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Abstract

We demonstrate some of the effects of fluid overpressures and seepage forces in tectonics using the results of scaled

physical models. According to von Terzaghi’s principle, the total state of stress in a saturated porous medium is the sum of

an effective stress which controls the deformation and an isotropic fluid pressure. In tectonics, for any variation in pore fluid

pressure, it is common to assume that total stresses are constant. Such an assumption is not always warranted. In experiments

where air flows through sand packs, we demonstrate that gradients in fluid overpressure cause seepage forces and that these

may modify total stresses. Using these principles, we have obtained yield functions for Fontainebleau sand at very small

effective stresses (>5 Pa). We have corrected our results and other previously published results for significant effects of

sidewall friction. For normal stresses larger than 30 Pa, the sand has a linear Coulomb yield function. The corrected cohesion

is much smaller than previously reported. In extensional tests involving vertical fluid flow, the dihedral angle between

conjugate normal faults decreases as effective stresses tend to zero. For nonvertical fluid flow, seepage forces modify the

principle directions of stress, producing listric faults. In a sloping sedimentary sequence, the dip of normal faults depends on

the overpressure gradient. We have also obtained a reorientation of principal stresses in two-dimensional numerical models.

By introducing a layer of small permeability, we have been able to induce gravitational gliding in an overpressured sloping

sand pack.
D 2003 Elsevier B.V. All rights reserved.
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1. Introduction solidation in one dimension. He became famous for
In the 1920s and 1930s, Paul Fillunger and Karl von

Terzaghi investigated the mechanical behaviour of

saturated porous solids as part of their work on soils

and embankments. von Terzaghi (1923) studied con-
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having been the first, apparently, to discover the

principle of effective stress. Nevertheless, it is clear

from the work of Fillunger (1914) that he, too, fully

understood this principle (de Boer, 2000). Fillunger

investigated the force of uplift on a dam and the

frictional drag (now known as seepage force) due to

flow of a liquid through a porous medium. He was the

first to state clearly that constitutive equations for

porous media should not be expressed in terms of total

stresses alone.
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Biot (1941) generalized the theory of von Ter-

zaghi (1923) to three dimensions, providing a

basis for many further developments where fluid

and deformation are coupled in a feedback manner

(Nur and Byerlee, 1971; Garg and Nur, 1973;

Robin, 1973; Rice and Cleary, 1976; Strayer

et al., 2001). By carrying a part of the total stress,

the fluid affects the likelihood of failure in the

solid framework. As it flows through pore space,

the fluid imparts frictional forces (seepage forces)

to the solid framework, thereby modifying the

balance of forces. Reciprocally, deformation of

the framework modifies the porosity and perme-

ability, so changing the rate of fluid flow. These

principles have found their way into several geo-

logical fields of application, including seismic pum-

ping (Rice, 1975; Rudnicki, 1984; Sibson, 2000)

and topography-driven fluid flow (Oliver, 1986;

Garven, 1995).

Hubbert and Rubey (1959) wrote a pioneering

article on the importance of pore fluids in tectonic

processes. Although the article generated some con-

troversy (Laubsher, 1960; Birch, 1961; Moore,

1961), it has remained a standard reference for

structural geologists. Fluid pressures have become

fundamental to the mechanics of deltas (Hubbert and

Rubey, 1959; Mandl and Crans, 1981) and accre-

tionary thrust wedges (Davis et al., 1983; Dahlen,

1984; Dahlen et al., 1984; Lehner, 1986). At smaller

scales, fluids are held to be responsible for hydraulic

fracturing (Hubbert and Willis, 1957; Sibson, 2000)

and for modifying the shapes of normal faults (Price,

1977; Crans et al., 1980; Mandl and Crans, 1981;

Bradshaw and Zoback, 1988).

In the last few decades, analogue modelling has

been of great help in understanding tectonic process-

es at various scales (for historical and thematic

reviews, see Koyi, 1997; Cobbold and Castro,

1999). However, the use of pore fluids in such

models is relatively new. Cobbold and Castro

(1999) showed that it was feasible to use compressed

air as a pore fluid in sandbox models, opening the

way for other developments. Cobbold et al. (2001)

were able to verify some of the theoretical predic-

tions for thrust wedges (Hubbert and Rubey, 1959;

Dahlen, 1990), and they showed that permeability is

important in controlling the positions of thin-skinned

detachments.
In this paper, we use the same experimental

technique to demonstrate and verify the role of

seepage forces in tectonics. Although the effects of

seepage forces are widely understood in soil me-

chanics, and some tectonic analyses have taken them

into account (Crans et al., 1980; Iverson and Major,

1986; Dahlen, 1990; Iverson, 1991; Byerlee, 1992;

Iverson and Reid, 1992; Orange and Breen, 1992),

on the whole they seem to be little known to

geologists. Most standard textbooks on structural

geology (e.g. Hobbs et al., 1976; Ramsay and Huber,

1983; Price and Cosgrove, 1990) pay little or no

attention to them. Possibly for these reasons, many

authors (e.g. Mello and Pratson, 1999; Willis and

Buck, 1997) have attempted to calculate effective

stresses by first taking total stresses and then sub-

tracting fluid overpressures. With the help of a very

simple experiment, we will show that such an

approach can easily give the wrong answer. The

correct and safe approach is first to consider how

fluid flow and resulting seepage forces modify

effective stresses, and then to calculate total stresses

according to von Terzaghi’s principle.
2. Suitable reference surfaces for effective stress

Although the concept of effective stress has now

become clear, for many years, it was a source of

controversy. According to Mandl (1988) this is

understandable, the problem being how to apply

the concept of effective stress to different kinds of

material.

When considering a porous medium, we need a

reference surface in order to define effective stress.

Mandl (1988) gives a detailed discussion of the

subject, which figured prominently in early theories

on porous saturated media (see, for example, Fil-

lunger, 1913). It has also figured in many discussions

on the applicability of von Terzaghi’s principle, a

notorious example being in the aftermath of Hubbert

and Rubey’s article (Laubsher, 1960; Birch, 1961;

Moore, 1961; Dahlen, 1990).

