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Abstract

Cracks play a major role in most rocks submitted to crustal conditions. Mechanically, cracks make the rock much more

compliant. They also make it much easier for fluid to flow through any rock body. Relying on Fracture Mechanics and

Statistical Physics, we introduce a few key concepts, which allow to understand and quantify how cracks do modify both the

elastic and transport properties of rocks. The main different schemes, which can be used to derive the elastic effective moduli of

a rock, are presented. It is shown from experimental results that an excellent approximation is the so-called non-interactive

scheme. The main consequences of the existence of cracks on the elastic waves is the development of elastic anisotropy (due to

the anisotropic distribution of crack orientations) and the dispersion effect (due to microscopic local fluid flow). At a larger

scale, macroscopic fluid flow takes place through the crack network above the percolation threshold. Two macroscopic fluid

flow regimes can be distinguished: the percolative regime close to the percolation threshold and the connected regime well

above it. Experimental data on very different rock types show both of these behaviors.
D 2003 Elsevier B.V. All rights reserved.
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1. Introduction in that case. Similarly, the understanding and quanti-
The understanding and quantification of rock elas-

tic wave velocities variations is of great interest to

extract from seismic and seismological data any

information on the physical state of the rock. In the

oil industry, this has direct bearings on a quantifica-

tion of the oil content and the identification of the

fluid nature, i.e. oil or gas. In seismotectonics, an open

question is to know whether earthquakes can be

predicted or not. Elastic wave velocities variations

have been considered as a possible precursory effect
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fication of fluid flow through rocks is a key point for

the oil industry, the safety of any underground storage

and the possible hydro-mechanical coupling taking

place during fault motion. A great amount of data has

been obtained on these rock properties by Pr. Kern

during the last 20 years (Kern, 1978, 1982; Kern et al.,

1997). In crustal conditions, all rocks contain cracks.

Cracks represent an extremely small amount of poros-

ity. Yet they have been identified for a long time as a

major cause of elastic properties modifications (Sim-

mons and Brace, 1965; Walsh, 1965). Their existence

explain the differences observed between static and

dynamic moduli, and also the elastic anisotropy of

rocks which do not exhibit any mineral preferred

orientation (Kern, 1978). When fluids are present,
d.



Fig. 2. Stress field ryy in the case of mode I. Note the existence of a

shield zone (Sz) above and below the crack and that of an

amplification zone (Az) at the crack tips.
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cracks play another key role: they constitute a network

through which fluids can flow at a macroscopic scale,

making the rock permeable. This effect has been

analysed in terms of percolation theory (Dienes,

1982; Madden, 1983; Rivier et al., 1985) and exper-

imentally observed on various rock types (Fisher and

Paterson, 1992; Peach and Spiers, 1996). We present

in the following a way to deal with cracks in rocks

relying on two well established and fruitful bodies of

knowledge, namely Fracture Mechanics and Statisti-

cal Physics. We recall first the appropriate results to

be used, and apply them successively to the elastic

properties and to permeability.
2. How to deal with the damage which results from

cracking?

We examine in this section a few key results of

Fracture Mechanics and Statistical Physics, which are

of interest for our purpose. The following results

provide useful tools to deal with damage effects as

will be shown later on.

2.1. Crack mechanics

Fracture Mechanics has been developed through

the last 50 years at a point which is such that it

provides a broad framework to deal with cracks, in

particular in the simple case of an elastic behavior. For

plane cracks, it is classical to distinguish three basic

modes of crack surface displacement: mode I (open-

ing mode), mode II (sliding mode) and mode III

(tearing mode). Let us consider a single, traction-free,

crack in an isotropic, linear elastic solid, uniformly
Fig. 1. Loaded crack in an unloaded solid. This situation is

equivalent to the superimposition of (a) an unloaded crack in a

loaded solid, (b) an identical load applied on both the external

surface of the solid and the internal crack faces (case b is an

homogeneous stress state, so that everything is ‘‘as if’’ there was no

crack).
loaded on its boundary. This situation is equivalent to

that of the same solid with traction applied to the

crack faces and the solid boundary free, to within a

homogeneous stress state. Indeed, the second situation

(traction applied to the crack faces, solid boundary

free) can be obtained by adding to the first one

(traction free crack, solid boundary loaded) an appro-

priate and identical load on both the external solid

boundary and the internal crack face (Fig. 1). The

homogeneous stress state corresponding to this last

situation is that which would exist if no crack was

present.

