

∂s ∂r
+

cos2 γ

v2

)
= 4

cos2 γ

v2

(
sin2 α +DK

cos2 γ +DK

)
, (A-21)

which coincides with (50) in the main text.
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APPENDIX B

THE KINEMATICS OF OFFSET CONTINUATION

This Appendix presents an alternative method to derive equation (70), which de-
scribes the summation path of the integral offset continuation operator. The method
is based on the following considerations.

The summation path of an integral (stacking) operator coincides with the phase
function of the impulse response of the inverse operator. Impulse response is by def-
inition the operator reaction to an impulse in the input data. For the case of offset
continuation, the input is a reflection common-offset gather. From the physical point
of view, an impulse in this type of data corresponds to the special focusing reflector
(elliptical isochrone) at the depth. Therefore, reflection from this reflector at a differ-
ent constant offset corresponds to the impulse response of the OC operator. In other
words, we can view offset continuation as the result of cascading prestack common-
offset migration, which produces the elliptic surface, and common-offset modeling
(inverse migration) for different offsets. This approach resemble that of Deregowski
and Rocca (1981). It was also applied to a more general case of azimuth moveout
(AMO) by Fomel and Biondi (1995) and fully generalized by Bleistein and Jaramillo
(2000). The geometric approach implies that in order to find the summation pass of
the OC operator, one should solve the kinematic problem of reflection from an elliptic
reflector whose focuses are in the shot and receiver locations of the output seismic
gather.

In order to solve this problem , let us consider an elliptic surface of the general
form

h(x) =
√
d2 − β (x− x′)2 , (B-1)

where 0 < β < 1. In a constant velocity medium, the reflection ray path for a
given source-receiver pair on the surface is controlled by the position of the reflection
point x. Fermat’s principle provides a required constraint for finding this position.
According to Fermat’s principle, the reflection ray path corresponds to a stationary
value of the travel-time. Therefore, in the neighborhood of this path,

∂τ(s, r, x)

∂x
= 0 , (B-2)

where s and r stand for the source and receiver locations on the surface, and τ is the
reflection traveltime

τ(s, r, x) =

√
h2(x) + (s− x)2

v
+

√
h2(x) + (r − x)2

v
. (B-3)

Substituting equations (B-3) and (B-1) into (B-2) leads to a quadratic algebraic
equation on the reflection point parameter x. This equation has the explicit solution

x(s, r) = x′ +
ξ2 +H2 − h2 + sign(h2 −H2)

√
(ξ2 −H2 − h2)2 − 4H2 h2

2 ξ (1− β)
, (B-4)
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where h = (r − s)/2, ξ = y − x′, y = (s + r)/2, and H2 = d2
(

1
β
− 1

)
. Replacing x

in equation (B-3) with its expression (B-4) solves the kinematic part of the problem,
producing the explicit traveltime expression

τ(s, r) =



1

v

√
4h2 − β (f + g)2

1− β
for h2 > H2

1

v

√
4h2 + β (F +G)2

1− β
for h2 < H2

, (B-5)

where

f =
√

(r − x′)2 −H2 , g =
√

(s− x′)2 −H2 ,

F =
√
H2 − (r − x′)2 , G =

√
H2 − (s− x′)2 .

The two branches of equation (B-5) correspond to the difference in the geometry
of the reflected rays in two different situations. When a source-and-receiver pair is
inside the focuses of the elliptic reflector, the midpoint y and the reflection point x
are on the same side of the ellipse with respect to its small semi-axis. They are on
different sides in the opposite case (Figure B-1).

Figure B-1: .

-1 -0.5 0.5 1

Reflections from an ellipse. The three pairs of reflected rays correspond to a
common midpoint (at 0.1) and different offsets. The focuses of the ellipse are at 1
and -1.

If we apply the NMO correction, equation (B-5) is transformed to

τn(s, r) =



1

v

√
β

1− β

√
4h2 − (f + g)2 for h2 > H2

1

v

√
β

1− β

√
4h2 + (F +G)2 for h2 < H2

. (B-6)

Then, recalling the relationships between the parameters of the focusing ellipse r, x′

and β and the parameters of the output seismic gather (Deregowski and Rocca, 1981)

r =
v tn
2

, x′ = y , β =
t2n

t2n + 4h2

v2

, H = h , (B-7)



32

and substituting expressions (B-7) into equation (B-6) yields the expression

t1(s1, r1; s, r, tn) =


tn
2h

√
4h2

1 − (f + g)2 for h2
1 > h2

t2
2h

√
4h2

1 + (F +G)2 for h2
1 < h2

, (B-8)

where

f =
√

(r1 − r) (r1 − s) , g =
√

(s1 − r) (s1 − s) ,

F =
√

(r − r1) (r1 − s) , G =
√

(s1 − r) (s− s1) .

It is easy to verify algebraically the mathematical equivalence of equation (B-8)
and equation (70) in the main text. The kinematic approach described in this ap-
pendix applies equally well to different acquisition configurations of the input and
output data. The source-receiver parameterization used in (B-8) is the actual defini-
tion for the summation path of the integral shot continuation operator (Bagaini and
Spagnolini, 1993, 1996). A family of these summation curves is shown in Figure B-2.
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Figure B-2: .

Summation paths of the integral shot continuation. The output source is at -0.5
km. The output receiver is at 0.5 km. The indexes of the curves correspond to the
input source location.