Here, we will consider here only two kinds of

reference surface, which are relevant to granular

materials (Fig. 1). Surface A1 is planar and cuts

through the solid matrix of a porous medium without

regard for position or orientation (Fig. 1a). If W is



Fig. 1. Reference surfaces for defining effective stress in a saturated

porous granular medium. Surface A1 is planar and cuts across

grains and fluid (a). Surface A2 is undulating and passes through

point contacts between grains. Planar surface of stress sensor (b)

also is in point contact with grains.

Table 1

Common symbols and units

s total stress tensor Pa

sV effective stress tensor Pa

d identity matrix –

V fluid velocity m s� 1

Fw weight per unit volume N m� 3

Fa buoyancy force per unit volume N m� 3

Fs seepage force per unit volume N m� 3

R resultant body force per unit volume N m� 3

Q Darcy velocity m s� 1

k intrinsic permeability tensor m2

s shear stress Pa

rn normal stress Pa

Ss normal skeletal stress Pa

Sgr normal intergranular stress Pa

Pf pore fluid pressure Pa

jPnh nonhydrostatic part of the fluid

pressure gradient

Pa m� 1

Pb basal fluid pressure Pa

Pup top fluid pressure Pa

Pat atmospheric fluid pressure Pa

dPf variation of fluid pressure (in time) Pa

k ratio of pore fluid pressure and

vertical stress

–

W surface porosity –

U porosity –

qq solid density kg m3

qs sand density kg m3

qb bulk density kg m3

qw water density kg m3

mf fluid viscosity Pa s

c cohesion Pa

l coefficient of internal friction –

ls coefficient of sliding

(sand against wall)

–

/ angle of internal friction degrees

K ratio of horizontal to vertical

effective stress

–

m Poisson’s ratio –

A surface area m2

D diameter m

R radius m

P perimeter m

h height of sand m

c angle between a fault and

the principal compression

degrees

a slope angle degrees

- angle between r1Vand z-axis degrees
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the surface porosity, the total normal stress acting on

A1 is (Table 1):

S ¼ Ss þ W:Pf ð1Þ

Here S is the total normal stress, Ss is the ‘normal

skeletal stress’ per unit area of A1 and Pf is the pore

fluid pressure. The effective normal stress (von Ter-

zaghi, 1923) is then:

SV¼ S � Pf ¼ Ss þ ðW � 1Þ:Pf ð2Þ

Now, consider an undulating surface, A2, which

follows A1 as closely as possible, but goes through

the solid skeleton at intergranular contacts only. We

project the fluid part of this undulating surface on A1,

so defining the porosity W2. The total normal stress

is then:

S ¼ Sgr þ W2:Pf ð3Þ
Here, Sgr is the ‘normal intergranular stress’ (stress

transmitted across the intergranular contacts of the

undulating surface and projected onto A1).
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Should the intergranular contacts become very small

(‘point’ contacts), the porosity W2 will tend to unity

and the intergranular stress Sgr will coincide with the

effective stress, which acquires a simple mechanical

meaning:

SV¼ S � Pf ¼ Sgr ðW ¼ 1Þ ð4Þ

In a granular medium with point contacts where

deformation is by relative motion between the grains,

intergranular stresses (Sgr) transmit from one grain to

another and the reference surface A2 is equivalent to the

flat face of a stress sensor (Fig. 1b). Many experiments

have confirmed that the effective stresses of Eq. (4)

control deformation in such a medium. More surpris-

ingly, perhaps, this control also applies to a variety of

rocks having large intergranular contacts and even to

rocks where the matrix has no granular structure at all

(Handin et al., 1963; Hubbert and Rubey, 1959; Mandl,

1988).
Table 2

Viscous forces in a granular medium

By following two approaches to the calculation of effective stresses, we ca

without fluid flow. We assume point contacts between grains

Continuous medium approach

A porous medium is subject to gravity. In two dimensions,

the equations of state are:

Brxx=Bxþ Brxz=Bz ¼ 0

Brzx=Bxþ Brzz=Bz ¼ qbg

where qb is the bulk density, and z is positive downwards.

By introducing effective stresses, rxxV =rxx�Pf, rzzV =rzz�Pf and

rxzV= rxz, we obtain:

BrxxV=Bxþ BrxzV=Bz ¼ 0

BrzxV=Bxþ BrzzV=Bz ¼ qbg � BPf=Bz

(a) Fluid in hydrostatic state: BPf /Bz = qwg
Here, assuming variation along z only:

rzzV¼ qb gz� qwgz ¼ ð1� UÞðqq � qwÞgz

where qq and qw are the density of the solid and the fluid.

(b) Fluid under overpressure, undergoing vertical flow:

BPf /Bz =qwg+ [BPf /Bz]nh

Assuming variation along z only:

rzzV ¼ qbgz� qwgz� ½BPf=Bz�nhz
¼ ð1� UÞðqq � qwÞgz� ½BPf=Bz�nhz
3. Forces exerted by a nonhydrostatic gradient of

fluid pressure on a porous medium

A nonhydrostatic gradient of pore fluid pressure

causes fluid to flow through a porous medium,

provided that fluid viscosity is small enough and

permeability of the medium is large enough. Under

these conditions, the seeping fluid transmits forces to

every grain.

The constitutive law for a Newtonian fluid with

constant viscosity is:

rijðM ; tÞ ¼ Pf ðM ; tÞdij þ mf ðBVi=Bxj þ BVj=BxiÞ
ð5Þ

Here, rij(M,t) are Cartesian components of the

stress tensor at point M and time t, Pf is fluid

pressure, dij are components of the unit tensor, mf is
fluid viscosity, Vi are Cartesian components of the
n estimate the viscous forces in a saturated granular medium with or

Granular medium

(a) Fluid in hydrostatic state: BPf /Bz = qwg
A grain of arbitrary shape, exterior surface A, and volume V, is

immersed in water. The force exerted by the liquid on the solid is:

F ¼ �
Z Z

Pf dA ¼ �
Z Z Z

BPf=BzdV ¼ �qwgV

This is the well-known Archimedes force.