We will concentrate in the following on situations

where crack faces are loaded. The stress and displace-

ment fields generated by a loaded crack in a linear

elastic solid can be represented by a superposition of

the fields produced by modes I, II and III. The

solutions are summarized by Kachanov (1993), who

pointed an interesting feature of the mode I field in the

2D case (Fig. 2): there exists in that case a region of

compressive stress which is rather large above and

below the crack, whereas a small tensile region is

present at the crack tips. This has important conse-

quences for crack interactions when a population of

cracks is considered. If a second crack is placed

approximately above a first one, there will be a

shielding effect. If it is lined up with the first one,

an amplification effect is expected. Since all rocks

contain many cracks, such interactions have to be

accounted for.

How does a crack affect elastic waves? The stress

field of the elastic wave, when applied to the crack

faces, produces an additional strain which would not

exist in the absence of the crack. In the ideal case that

we have considered, this strain is reversible since no

friction and no crack propagation are considered. The
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existence of the additional strain however means that

the elastic stiffness are lower in the cracked rock than

in the uncracked rock (or equivalently, the compli-

ances are larger). In order to calculate the additional

strain, a preliminary step is to derive the crack open-

ing displacement (also known as displacement dis-

continuity)
!
b . The displacement discontinuity is

defined as
!
b ¼ !u1 �!u2 , where !u1 is the displace-

ment vector of a point on the first crack face and !u2
that of a point on the second crack face. The average

additional strain due to a planar crack of surface area

S in a sample rock volume V is: deij = 1/2V(hbiinj +
hbjini)S, where !n is the unit normal to the crack and

h!bi the average displacement discontinuity at the

crack surface. It results that if the crack orientation

is known, the extra strain is known and so are the

modified stiffness. Following the previous scheme,

the way a single crack affects elastic waves is thus

relatively easy to quantify. Kachanov (1993) intro-

duced the symmetric second rank crack compliance

tensor Bij, which expresses the vector of average

displacement discontinuity hbii in terms of the uni-

form traction
!
t applied to the crack faces: hbii =Biptp.

The tensor Bip is known for circular (and elliptical)

cracks in the 3D case. Then using tp = rpqnq, one gets:
deij = 1/2V(Biprpqnqnj+Bjprpqnqni)S. The extra strain

can also be written in terms of the extra compliances:

dSijkl ¼
S

4V
ðBiknlnj þ Bilnknj þ Bjknlni þ BjlnkniÞ

ð1Þ

The increase in compliances correspond to a

decrease in stiffness, from which the velocity decrease

is obtained. The crack compliance tensor can be

expressed as a sum of a normal, BN, and shear, BT,

term (Sayers and Kachanov, 1995): Bij =BNninj +BT

(dij� ninj). We will consider later on penny shaped

cracks with radius c. In that case, if E is the rock

Young modulus and v its Poisson ratio, BT=(32

(1� v2)c)/(3pE(2� v)) and BN/BT = 1� (v/2) for dry

cracks, or BN/BT = 1� (v/2)(d/1 + d) for fluid saturated

cracks (Kachanov, 1993). The above results are valid

for an isotropic elastic solid, which is the situation we

are interested in. The parameter d characterizes the

coupling between the stress and the fluid pressure:

d ¼ b�1 Ef
Kf

ð2Þ
where E is the intact rock Young modulus, Kf the fluid

bulk modulus, f the crack aspect ratio (f=w/c where

w is the crack aperture) and b is a numerical factor

such as b = 16(1� v2)/3p. Relying on the above

results, it is then possible to quantify the effects of a

population of cracks within various approximations as

examined in Section 3. In order to derive the modified

compliance in a realistic case, the previous results on a

single crack constitute a necessary, but not sufficient

step. As far as the elastic properties are concerned,

extrapolating from a single crack to a population of

cracks is not straightforward. How to account for

crack interactions? This question points to effective

media theories, which will be considered in Section 3.

2.2. Statistical physics

Another important question examined in this paper

is: how does a population of cracks modify the rock

permeability? Statistical Physics allows us to address

in a simple way that question because—through per-

colation theory—it is the appropriate tool to quantify

the connectivity issue. Fluid flow through a planar

single crack is a well-known process which is quanti-

tatively described by Poiseuille law, at least if rough-

ness effects are negligible. A cracked rock will have

however a zero permeability as long as the cracks do

not form a connected network. Connection occurs at a

threshold called the percolation threshold. Percolation

theory provides a framework to calculate this threshold

(Stauffer and Aharony, 1992). Percolation has been

mainly investigated on regular geometric networks. In

such cases, cracks are considered as bonds, which are

randomly distributed over a periodic 2D or 3D net-

work. A key parameter is the probability p for a bond

to be occupied by a crack. The percolation threshold is

reached at a critical value pc, which depends on the

network geometry. For instance, pc = 0.5 for bond

percolation on a 2D square lattice and pc = 0.18 for

bond percolation on a 3D bcc lattice. In real rocks,

however, cracks are distributed continuously through

the 3D space. In order to take into account this fact, it

is useful to introduce the statistical concept of

excluded volume (De Gennes, 1976). The excluded

volume Ve is the average volume around one object

(here a penny shaped crack) within which a second

similar object must have its center in order for the two

objects to intersect. In the case of a penny shaped crack
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of radius c, Ve = p2c3 (De Gennes, 1976). Assuming a

