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Strain determination from concentric folds
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Abstract

A new technique to determine flattening strain from initially concentric folds is described in this paper. The proposed

method is simple and involves direct measurements on fold profiles. It requires measurement of the distance between the center

of the fold to the middle of the layer, and this is plotted as a function of line orientation. The method needs few measurements at

fixed angular spacing resulting in quick estimation of strain.
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1. Introduction

Modification of the shape of folds with progressive

increase in bulk strain is common in multi-layered

systems consisting of competent and incompetent

layers. A competent layer typically takes up concen-

tric fold geometry (class 1B in the terminology of

Ramsay, 1967) as a result of shorting. At high

amplitudes, further shortening may result in modifi-

cation of the fold shape by flattening. With progres-

sive increase in strain in the system, the shapes of the

folds are modified, resulting in thickening in the fold

hinge region, thinning in the limb region, and gradual

reduction of the interlimb angle. The increase in strain

results in the transformation of fold shape from class

1B to 1C (Ramsay, 1967, p. 365–367). These changes

in geometry may be represented by graphs of layer

thickness variation and dip isogons patterns (Ramsay,

1967, p. 365–367). The shape modification of folds

follows two main processes.

(1) Folding of competent layers produces constant

orthogonal thickness in profile section.

(2) Kinematic amplification, in which fold shape

changes passively as a result of homogeneous

straining of the layered system.

Two previous methods (Ramsay, 1962, 1967; Lisle,

1992, 1997) are available for estimating the magnitude

of strain in folds. These methods assume that the

folded layers have suffered by flattening and have

undergone homogeneous deformation. Based on the

thickness of the folded layers, Ramsay (1962,1967, p.

411) proposed the tVa method [tV= ta/to vs. angle of

limb dip (a), where ta is the orthogonal thickness of

the folded layers at different inclinations (a) and to is

the thickness parallel to the axial surface of the fold],

which determines the amount of strain from plots of

folded layers where orthogonal thickness (t) and thick-
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ness parallel to the axial surface (T) of folded layers

varies as a function of the limb dip (Ramsay, 1967,

Figs. 7-79 and 7-80). This method has been used

frequently for the determination of strain in flattened

folds (Milnes, 1971; Hudleston, 1973; Gray and Dur-

ney, 1979).

Lisle (1992) proposed an inverse thickness method

on the basis of orthogonal thickness (t) of the folded

layers. In this method the thickness of the layer at any

point around the fold is inversely proportional to the

stretch (length final/length original) of the tangent to

the folded layer at the angle of dip at which the

thickness is measured. The strain ellipse can be

directly constructed by a graph on polar coordinates

where 1/t is plotted as a function of orientation of the

layer tangent. This method is valid only in the folds,

which have limb dips of less than f65j. The plotting
of data (1/t) as shown in Fig. 2b exhibit lack of data

points between limb dips of f65 to 90j, which may

lead to different strain ratios during their extrapola-

tion.

The present paper describes an alternative techni-

que to quantify the flattening strain in class 1C or 2

folds (Ramsay, 1967) in single competent layers.

These folds are assumed to have formed as concentric

folds and were subsequently overprinted by flattening.

In the present method, the distance (d) from the folded

layer to the center (described in the methodology) is

Fig. 1. (a) Sketch of a fold from Precambrian banded gneisses from Nordland, Norway (Lisle, 1985, 1992, p. 47). Lm is the trace of medial

surface, Lo is the outer and Li is the inner layer of the fold. C is the center of the fold and i is the inflection points on the medial surface of the

folded layer. Lines 1 through 9 (at 20j angular spacing) are the lines of different orientations w.r.t. reference line. (b) The strain ellipse described
by the present method. The distance ‘d’ is plotted on either side of the center as a function of orientation of lines (1–9) in (a).
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Fig. 2. (a) Traced fold profile from folded specimen collected from the Almora Crystallines of Garhwal Himalaya, India, and cut perpendicular

to the hinge of the fold has been used for strain determination. Dip isogons are indicative of class 1C fold (Ramsay, 1967). Lm—trace of median

surface, i—inflection points on Lm. (b) Strain ellipse/values obtained from fold (a) by inverse thickness method (Lisle, 1992). The extrapolation

of data points gives different strain ratios/ellipses. However, the ellipse made up of continuous line has been considered for comparison. (c)

Strain ellipse/values obtained, from (a), by proposed distance method. (d) Strain values obtained, from (a), by the method of Ramsay (1967, Fig.