By assuming that the granular medium is an aggregate of grains

with point contacts, each particle will be subjected to this force.

The effective vertical stress on a horizontal plane at depth z is:

rzzV ¼ ð1� UÞðqq � qwÞgz

(b) Vertical water flow:

By neglecting the viscous forces exerted by fluid flow, and by

assuming purely horizontal fluid isobars between grains, each

particle is subject to a force similar to the Archimedes force. The

effective vertical stress is then:

rzzV ¼ ð1� UÞðqq � qwÞgz� ð1� UÞ½BPf=Bz�nhz

This result differs from the one obtained with the continuum

approach. We can consider the difference U[BPf/Bz]nhz as an

approximation of the viscous force within the granular medium.

BPf /Bz= qwg+[BPf /Bz]nh
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fluid velocity vector, and we use the summation

convention for repeated Cartesian suffixes.

During laminar flow, two kinds of stresses act on

a plane surface A: a normal stress, Pf, and a viscous

shear stress, mf (BVi/Bxj). Such stresses, therefore, act

on each grain of the solid medium as fluid flows

through the pore space. At the grain scale, the effect

of normal pressure is easy to understand. Viscous

forces are difficult to calculate because of the

microscopic complexity of the flow between each

grain. Nevertheless, we can define them by consid-

ering the porous saturated medium in two different

ways (Table 2).

In terms of effective stresses, the equations of state

are (Table 2):

BrxxV =Bxþ BrxzV =Bz ¼ �½BPf=Bx�nh ð6Þ

BrzxV =Bxþ BrzzV=Bz ¼ ð1� UÞðqq � qwÞg

� ½BPf=Bz�nh ð7Þ

Here, [BPf/B. . .]nh =jPnh is the nonhydrostatic

part of the fluid pressure gradient (or head gradient)

which can be an overpressure or an underpressure
Fig. 2. Forces imparted to grains by a pore fluid. If fluid is in hydrostatic

gradient of overpressure (right), fluid flows through pore space, imparting
gradient. The forces acting on each element of solid

matrix are (1) its weight, Fw=(1�U)qqg, (2) a

buoyancy force, Fa =� (1�U)qwg and (3) a seep-

age force, Fs =�jPnh. Although the first two

forces act vertically, the third one may act in any

orientation, so modifying the principal values and

orientations of the effective stresses (Fig. 2).

Despite its name, the seepage force does not

depend on fluid velocity through the porous medium,

but only on the gradient of fluid pressure. For a given

pressure gradient, each grain will be subject to an

invariant seepage force no matter what the values of

permeability or fluid viscosity are.

To demonstrate these principles, we will describe

a series of simple experiments on Fontainebleau

sand. In all of them, the pore fluid is compressed

air. Buoyancy forces are, therefore, negligible and

jPf =jPnh. Although air is compressible, we cal-

culate pore fluid pressures in the sand using Darcy’s

law, which appears to hold well (Cobbold and

Castro, 1999):

Q ¼ �ðk=mf ÞjPnh ð8Þ

Here, Q is the Darcy velocity (in m s� 1), k is the

intrinsic permeability of the sand (in m2) and mf is the
fluid viscosity (in Pa s).
state (left), forces are weight (Fw) and buoyancy (Fa). If there is a

additional seepage force (Fs).
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4. Experiments involving vertical seepage forces

4.1. Apparent loss (or gain) of weight due to seepage

forces

Avery simple way of demonstrating seepage forces

is to force air vertically through a sand pack while

measuring the apparent weight of the sand with a

balance.

The operator places a known mass of sand in a

cylindrical plastic container (Fig. 3). The cylinder

should hang from a support, just touching a sieve that

lies on the balance. The sieve allows air to flow

through the sand pack, either upwards or downwards.

At the top of the container is a system for suction or

injection of air. Thus, the fluid pressure, Pf, may be

either smaller or greater than atmospheric pressure.

On decreasing or increasing the pressure, the operator

will notice an apparent loss or gain of weight in the

sand. Taking into account inevitable sidewall friction

between sand and container, the operator can verify

that the apparent weight of the sand equals its true

weight, less a factor of DPf A, where A is the cross-

sectional area of the container, and DPf =Pat�Pf is

the overpressure. Thus, two forces act on the sample:

its own weight and DPf A. If DPf > 0 (suction at the
Fig. 3. Apparent loss or gain in weight of a sand pack due to fluid flow. Sa

beneath sieve is at atmospheric pressure, whereas air above sand is either

either upward or downward. Apparent weight of sand, as recorded by ba

seepage forces (right). True weight of sand is 300 g. Results have been c
top), the weight of the sample apparently decreases;

whereas, if DPf < 0 (injection at the top), it increases.

Although the result of this experiment is obvious

for an impermeable medium, it is perhaps less intuitive

for a permeable medium such as sand.

A simple model of tubular pore space, by provid-

ing an exact solution to the equations of viscous flow,

demonstrates the action of seepage forces in an

analytical way. Consider a disc of solid material

within a piston (Fig. 4). Assume no sidewall friction

between solid and piston and no fluid flow at the joint.

At the base of the solid, the air pressure (Pb) is greater

than atmospheric, whereas at the top it is atmospheric

(Pat).

If the solid is impermeable (Fig. 4a), the upthrust

of the liquid upon the solid is simply:

PbA� PatA ¼ DPfA

If the solid is permeable, the upthrust results from

viscous forces acting at the base and top, but also

within the pores. Consider a porous solid that con-

tains n vertical tubes of radius R. The surface

porosity is then:

W ¼ npR2=A
nd pack lies within suspended cylinder and rests on sieve (left). Air

underpressured or overpressured. Air, therefore, flows through sand

lance, depends linearly on applied pressure difference as a result of

orrected for sidewall friction in cylinder (see text).