homogeneous distribution of N cracks per unit volume,

one can show that pc p2/4Nc3 (Guéguen and Dienes,

1989) for a coordination number of 4 (i.e. in average

each crack has 4 neighbors). Assuming also a value of

1/3 for pc, one sees that the percolation threshold is

expected for a critical value of the quantity Nc3 such as

Nc3 = 0.13. As will be seen in Section 3, the quantity

Nc3 is a key parameter for both the elastic properties

and permeability. Let us point out that it is the simplest

nondimensional quantity, which can be constructed

from N and c. The value of 0.13 should be regarded as

an approximate value because of the approximations

which have been made. It is clear however that there

are two distinct regimes to be considered, depending

on whether or not Nc3V 0.1. Below the percolation

threshold, the overall permeability is zero (no crack

connection).
3. Elastic wave velocities

Because the elastic moduli values decrease when

cracks are present, as explained in Section 2, the elastic

wave velocities are also expected to decrease. Since

any velocity is expressed in terms of some modulus M

and density q by V= (M/q)0.5, and because the crack

porosity is so small that the q decrease induced by

cracking is much less than the M decrease, such a

behavior is simple to understand. However two other

important effects will take place as well: the develop-

ment of anisotropy and, if the rock is fluid saturated,

dispersion. Before investigating these effects, it is

necessary to extend the results established in Section

2 for a single crack to the case of a population of cracks.

3.1. Effective media theories: approximate schemes

for calculating compliances

To extend the results obtained for a single crack

requires to address the issue of crack interactions.

Calculating exactly the interactions of a population of

many cracks is a very difficult task. As shown below,

there exist however some simple and efficient ways to

get around this difficulty. This can be approximately

done by using Effective Media Theories (EMT). Two

different approaches can be used in EMT calculations.

One is the approximation of an effective matrix, the
other the approximation of an effective field. In the

first case, each crack is assumed to be isolated in a

medium, which is the effective matrix. The properties

of this matrix are calculated to take approximately

into account crack interactions. The calculations fol-

low then the scheme presented in Section 2 for an

isolated crack. In the second case, crack interactions

are accounted for through an effective stress, which is

not the applied stress but the applied stress modified

by the presence of cracks.

A detailed overview of the results relative to effec-

tive elastic properties of cracked solids has been given

by Kachanov (1992,1993). Of special interest is the

model of noninteracting cracks. As shown by Kacha-

nov, this model remains accurate at high cracks den-

sities, provided the location of crack centers are at

random. It is an effective matrix model; the simplest

one indeed since the matrix is assumed to be the intact

rock. We give below the results of this model because

of their broad range of validity and their broad field of

application. There are in fact two different ways of

understanding why it is so. At a microscopic level,

crack interactions exist but compensate approximately.

The shielding and amplification effects examined in

Section 2 cancel each other in average. At a macro-

scopic level, the effective stress can be approximately

taken as the volumetric averaged field. But it is a well-

established result that the volumetric averaged stress

field is not modified by the presence of cracks. The

simplest effective stress model leads thus also to the

non-interacting crack model.

3.2. Anisotropy and crack density

We adopt in the following the non-interacting

scheme in order to calculate the elastic compliances

and hence the elastic wave velocities in terms of crack

density. The cracks are assumed to be identical, disc

shaped, with a radius c. The results of Section 3.1 give

the extra compliances in terms of the tensor Bij and the

values of the Bij components. Assuming an homoge-

neous distribution of N cracks per unit volume, the

extra compliances can be written as:

dSijkl ¼ pNc2
�
BT

4
hðdiknjnl þ dilnjnk þ djkninl

þ djlninkÞi þ ðBN � BTÞhninjnknli
�

ð3Þ
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Let us introduce the normalizing factor h such as:

h ¼ 3Eð2� vÞ
32ð1� v2Þ ð4Þ

Then Eq. (3) is modified into:

dSijkl ¼
Nc3

h

1

4
hðdiknjnl þ dilnjnk þ djkninl þ djlninkÞi

�

þ 1� v

2

� � d
1þ d

� 1

� �
hninjnknli

�

Following Sayers and Kachanov (1991, 1995) and

Schubnel et al. (2003), let us define the second rank

tensor aij* =Nc3hninji, which is the crack density

tensor. We note that tra* = akk* =Nc3. This last quantity

is a key parameter for crack connectivity as shown in

Section 2. Let us define also a fourth rank tensor

bijkl* =Nc3((BN/BT)� 1)hninjnknli, which is bijkl* =Nc3

[(1� (v/2))(d/(1 + d))� 1]hninjnknli. These tensors

represent respectively the second order moment and

4th order moment of the crack orientation distribution

function. We will use the following notations:

aij* ¼ ðtra*Þhninji ð6Þ

bijkl* ¼ 1� v

2

� � d
1þ d

� 1

� �
ðtra*Þhninjnknli ð7Þ

Then the extra compliance tensor is expressed as:

dSijkl ¼
1

h

�
1

4
ðdikajl*þ dilajk*þ djkail*þ djlaik* Þ þ bijkl*

�

ð8Þ

For simplicity, we now assume that the anisotropy

is of the transversely isotropic type (hexagonal sym-

metry). Indeed, any more complex symmetry would

be very difficult to deal with for practical reasons. The

transversely isotropic symmetry corresponds to five

independent elastic constants and the next step in

increasing complexity involves nine independent elas-

tic constants (orthorhombic symmetry). The defini-

tions of both tensors a* and b*, together with the

relation 2dS1212=(dS1111� dS1122) imposed by the
choice of a transversely isotropic symmetry (Nye,

1979), lead to the following relations:

dS1111 ¼ dS2222 ¼
1

h
ða11* þ b1111

* Þ

dS3333 ¼
1

h
ða33* þ b3333

* Þ

dS1212 ¼
1

h

a11*

2
þ b1111

*

3

� �

dS2323 ¼ dS3131 ¼
1

h

a11* þ a33*

4
þ b1133

*

� �

dS1122 ¼
1

h

b1111
*

3

� �

dS2233 ¼ dS3311 ¼
1

h
b1133
* ð9Þ

The set of Eqs. (2), (4), (6), (7) and (9) allow to

calculate the cracked rock elastic compliances, and

hence wave velocities, in terms of three material

parameters of the intact rock and of the fluid: v, E,

Kf, one geometrical crack parameter f and the two

crack density tensors a* and b*. The five independent
elastic constants of the transversely isotropic symme-

try correspond to the five components a11* , a33* , b1111* ,

b3333* and b1133* of the second and fourth order crack

density tensors. These last five parameters depend

only on the crack orientation distribution function. It

is thus possible to predict and quantify the elastic

anisotropy if the crack orientation distribution func-

tion is known. Alternatively, it is possible to extract

from elastic wave velocities data the crack orientation

distribution function. An interesting point is that we

can discriminate between dry and saturated cracks

because in the first case Kf = 0 and d!l, whereas in

the second one KfJ 0 and dc 0. More precisely,

these two possibilities correspond to two values of the

b* tensor, which can be summarized as:

bijkl
* ¼ �c tra*hninjnknli with c

¼ v

2
ðdryÞ or c ¼ 1 ðsaturatedÞ ð10Þ
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The previous model was checked against exper-

imental data in two very different cases, one corre-

sponding to a dry sandstone (Scott et al., 1993) and

the other to a saturated granite (Schubnel et al.,

2003). The first case was previously discussed by

Sayers and Kachanov (1995) who have shown that

the b* values are negligible in the dry case. In

agreement with Eq. (10): with vf0.14 and c = v/2,
the b* values are at least one order of magnitude

lower than the a* values (in the dry case), and crack

density tensor components can be extracted with

reasonable confidence from a set of four independent

elastic velocities. Fig. 3a and b shows velocity

measurements performed by Scott et al. (1993) on

a dry Berea sandstone sample at 20 MPa confining

pressure and the crack density as inferred form those

measurements by Sayers and Kachanov (1995),

respectively. During this experiment, P velocities

were measured along the vertical axis (referred as

3 here) and the horizontal one. Transverse isotropy

was assumed so that horizontal axis 1 and 2 were

equivalent. On Fig. 3a, Vij refers to the wave
Fig. 3. Dry triaxial experiment on Berea sandstone at 20 MPa confining p

perpendicular to the maximum compressive stress measured by Scott et a

circles), V31 and V32 (plain squares) and V12 (open squares) in the coord

compressive stress. (b) Components a11* = a22* = (solid squares) and a33* of the

inverting the wave velocities shown on (a).
propagating parallel to axis i and vibrating along

axis j. V33 is therefore the P wave propagating along

the vertical axis of the sample, whereas V12 the

horizontal shear wave propagating in the horizontal

plane. One should note on Fig. 3a that P wave

anisotropy and S wave birefringence is shear

enhanced as the differential stress increase, which

is certainly the result of crack nucleation and prop-

agation (i.e. crack density increase). Results on Fig.