7.79, p. 413).
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plotted in true orientation of that particular line, on

either side of the center. The data points are uniform

ally distributed for both the fold limbs (Figs. 1b and

2c) and the extrapolation of these points give very

precise strain ellipse directly.

The present method is based on the fact that, for

folds of approximately concentric shape prior to flat-

tening, the average length in the deformed state in any

direction has an aspect ratio comparable to the strain

ellipse. The strain ratio is thus simply the ratio of

longer axis/shorter axis. It is proposed to measure the

distance (d) between the median line (Lm) and the

center ‘C’ along lines of different orientations (Fig.

1a). These measured distances are used to construct

the strain ellipse (Fig. 1b). Like other methods this

method also assumes that the folded layers have

suffered flattening strain and have undergone homo-

geneous deformation.

2. Method

The method is as follows:

1. Make sure that the fold is observed in true profile

section (perpendicular to the fold axis).

2. Trace the single layer fold profile either from a

field photograph or from the specimen directly, and

draw the median line (Lm) passing through the

middle of the folded layer.

3. Define the inflection points (i) on the median line

(Lm) on both the fold limbs and join them by a

line-hereafter called the reference line (Figs. 1a

and 2a).

4. Draw a line connecting the hinge points of the

upper and lower contacts of the layers. This line

defines the axial trace of the fold (Fig. 1a).

5. Extend the axial trace up to the reference line.

The intersection point is referred to as the center

‘C’.

6. Draw lines 1,2,3,4,5. . . through center ‘C’ at

regular angular spacing (w.r.t. reference line). A

minimum of nine lines at intervals of 20j should

be drawn (Fig. 1a). In order to obtain more data

points and to increase the precision of the

method, this angular spacing can be reduced at

any convenient angular spacing, e.g. 10j (Fig. 2c)

or less.

7. The distance (d) from the center ‘C’ to the middle

of the folded layer (Lm) is measured along each

line (1–9).

The strain ellipse can be constructed on a polar

graph where distance (d) is plotted (on either side of

the center) as a function of line orientation (Fig. 1b

and 2c). The ellipse can be either visually drawn

through the points on the graph or calculated using

a least squares best fit (Erslev and Ge, 1990; Kana-

gawa, 1990).

3. Application of the method to natural folds

The present method was applied to two different

folds:

Fig. 1a sketch of the fold from Precambrian banded

gneisses from Nordland, Norway, previously analyzed

using a different method (Fig. 2b; Lisle, 1985, 1992,

p. 47), is used to demonstrate the present method of

strain determination. A comparison of results is listed

in Table 1.

Fig. 2 shows the application of the method to a fold

(Fig. 2a) traced from photograph from the Precam-

brian terrains of the Almora Crystallines of Garhwal

Himalaya, India, exhibiting class 1C geometry (Ram-

say, 1967) (Fig. 2a). To determine the strain from this

fold, different methods have been applied and the

results are compared with the present method. Table 2

indicates that there is a small variation in the strain

Table 1

Comparison of two methods of strain determination on the same

fold

S. no. Method Parameter Strain

ratio

1 Lisle, 1992 Inverse thickness 1.95

2 This paper Distance 1.91

Table 2

Comparison of three different methods of strain determination on

Fig. 2a

S. no. Method Parameter Figure no. Strain

ratio

1 Ramsay, 1967 Thickness Fig. 2d 1.55

2 Lisle, 1992 Inverse thickness Fig. 2b 1.44

3 Present method Distance Fig. 2c 1.56
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ratios obtained by the different methods, which use

different parameters.

4. Discussion

The ‘distance method’ presented in this paper is a

modified version of existing methods. Instead of using

thickness of the folded layer, the distance from the

center ‘C’ to the median line (Lm) in different

orientations is chosen as the variable to record fold

shape. The strain ratio obtained by the method sug-

gested by Lisle (1992) and Ramsay (1967), and that

obtained by the present method for two folds (Figs. 1a

and 2a) are in close agreement (Tables 1 and 2). The

small variation in the result is probably due to the fact

that each technique has its own set of assumptions.

Like all other methods, the present method is also

based upon the assumption that the folded layers have

suffered flattening and have undergone homogeneous

deformation. It differs from others in that it assumes a

roughly concentric fold shape rather than a parallel-

fold geometry. Advantages of this method over others,

is that it is precise, very quick and direct.
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