Fig. 4. Effect of differences in fluid pressure across an impermeabl
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The lower and upper surfaces are subject to fluid

pressure and the forces upon them are (1�W)PbA

and (1�W)PatA, respectively. The resultant is, there-

fore, (1�W)DPf A=(A� npR2)DPf.

For fluid flow in the tubes, we take Poiseuille’s

solution:

uðrÞ ¼ ðBPf=BzÞðr2 � R2Þ=ð4mf Þ
Here, u(r) is the vertical velocity of the fluid at a

distance r from the axis of the tube and mf is the

viscosity of the fluid.

On the wall of each tube, this flow produces a

vertical shear stress, rrz = mfBu/Br = (BPf /Bz)R/(2mf),
where we have assumed that the pressure gradient is

constant. By integration of the shear stress over the

entire surface of the tube, the vertical force acting on it

is pR2DPf.

The total vertical fluid force on the permeable solid

is then:

F ¼ ðA� npR2ÞDPf þ npR2DPf ¼ DPfA

This simple model shows that the fluid exerts

the same vertical force, no matter what the perme-

ability of the medium is. Permeability influences

only the nature of the stress (fluid pressure or shear

stress) and the way it is distributed (on external or

internal surfaces).

The above analysis is enough to show that seepage

forces act everywhere, provided that fluid pressures

are abnormal. For example, sediment of very small

permeability (10� 15 to 10� 18 m2), under a fluid

pressure gradient that is close to lithostatic, is subject

to a seepage force of the same order of magnitude as

its own weight, even though under those conditions

and according to Darcy’s law, the rate of fluid flow

does not exceed 1 mm/year.
4.2. Shear tests

To measure the shear strength of a sand pack during

fluid flow, we have done a series of tests with an

apparatus (Fig. 5a) that is similar to that of Cobbold

and Castro (1999), but has one important modification.

In the apparatus of Cobbold and Castro, air pressure

was atmospheric above the sample and greater than

atmospheric beneath it. As a result, pressure in the

shear zone was greater than atmospheric, so that air and

sand tended to escape through the narrow space be-

tween the two cylinders, especially at the highest

pressures. To avoid this problem, we have provided

for injection or suction at the top of the sand, as well as

at its base, in the manner described previously. By a

suitable choice of pressures, air flows through the sand

(either upward or downward), while pressure in the

shear zone remains atmospheric. Under these condi-

tions, we verify that air and sand no longer escape

through the space between the cylinders.

Assuming a constant pressure gradient in the sand,

the effective normal stress in the shear zone is,

according to Eq. (7):

rzzV ¼ ð1� UÞqqgz� ðBPf=BzÞz ¼ qsgz� ðPb � PupÞ

¼ qsgz� DPf

The reader, who prefers to calculate total stress

before appealing to von Terzaghi’s principle, should

be aware that total stress is not simply equal to qsgz,

but depends also on the air pressure:

rzz ¼ qsgzþ Pup

rzzV ¼ rzz � Pf ðzÞ ¼ qsgzþ Pup � Pb ¼ qsgz� DPf

e solid (a) or a permeable solid containing tubular pores (b).



Fig. 5. Shear tests. Apparatus consists of two cylinders (a). Upper cylinder slides to right, under shear load, whereas lower cylinder is fixed.

Sand rests on sieve, above lower pressure chamber. Air flows vertically through sand, either upward or downward, according to air pressures in

upper chamber ( Pup) and lower chamber ( Pinf). By a suitable choice of pressure in chambers, air between cylinders is at atmospheric pressure

( Pat) and does not leak. For no fluid flow, plot of shear stress versus effective normal stress suggests curved yield envelope for raw data

(uncorrected for sidewall friction), but linear envelope for corrected data (b). Notice small value of cohesion (43 Pa) and large coefficient of

internal friction (1.18). For fluid flow at various pressure ratios (k), plot of shear stress versus effective normal stress also suggests linear

relationship (c). Slope of lines (a) is linear function of k, indicating that yield envelope is linear (d). For further explanation, see text.
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We now introduce a pressure ratio, k, which is

slightly different from that of Hubbert and Rubey

(1959), but identical to that of Cobbold and Castro

(1999):
k ¼ ðPf ðzÞ � PupÞ=qsgz ð9Þ
If BPf /Bz is invariant with z, k becomes:

k ¼ ðBPf=BzÞ=qsg ð10Þ

As k tends to unity, the sand becomes fluidised.

Notice also that k can be negative, implying down-
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ward fluid flow. In the shear zone, the vertical

effective stress is:

rzzV ¼ ð1� kÞqsgz

This expression takes no account of sidewall

friction. As in a silo, sidewall friction may partly

counteract the weight of the sand (Duran, 1997).

The estimated value of vertical effective stress is,

therefore, subject to error. As a result, the yield

envelope is incorrect. Apparent cohesion is too

large, internal friction is too small, and the yield

envelope curves more than it should (Appendix A).

The results of Krantz (1991), Cobbold and Castro

(1999) and Schellart (2000) almost certainly include

such undesirable consequences of sidewall friction.

To circumvent them, we have used a standard

correction due to Jansen (Appendix A).

In our experiments, we sheared sand packs of

several thicknesses (2–7 cm) involving different

fluid pressures (k = 0–0.8). The effective stress on

the shear plane ranged from 62 to 820 Pa. To

prepare samples with reproducible properties, we

first fluidised them and then re-compacted them by

tapping at the base of the container (Cobbold and

Castro, 1999). The density of the sand was, thus,

close to 1600 kg m� 3.

On a plot of shear stress as a function of effective

normal stress, the data provide a better fit to a

straight line after they have been corrected for the

silo effect (Fig. 5b). The best-fit straight line is then

given by sV = 1.18rnV + 43 Pa. For each k value, we

can also fit a straight line to a plot of shear stress

versus qsgz (Fig. 5c). We can then plot its slope, a,

as a function of k (Fig. 5d). For k= 0, a= 1.13, a
value that is close to 1.18. Moreover a straight line,

a = 1.18 (1� k), fits the data well. We infer that the

Mohr–Coulomb failure envelope, in terms of effec-

tive stresses, is:

sV¼ cþ lð1� kÞqsgz ð11Þ

Here, l = 1.18 is the coefficient of internal friction

and c is the cohesion.