3b show that during such a triaxial compression test,

total crack density (tr(a*) = 2a11* + a22* ) actually

increases at the onset of dilatancy and reaches a

total value close to 1 near rupture (in the brittle

regime). Elastic wave anisotropy can thus be inter-

preted as a crack density anisotropy, since the total

vertical crack density (a11* + a22* for a transversely

isotropic medium) show a significant increase com-

pared to the horizontal crack density that remains

more or less constant. Let us point out that, in their

analysis, Sayers and Kachanov considered the whole

range of experiments performed at confining pres-

sure of 20, 60 and 138 MPa on dry Berea sandstone
ressure. (a) Ultrasonic wave velocities for propagation parallel and

l. (1993). The velocities plotted are V33 (plain circles), V11 (open

inate system defined in this paper with Ox3 parallel to the maximum

crack density tensor obtained by Sayers and Kachanov (1995) when
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by Scott et al. (1993). They noted that the samples

loaded at 20 and 60 MPa exhibit dilatancy prior to

failure, whereas the sample loaded at 138 MPa

confining pressure exhibited inelastic compaction. It

is clear that at higher confining pressure, brittle

behavior and dilatancy enter in competition with

compaction and cataclastic flow in a porous sand-

stone. These effects have been thoroughly investi-

gated by Wong et al. (1997). In such cases, a simple

crack analysis like the following one cannot take into

account the porosity reduction that also affects elas-

tic wave velocities.

The second case that we consider is the saturated

one, c = 1, so that the b* values are not negligible, and

all five a*11, a*33, b1111* , b3333* and b1133* constants

should be extracted from at least five independent

velocity paths. Fig. 4 shows elastic wave velocity

measurements obtained during a wet triaxial compres-

sion test on Oshima granite (Schubnel et al., 2003).

The confining pressure was equal to 40 MPa and

the pore pressure to 10 MPa. Fig. 4a–c shows P,

SV and SH waves velocity measurements respec-

tively. All velocities increase as the confining pres-

sure is raised up to 40 MPa. Vertical anisotropy

becomes lower than 10% as the cracks are being

closed with effective mean stress. In the intermedi-

ate range of effective pressure, horizontal anisotropy

becomes almost negligible and the sample fits a

transverse isotropy. The onset of dilatancy CVis
reached at a critical value of effective mean stress

and, beyond CV, horizontal and diagonal velocities

decrease because of crack growth and propagation.

Vertically measured P velocity stays nearly constant,

which suggests that most of the stress-induced

microcracks are vertical, and thus invisible to ver-

tical P wave. This corresponds also to an increase

in the acoustic emission rate. Fig. 4d shows the

crack density a* and b* components as inferred

from those velocity measurements. An increase in

crack density occurs when CVis reached, the vertical

component a11 increasing faster. Total crack density

tr(a*) = 2a11* + a33* is larger than 1 at failure. The

components of the tensor b are negative and diag-

onal terms b1111 and b3333 turn out to become large

close to failure as expected in the wet case from

Eq. (10). In this experiment on a compact rock, no

compaction can occur and the crack effect is not

blurred by other effects like in a porous sandstone.
To conclude this section, it is interesting to compare

Sayers and Kachanov’s (1991, 1995) model to several

previous models which have been frequently used.

Such a comparison can be found also in Kachanov

(1993). Hudson (1980, 1981, 1986) developed a

dynamic theory considering long wavelength scattered

waves and using a pertubation analysis. From Eshelby

(1957) results, he obtained the elastic constants for dry

and saturated cracks. Anderson et al. (1974), Soga et

al. (1978) and Ayling et al. (1995) models follow the

same lines. However, an important distinction is not

accounted for in those models. If a rock contains

cracks of various orientations, or cracks and equant

pores (both of these situations are certainly the most

common ones) local flow (also called squirt flow)

takes place below a certain frequency (O’Connell

and Budiansky, 1977). Then a major distinction should

be introduced between the two following cases: low

frequency (i.e. local isobaric state for the fluid in pores

and cracks) and high frequency (i.e. variable fluid

pressure from crack to crack). In addition, the case

of dry cracks can also be considered. This frequency

effect will be examined further in Section 3. The above

mentioned models only apply to either the dry case or

the saturated high frequency case. They are not valid

for the saturated low frequency case, which turns out to

be the most important one for field data. On the other

hand, the great advantage of the present model is that:

(1) It is directly derived from the elastic potential

energy analysis of the rock and therefore relies on

a clear micromechanical analysis.