The latter ranges in value from 12 to 72 Pa (Fig.

5c). The highest values correspond to the greatest

sidewall friction (silo effect).
4.3. Extensional tests

For a linear failure envelope, the angle c between a

fault and the principal compression is a simple func-

tion of the angle of internal friction, /:

c ¼ 45� /=2 ð12Þ

The coefficient of internal friction is l = tan/.
Hence, by measuring the dihedral angle, 2c, between
two conjugate normal faults in a sand model, we

can estimate the coefficient of internal friction of

the material. For this purpose, we built rectangular

sand packs, 30 cm long, 20 cm wide and 4 cm

deep, resting on two overlapping sieves. Beneath

the sieves was a pressure chamber, which acted as

a reservoir for compressed air and provided a uni-

form fluid pressure at the base of the model (Fig. 6a).

To build the packs, we sifted sands of different

colours through a sieve (0.5 mm mesh). This han-

dling technique produced a relatively dense pack

(qs = 1700 kg m� 3). By slowly moving one of

the sieves, we created a velocity discontinuity at the

base of the model. Conjugate normal faults formed

at the discontinuity. Extension was just enough to

generate fault scarps at the surface, defining a rift

valley. However, instead of measuring fault dips at

the surface, as did Krantz (1991) and Schellart

(2000), we wetted the sand and cut it, so obtaining

relatively precise measurements of the angle, /,
between conjugate faults (Fig. 6b). We repeated these

tests for various rates of flow through the sand.

We assume that (1) the principal effective stress,

r1V, is vertical and has a value of (1� k)qsgz; (2) at

yield, the material satisfies a Coulomb criterion,

sV=lrDV; and (3) cohesion is negligible (so that we

overestimate the normal stress). From the second and

third assumptions, the ratio of principal effective

stresses is:

r1V=r3V ¼ ð1þ sin/Þ=ð1� sin/Þ ð13Þ

The effective normal stress on the fault is:

rnV ¼ ðr1Vþ r3VÞ=2� ððr1V� r3VÞ=2Þsin/ ð14Þ

From these relationships, we calculate the value of

rnV at a point half way up the sand. For a nonlinear

yield function, sV= f (rnV), the function l = f (rnV) can
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Fig. 6. Decrease in dihedral angle between conjugate faults for small effective stresses. Apparatus (a) consists of two sieves overlapping above

centre of pressure chamber. Sand pack rests on sieves. Air flows vertically upwards through sieves and sand. Extensional faults form above

velocity discontinuity between sliding sieves. Dihedral angle between conjugate faults decreases as overpressure increases (b). Inferred

coefficient of internal friction is large for small effective normal stresses, but decreases to nearly constant value for large effective normal

stresses (c). This implies that yield envelope is curved near the origin, but linear away from it (d).
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be considered as the first derivative (tangent to the

curve). For a linear yield envelope, l should be

constant. On a plot of l versus rnV (Fig. 6c), for

values of effective normal stresses greater than 30 Pa,

l is indeed nearly constant, ranging between 1.3 and
1.4. These values of l are slightly greater than those

determined in our shear tests, but they are close to the

values determined by Krantz (1991) and Schellart

(2000), provided we correct those for sidewall fric-

tion. The relatively large values of l in our exten-
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sional tests may have arisen because the sand was

denser than it was in the shear tests. For normal

stresses smaller than 30 Pa, l increases, reaching a

maximal value of 2.5 (Fig. 6c), which indicates

curvature of the yield envelope near the origin. The

range of normal stress, over which this curvature

occurs, is equivalent to the weight of no more than

three or four sand grains. At such a small scale,

electrostatic attraction between grains may be respon-

sible for an increase in aggregate strength.
5. Effect of nonvertical seepage forces on stress

orientation

5.1. Inclined sedimentary sequence with uniform

overpressure at the base

To demonstrate the effect of seepage forces on

stress orientation, we will follow Hubbert and Rubey

(1959) and Mandl and Crans (1981) in considering an

inclined sedimentary sequence with uniform overpres-

sure at the base.

The resultant body force, R, acting on each

particle has two components, Fw and Fs (Fig. 7a).

The weight, Fw, acts vertically, whereas the seepage

force, Fs, is assumed to be perpendicular to the

slope. The intensity and orientation of R depend on

the relative magnitude of the two components.

5.1.1. Uniform gradient of fluid pressure

We used the same apparatus as described previ-

ously (Fig. 6), but inclined it through a few degrees.

The sand models were 4 cm thick and 40 cm long.

The reservoir provided a constant air pressure (Pb) at

the base of the model. Air flowed through the sand in

a direction perpendicular to the slope.

As before, conjugate normal faults formed at the

velocity discontinuity between overlapping sieves

(Fig. 7b). We assume that, at yield, the principal

effective compressive stress (r1V) bisects the dihedral

angle between conjugate normal faults. For Pb =Pat,

r1V is nearly vertical. For increasing positive values

of Pb (indicating overpressure), air flows upward

through the sand and the angle between r1V and the

slope diminishes, so much so that one of the conju-

gate faults becomes technically a reverse fault. In

contrast, for increasing negative values of Pb (under-
pressure), air flows downward through the sand and

the angle between r1V and the slope increases until it

becomes nearly a right angle. These observations are

readily explained in terms of the components of

body force.

To analyse the reorientation of the principal

stresses as a consequence of seepage forces, we

use equations of state in terms of effective stress.

Reference axes are parallel and perpendicular to the

slope, z being positive downwards:

BrxxV =Bxþ BrxzV=Bz ¼ qsgsina

BrzxV=Bxþ BrzzV=Bz ¼ qsgcosa � ½BPf=Bz�nh

As the slope is infinite, we assume that BrxxV /Bx =

BrzxV /Bx = 0. The permeability is constant, so that [BPf /

Bz]nh is also constant. The equations simplify to:

rxzV¼ qsgzsina

rzzV¼ qsgzcosa � DPf

Here, DPf =Pf (z)�Pat.

In terms of principal values, the effective stresses

rxxV , rzzV and rxzV are:

rzzV ¼ ðr1Vþ r3VÞ=2þ ððr1V� r3VÞ=2Þcosð2-Þ ð15Þ

rxzV ¼ ððr1V� r3VÞ=2Þsinð2-Þ ð16Þ

Here, - is the angle between r1V and z.

At yield, we assume a Coulomb criterion for effec-

tive stress: sV= lrnV where l = tan/. Therefore, we
obtain:

r3V¼ ð1� sin/Þ=ð1þ sin/Þr1V ð17Þ

For a given value of DPf, we can find values of

r1V, r3V and - which satisfy the system of Eqs. (15)–

(17) at a depth z. As [BPf /Bz]nh is constant in depth,

so is -. For the purposes of this analysis, we define

k as:

k ¼ ðPf ðzÞ � PatÞ=qsgzcosa

We have plotted theoretical curves of - as a

function of k for different values of l (Fig. 7c).

The experimental data are on the same diagram.



Fig. 7. Reorientations of principal stresses and conjugate extensional faults as a function of overpressure gradient. For apparatus, see Fig. 6a.

Conjugate extensional faults form above velocity discontinuity between sliding sieves (b). Assuming that principal compression bisects dihedral

angle between conjugate faults, angle between compression and z increases as a function of increasing pressure ratio, k (c). This is due to

increasing contribution of seepage force, Fs, to resultant body force, R (a).
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For each experiment, l was determined by measur-

ing the angle between the two faults. Notice the

good agreement between experimental points and

theoretical curves. For small gradients of fluid

pressure (k < 0.5), the points fall between the curves

for l = 1.5 and 1, which are approximately the

measured values of l. As k increases, the dihedral

angle between faults decreases and the points fall

closer to curves for l = 1.5 and 2.5.

Reorientation of principal stresses is a predictable

consequence of seepage forces. To calculate total

stresses without considering fluid flow, and then to

subtract a fluid overpressure from all normal compo-

nents of the stress tensor, would lead to an erroneous
result, in which principal directions are independent of

fluid pressure:

tan2- ¼ �2rxz=ððrxx � Pf Þ � ðrzz � Pf ÞÞ

¼ �2rxz=ðrxx � rzzÞ ð18Þ

Such an error results from an implicit assumption

that total stress is invariant, whereas in fact it depends

on seepage forces.

5.1.2. Variable gradient of fluid pressure

In the previous experiments, permeability was

uniform. In nature, however, permeability commonly



Fig. 8. Nonlinear profiles of pore fluid pressure and their

mechanical consequences. Slope of pressure profile increases

across less permeable layers and decreases across more permeable

layers (a). Theory of gravitational gliding (Crans et al., 1980;

Mandl and Crans, 1981) predicts reorientations of principal stresses

and faults (b).
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varies with depth (Fig. 8a). In a sedimentary se-

quence, fluid overpressure tends to build up and

survive beneath layers of small permeability (for

example, shale), which act as confining layers or

dynamic seals. Such layers produce kinks in pressure

profiles. Typically, a profile has three main parts.

Above a depth Za, pore fluid is in a hydrostatic state,

so that the profile is steep. Beneath it, a rapid

increase in pore pressure results from a confining

layer of small permeability, so that the profile is

much less steep. Finally, pore fluid maintains a nearly

lithostatic pressure.

Such a nonlinear profile has major mechanical

effects (Crans et al.,1980; Mandl and Crans, 1981).

1. Principal directions of stress change with depth

and so do the dips of resulting faults. For example,

assume that a sedimentary sequence dips at a few

degrees (say, 5j). For a given angle of internal

friction (say, 30j), we may calculate at each depth

the principal directions of stress and, therefore, the

dips of resulting faults (Fig. 8b). Through-going

faults appear listric.

2. At a depth Zd, the angle between the principle

effective stress r1V and z reaches as much as 60j.
The failure criterion then holds for a plane parallel

to bedding, which can act as a detachment for the

entire sedimentary sequence.

We have reproduced such a detachment by

sandbox modelling (Fig. 9). To obtain a nonlinear

profile of pore fluid pressure, we used two grades

of sand. The first grade was coarse (315–400 Am)

and had a permeability of about 100 Darcy, where-

as the second grade was fine ( < 200 Am) and had a

permeability of about 25 Darcy. Models were

housed in a rectangular box (40 cm wide by 60

cm long), the bottom being a sieve. A pressure

chamber (20 cm wide by 30 cm long) was centred

under the model. In this reservoir, the air pressure

was initially atmospheric. The internal structure of

the models was simple (Fig. 9b). Above a first

layer of coarse sand, 1 cm thick, we deposited a

second confining layer of fine sand, also 1 cm

thick. Finally, we deposited a third layer of coarse

sand, 2 cm thick. We tilted the apparatus through

11j and slowly increased the air pressure (Pb). At

this stage, the area of sand immediately above the
pressure chamber suddenly slid, whereas adjacent

areas remained fixed. The central part of the slide

remained relatively rigid, whereas the edges de-

formed. A linear belt of extensional faults formed

at the upper edge, a curved thrust belt formed at

the lower edge, and overstepping wrench faults

formed at each side (Fig. 9a). Within the exten-

sional belt, a rift valley developed. As fast as it

subsided, we filled it with coarse sand, so as to



Fig. 9. Gravitational gliding in a sloping sand pack as a result of seepage forces in an area of fluid overpressure. For apparatus, see Fig. 6. Sand

pack is longer and wider than pressure chamber (a). It consists of three layers of different grain sizes and permeabilities (b). After tilting

apparatus and sand pack to right through 11j, basal fluid pressure was increased in steps. When it reached 400 Pa, gliding occurred on basal

detachment in area above pressure chamber. Basal detachment was at a depth where calculated pressure was closest to lithostatic (c).
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compensate for the lack of overburden and avoid

an explosive formation of gas chimneys. On in-

creasing the air pressure once more, the slide

advanced another step. We were able to repeat this

procedure several times. At the end of the experi-

ment, serial sections showed that the slide had

detached sharply at the base of the confining layer,

where the air pressure was closest to lithostatic, as

occurred in previous experiments on thrust belts

(Cobbold et al., 2001). Normal faults and reverse

faults had listric shapes, curving progressively out

of the detachment, as predicted by the theoretical

model of Crans et al. (1980).