(2) It permits a simple derivation of elastic moduli for

any crack and fluid distribution.

(3) It enables us to take into account any kind of fluid

in any kind of situation (drained, undrained or

high frequency wet response of the rock as we will

see in Section 3.3).

3.3. Frequency effects

The low frequency compliances of the saturated

cracked rock (Sijkl)u can be related to the drained

cracked rock compliances Sijkl and the a, b tensors

using the above relations and the Brown–Korringa

equations (Brown and Korringa, 1975). The low

frequency compliances are indeed equal to the

undrained compliances of the poroelastic theory, and



Fig. 4. Wet triaxial experiment on Oshima granite at 30 MPa effective confining pressure. Confining pressure r3 was equal to 40 MPa and pore

pressure Pp equal to 10 MPa. (a) shows P wave velocities measurements versus effective mean stress PV=[(r1 + 2r3)/3�Pp]. Error bar on P

wave measurements is F 0.1 km/s. Plain diamonds show vertical P wave velocity, crosses, mean diagonal P velocity. Open circles, squares and

diamonds show horizontal P wave at 0j, 60j and 120j from reference plane respectively. (b) and (c) show SV and SH wave velocities

respectively. Error bar on S wave measurements is F 0.15 km/s. Plain diamonds show mean diagonal S velocity. Open circles, squares and

diamonds show horizontal S wave at 0j, 60j and 120j from reference plane, respectively. (d) shows the normalized crack density tensors aij*
and bijkl* versus effective mean stress as inferred from those velocity measurements. a11* represents the vertical crack density tensor component.

Total crack density is equal to tr(aij* ).
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the drained compliances are equal to the dry ones. The

Brown–Korringa equations are:
Sijkl � ðSijklÞu ¼
½ðSijmm � ðSijnnÞs
½Sklpp � ðSklqqÞs


1

K
� 1

Ks

þ /0

� 1

Kf

� 1

Ks

� (11)
where the (Sijkl)s are the uncracked rock compliances,

Kf and Ks are respectively the fluid and solid phase

bulk moduli, /0 is the rock porosity. Let us point out

that, if we consider an isotropic elastic solid matrix,

only two independent (Sijkl)s have non-zero values and

Eq. (11) is similar to the Biot–Gassman relation
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(Gassmann, 1951; Biot 1956a,b). In the general ani-

sotropic case, using Eq. (8) and neglecting the b
components for the dry case, Brown and Korringa

(1975) equations become:

Slfijkl ¼ ðSijklÞu ¼ ðSijklÞs þ
1

h

�
1

4
ðdikajl*þ dilajk*

þ djkail*þ djlaik*Þ
�

� 1

h2
aij*akl*

tra*
h

þ /0

1

Kf

� 1

Ks

� �

The high frequency compliances are obtained from

Eq. (8) without neglecting the b components, so that:

Shfijkl ¼ ðSijklÞs þ
1

h

�
1

4
ðdikajl*þ dilajk*þ djkail*

þ djlaik*Þ þ bijkl
*

�
ð13Þ

Then it results that the differences between the high

and low frequency compliances are given by:

Shfijkl � Slfijkl ¼
1

h
bijkl
* � aij*akl*

tra*þ h/0

1

Kf

� 1

Ks

� �
2
664

3
775

ð14Þ

In the above equation, the b components are

calculated with c = 1. Recalling that E = 3Ks(1� 2v),

h can be expressed in Eq. (14) in terms of Ks and v.

Then we get:

1

h
¼ 32ð1� v2Þ

9ð1� 2vÞð2� vÞ
1

Ks

ð15Þ

so that the difference between high and low fre-

quency velocities depend only on the crack density

tensors, the (uncracked) solid and fluid elastic mod-

uli, and the porosity. The elastic wave velocity
anisotropy is thus found to depend on the frequency

in general. The low frequency limit corresponds to a

situation where fluid pressure is equilibrated in pores

and cracks. This is no longer true at high frequen-

cies, a situation that is in particular that of laboratory

measurements. This frequency dependent behavior

produces a dispersion, which was experimentally

observed in isotropic media and generally called

‘‘squirt flow’’ mechanism (Mavko and Nur, 1975;

O’Connell and Budiansky, 1974, 1977; Thomsen,

1985). Accounting for this effect is of primary

importance to interpret seismic data and/or to extrap-

olate laboratory elastic wave velocities measure-

ments. Typically, the theoretical cutoff frequency is

of the order of fc = fo
3Eo/24g (Le Ravalec et al.,

1996) where fo is the aspect ratio of the crack, Eo

the intact rock Young modulus and g the fluid

viscosity. For example, assuming fo = 10
� 3, Eo = 75

GPa, g = 10� 3 Pa s� 1 the cutoff frequency is equal

to fcf 3 kHz.