5.2. Horizontal sedimentary sequence with lateral

variation of fluid pressure

In previous experiments, air flowed in a direc-

tion perpendicular to the surface of a sloping sand

pack, so that seepage forces influenced the orienta-

tions of principal stresses and faults. Lateral varia-

tions in fluid pressure within horizontal sand packs

can produce similar effects.

We have done some extensional tests involving

complex pressure distributions in horizontal sand
packs (Fig. 10). We used the set-up previously

described, where a horizontal sand pack rests on

two overlapping sieves. However, in this instance,

we placed the pressure chamber so that one of its

edges was under the strip of overlapping sieves. On

displacing one sieve over the other, we obtained a

velocity discontinuity. A pair of conjugate faults

appeared at the discontinuity, forming a rift valley

at the surface. The faults were strongly listric, one

of them passing from a normal fault at the surface

to a reverse fault at depth. We calculated the

pressure distribution in the sand by solving Darcy’s

equations for fluid flow in two dimensions, using a

finite-difference method. Notice the strong horizon-

tal gradient of fluid pressure in the area of faulting.

In the experiments, if the principal effective com-

pression bisected the dihedral angle between faults,

it had a strongly curved trajectory. This is compat-

ible with the sense and orientation of seepage

forces in the numerical calculation.

Many authors have addressed the formation of

listric faults (Price, 1977; Shelton, 1984; Bradshaw

and Zoback, 1988). Shelton (1984) has summarized

existing theories. It is a common observation that

faults flatten into overpressured sediment. Bradshaw



Fig. 10. Formation of curved extensional faults in area of complex overpressure gradients within a sand pack. For apparatus, see Fig. 6. Sidewall

of pressure chamber was beneath centre of sand pack, where basal sieves overlapped. Air pressure was 450 Pa in chamber. Air flowed upward

and sideways in response to complex pressure gradients within the sand, investigated by numerical modelling (left). Sliding of one sieve over

another created velocity discontinuity. Extensional faults formed above the discontinuity (right). Faults and inferred principal compression

curved from base to top of sand pack as a result of seepage forces.
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and Zoback (1988) explained this observation in

terms of stress refraction between layers of con-

trasting viscosities. Although Mandl and Crans

(1981) had previously developed a model of grav-

itational gliding, in which seepage forces resulted in

listric faults, it seems to have found little accep-

tance. We hope that our experiments will remedy

that situation.
6. Mohr’s stress circles for effective stress and total

stress

On a plot of shear stress versus normal stress,

Mohr’s stress circle represents the state of stress at a

point P in the material. According to von Terzaghi’s

principle (rnV= rn�Pf; sV= s in all directions), effec-

tive stress and total stress plot as circles of the same

radius, offset along the horizontal axis by an amount

equal to pore fluid pressure.

Starting with total stresses, it is common to calcu-

late effective stresses by assuming a hydrostatic state

for the pore fluid. If total stresses are constant, any

variation dPf in fluid pressure then implies a shift of

the effective stress circle along the horizontal axis.

Whereas constant total stress may be a reason-

able assumption in some circumstances, such as

triaxial laboratory tests, its validity may be ques-
tionable in natural examples, where there are fluid

overpressures. Because of seepage forces, a varia-

tion dPf in fluid pressure can change all of the total

stresses (both normal and shear stresses).

To illustrate this situation, we will consider the

state of stress in an isotropic elastic porous medium,

formulating constitutive equations in terms of effec-

tive stress.

6.1. Horizontal sedimentary sequence

Consider a horizontal sedimentary sequence that

suffers no horizontal strain (ex= 0). The total vertical

stress is rz = qbgz. The fluid overpressure gradient is

purely vertical. The horizontal and vertical effective

stresses are rxVand rzV, respectively. For a compress-

ible elastic material, they are proportional:

rxV¼ KrzV ð19Þ

Here, K = m/(1� m) < 1 for plane strain, where m is

Poisson’s ratio.

Because the gradient of total vertical stress is

constant, any time variation dPf in fluid pressure

induces variations in both vertical and horizontal

effective stresses:

drzV¼ �dPf ; drxV¼ �KdPf ð20Þ



Fig. 11. Mohr’s stress circles for a sedimentary sequence, horizontal or inclined. Exact solution for a poroelastic medium in plane strain

with no horizontal extension (a) yields circles for effective stress that differ depending on value of overpressure at base of sequence.

Notice that radius of circle changes, as well as its position along horizontal axis. Numerical model of elastic deformation and air flow in

an inclined sequence gives similar results. For increasing fluid overpressures, radius of effective stress circle increases and principal

stresses rotate (b).
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The total horizontal stress also varies:

drx ¼ ð1� KÞdPf ð21Þ

In such a system, any variation in fluid pressure

implies a change in the radius of Mohr’s stress
circle (Fig. 11a). The effective shear stresses are

invariant on horizontal and vertical planes, but they

vary on all others. Such a coupled variation in pore

pressure and stress has been found in many sedi-

mentary basins and oil fields. Hillis (2001), summa-

rising data from various basins, found that K ranged
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from 0.2 to 0.7, and debated possible mechanisms

of failure.