In the case of isotropic rocks, models (Mavko

and Jizba, 1991; Le Ravalec and Guéguen, 1996)

suggest that a small density of cracks may result in

a quite large dispersion of the seismic wave veloc-

ities. However, most of cracked rocks are found,

experimentally, to be seismically anisotropic. Fig. 5

shows numerically predicted dispersion obtained for

two different transversely isotropic distributions of

cracks (Schubnel and Guéguen, 2003). The propa-

gation angle c is that between the vertical axis and

the wave vector. Dispersion was calculated from:

Disp=(VHF(c)�VLF(c))/VHF(c)� 100 and results are

shown for crack densities equal to 0.1, 0.25, 0.5 and

1. The first case (Fig. 5a and b) corresponds to a

distribution of horizontally aligned cracks. The dis-

persion on P wave (Fig. 5a) can be as high 30% for

waves propagating along the axis of symmetry and

is negligible in the horizontal plane of the rock.

Maximum SV wave dispersion (Fig. 5b) is observed

for wave propagating along a vector at f 50j with

the vertical. Let us point out that for such distribu-

tion, as intuitively expected, SH waves show no

dispersion. The second distribution we considered

(Fig. 5c and d) corresponds to that of vertical cracks

in zone around the vertical axis (symmetry on /). In
such case, dispersion on P wave (Fig. 5c) and on SH

wave (Fig. 5d) is maximum in the horizontal plane.

Though maximum dispersion should be smaller than



Fig. 5. S wave dispersion for two different distribution of cracks. The first case (a and b) corresponds to a distribution of horizontally aligned

cracks. The second distribution (c and d) corresponds to that of vertical cracks in zone around the vertical axis (symmetry on /). Results were
obtained for a Young’s modulus equal to 75 GPa, a Poisson ratio of 0.25 and an average aspect ratio f0 equal to 0.01. Results are displayed for

crack densities equal to 0.1 (open triangles), 0.25 (plain circles), 0.5 (open diamonds) and 1 (plain squares). (a) and (b) show P and SV wave

dispersion versus the wave propagation angle c, respectively, in the case of horizontally aligned cracks. NB: In the case of horizontally aligned

cracks, SH waves show no dispersion. (c) and (d) show the P and SH wave dispersion versus the wave propagation angle c, respectively, in the

case of symmetrically aligned vertical cracks (symmetry around the vertical axis, cracks normal in the horizontal axis). NB: In the case of

symmetrically aligned vertical cracks, SV waves show no dispersion.
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15%. For such distribution of cracks, SV waves

show no dispersion, as expected.
4. Permeability

The development of a crack network modifies

strongly the rock permeability. Following Dienes

(1982) and Guéguen and Dienes (1989), the perme-

ability of a cracked rock in the isotropic case and for

penny shaped cracks can be written as:

k ¼ 4p2

15
f3Nc5f ð16Þ
where f is as above the crack aspect ratio (f =w/c), N
the number of cracks per unit volume, c the crack

radius and f the fraction of cracks which are hydrauli-

cally connected.

Although the above result is not relevant for the

anisotropic case, it can be extended to it. This result

allows us however to separate two main regimes: the

percolative regime and the connected regime.

4.1. Percolative regime

As recalled in Section 2, the percolation threshold

for a distribution of cracks is expected to be reached

for a value of the quantity tra* = Nc3 such as



Fig. 7. Experimental data of permeability changes on (a) synthetic

fine grained halite (Peach and Spiers, 1996) and (b) Carrara marble

(Zhang et al., 1994).
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tra* = 0.1. Below this threshold, the crack system is

not connected and the permeability is 0. Using the

Bethe lattice model, Guéguen and Dienes (1989) have

shown that f could be approximated by:

fg
9

4
p� 1

3

� �2

for
1

3
< p < 1 ð17Þ

where pfp2/4Nc3 is the probability for two cracks to

intersect, with Nc3 = tra*. Note that f = 0 when p < 1/3

and f = 1 when p>1. At low crack densities, the

permeability is thus zero. When crack nucleation

and/or propagation takes place, the connectivity takes

a positive non-zero value at the percolation threshold

and then increases progressively up to 1 when all

cracks are connected (excluding dead ends). The

behavior, which is predicted for permeability, is

shown on Fig. 6. This behavior is typical of percola-

tion and was obtained as well by many different

models (Frisch et al., 1962; Stauffer and Aharony,

1992). It is of interest to compare Fig. 6 to some

experimental results. It appears that permeability

increases by several orders of magnitude in the

percolative regime. Results on granite (Brace et al.,

1968), synthetic fine grained halite (Peach and Spiers,

1996) and Carrara marble (Fisher and Paterson, 1992;

Zhang et al., 1994) agree with these predictions (Fig.

7), as shown by Zhu and Wong (1999). More specif-
Fig. 6. Connectivity as a function of crack density tra*. Below the

percolation threshold, the connectivity, and hence the permeability

is 0. At high crack density values, connectivity is 1.
ically, Fig. 7 shows experimental results of k variation

with uniaxial strain. Cracking is involved in the

deformation regime so that strain is linked with either

crack density N or crack length c changes, or both.

The experimentally observed increase in k reflects

these changes. Since the connectivity factor f depends

on N and c as well, f increases strongly up to the point

where the overall crack network is well connected

(nb: f close to 1 on Fig. 6).

4.2. Connected regime

Above the percolation threshold, connectivity

increases up to 1. Further increase in permeability is

however possible due to the nucleation and/or prop-

agation of dilatant microcracks, as expected from Eq.

(16) since the value of the parameters N and c

increases. Dilatancy is produced by the induced wing

cracks and also by frictional sliding on rough crack

surfaces (Kachanov, 1982). In this connected regime,

Simpson et al. (2001) have calculated the evolution of

the full permeability tensor by coupling the Kachanov

(1982) model with the statistically based Dienes

(1982) model, which enables calculation of perme-

ability in anisotropic cracked media. Numerical pre-

dictions of the model are in quantitative agreement

with published experimental results, which show a

moderate permeability increase (factors of 3–4) in

this regime (Zoback and Byerlee, 1975). However, in



Fig. 8. Normalized permeability in the maximum compression

direction r1 (solid line) and in the direction of minimum

compression r3 (dashed line), as predicted by Simpson et al.

(2001) in the connected, damage regime. Permeability k0 is the

initial granite permeability for k= 0 (k0f 10� 19 m� 2). The crack

density value is tra*= 0.2. Permeability is plotted as a function of

the effective stress ratio k̄=(r1 + pf)/(r3 + pf), where pf is the pore

fluid pressure. The roughness parameter w is equal to 0, 0.2 or 0.5.
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order to achieve agreement with realistic crack den-

sities, additional dilatancy due to frictional sliding on

rough cracks surfaces should be taken into account.

Although the permeability is the greatest in the

direction of the maximum compressive stress r1,

permeability anisotropy is relatively small ( < 10) for

anticipated effective stress ratios and friction coeffi-

cients. Fig. 8 shows the predicted behavior for an

initial crack density value tr(a*) of 0.2, i.e. just above
the percolation threshold. The calculation has been

done assuming a roughness parameter of 0, 0.2 and

0.5. The friction coefficient was equal to 0.6. This

means that, when the original shear cracks slide past

each other, they undergo an additional separation due

to uplifting at asperities on the crack surface. The

separation w is assumed to be linearly proportional to

the amount of sliding u (i.e., w =wu where w is the

roughness parameter). When w = 0, the wing crack

still dilates but the relatively small increase in aperture

is not sufficient to explain the permeability enhance-

ment observed experimentally. The model involves

also other elastic and material parameters. The results

depend specifically on two quantities B and S such

that S =� r3(pl0)
0.5/KIc and B =� r3(2p)

0.5(1� v2)/E.

KIc is the fracture toughness, l0 is the half length of the

original shear cracks, E is the Young modulus and v
the Poisson’s ratio. The results in Fig. 8 correspond to

S = 0.44 and B/S = 7� 10� 3.
5. Conclusions

Fracture mechanics and statistical physics have

been shown to be two key tools to deal with crack

damage in rocks. Effective elastic properties of dry

and saturated cracked rocks can be derived up to high

crack densities. An important result is that it is

possible to express the elastic compliances in terms

of the crack density tensor and the intact rock and

fluid properties. The results show that the elastic rock

anisotropy is directly given in terms of the crack

density tensor components. Moreover, high and low

frequency elastic wave velocities can differ up to 30%

in saturated cracked rocks at high crack densities. The

implication is that it is not possible to extrapolate

laboratory (high frequency) data to in situ (low

frequency) situations. Total crack densities tr(a*)
cover the range 0–1.5. Macroscopic fracture appear

at tr(a*) values between 1 and 1.5. However, below 1,

an important threshold value of the crack density is

that of percolation threshold, close to 0.1. Below this

value, the rock permeability is 0. Close to 0.1, the

percolative regime represents a transition between 0

and finite permeability. Above 0.1, the permeability is

that of a connected regime where permeability can

increase due to crack propagation. The implication is

that permeability in deforming rocks (in the brittle or

semi-brittle regimes) is not constant.
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