Similar stress calculations can be done with other

constitutive laws, such as a Mohr–Coulomb criterion

without cohesion, where K = (1� sin/)/(1 + sin/), or
a plasticity law, where K = 1. For further discussion

and references, see Hillis (2001).

6.2. Sloping sedimentary sequence

For a sloping sedimentary sequence, it is unrealistic

to assume no lateral strain. We have calculated, by a

two-dimensional numerical method, the effect of fluid

overpressure parallel to slope on the state of stress in an

inclined elastic porous body. We chose a shape like our

sand experiments. The model is, therefore, 30 cm long

and 4 cm thick. The slope is 7j. The fluid is air. The

boundary conditions on the displacements are ux = 0 on

the walls and ux = uz = 0 at the base (Fig. 11b). The

effective stresses are calculated for plane strain. The

fluid pressure is from Darcy’s law, assuming flow

perpendicular to the slope. We assume a steady state,

so that the stress calculation does not depend on the

fluid pressure calculation (Iverson and Reid, 1992).

We illustrate the results by Mohr circles for two

material points and various rates of fluid flow (Fig.

11b). Point M is in the middle of the model, whereas

point P is close to its downhill boundary. An increase

in fluid pressure has several effects.

1. As before, the radius of the Mohr circle diminishes.

2. The stress tensor rotates (c varies).

3. Near the downhill boundary, the deviatoric stress

(radius of the circle) reaches a minimum and

increases again. The principle stress r1V is then

closer to x than to the vertical, so that this part of

the model begins to compress.

In this model, the reorientation of principal stresses

(Mandl and Crans, 1981) is due, not to limitations on

stress values at yield, but to the fluid pressure gradi-

ent, which acts as a body force (seepage force).
7. Conclusions

By a series of very simple experiments involving

fluid flow through sand, we have demonstrated the
action of a fluid pressure gradient in a porous

medium. We have verified von Terzaghi’s principle

in shear tests that have allowed us to describe

accurately the behaviour of a grade of sand that

has been used in analogue experiments. We have

also demonstrated a silo effect. In extensional experi-

ments, we have measured an increasing coefficient of

friction for stresses smaller than 30 Pa. This result is

in contradiction with previous work. We have also

demonstrated reorientation of stresses in various

experiments and have partly verified the model of

Mandl and Crans (1981) for growth faulting and

gravity gliding. We hope that this review will clarify

some of the complications that fluid overpressures

and seepage forces may impose on stress distribu-

tions in various tectonic settings.
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Appendix A. Errors due to sidewall friction during

shear tests on sand

Dry sand has been widely used in analogue mod-

elling to represent brittle rock in the upper crust. Most

workers have assumed that cohesion of sand is neg-

ligible and that the angle of internal friction is close to

30j. Some experimenters have attempted to measure

these parameters.

In shear tests on Fontainebleau sand, Krantz

(1991) obtained extrapolated cohesions of 300 Pa

for poured sand and 520 Pa for sprinkled sand, and

a frictional coefficient between 0.58 for poured

sand and 1.00 for sprinkled sand. To experimenters

who know that dry sand is little able to support

vertical relief, the cohesion measured by Krantz

may seem surprisingly large (see Discussion in

Richard and Krantz, 1991).

Schellart (2000) attributed large values of cohesion

to errors in extrapolating failure envelopes because of

a lack of data for normal stresses smaller than 600 Pa.

He, therefore, did a further series of shear tests for

normal stresses of 50–900 Pa using a smaller cylin-

der. For several kinds of granular material, he ob-
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tained failure envelopes in two parts: a curved part

near the origin for normal stresses smaller than a

critical value (250–400 Pa), and a linear part for

larger normal stresses. From independent measure-

ments of fault dips, he, nevertheless, found no depen-

dence of l on rn. To reconcile this invariant l with

curvature of a failure envelope near the origin, he

concluded, erroneously, that cohesion was a function

of normal stress.

Cobbold and Castro (1999) did further shear tests

for normal stresses ranging from 300 to 1600 Pa. They

obtained an extrapolated cohesion of 85 Pa and a

coefficient of internal friction of 0.57. The material

was Fontainebleau sand. They sieved it, retaining the

fraction with grain sizes between 0.200 and 0.315

mm. To obtain samples with reproducible properties,

Cobbold and Castro fluidised them with air and then

compacted them by tapping. The authors noted that

internal friction was small and close to Krantz’s

values for poured sand, despite differences in the

manner of preparing the sand packs.

In summary, tests on sand have produced con-

flicting results. Krantz’s values of cohesion seem too

high and the curved failure envelopes of Schellart are

not compatible with the dips that he measured on

faults. We believe that most of these problems result

from sidewall friction in the test cylinders.

Jansen’s model of sidewall friction (the silo effect)

To obtain a failure envelope, we need the shear

stress and normal stress acting on a fault plane. For

basal shear in a shear box, we measure a shear load and

divide it by the basal area, whereas the normal stress we

deduce from the weight and thickness of the sand:

s ¼ mg=A ðA0Þ

rn ¼ qsgh ðA1Þ

Here, m is the mass of the shear load, A the area of

the fault surface, h the thickness of the sand pack, qs

the sand density and g the acceleration of gravity.

Sidewall friction, between the sand and the

cylinder, may partly counteract the weight of the

sand, reducing the normal stress. If so, Eq. (A1) no

longer holds. Krantz (1991) and Cobbold and Cas-

tro (1999) did not refer to this kind of problem,
although they were certainly aware of it, and

Schellart (2000) considered it as negligible without

giving any proof.

Jansen (1895) derived a simple mechanical model

to account for sidewall friction at the edges of a silo,

hopper, or container of granular material. He assumed

that vertical stress rv automatically results in a pro-

portional horizontal stress, rh:

rh ¼ Krv

Here, K is a stress ratio, which depends on the

packing of the granular material. For close packing of

spheres, K = 0.58 (Duran, 1997).

Consider a cylindrical container full of sand

(Fig. A1). The balance of forces across a horizontal

element of thickness dz gives:

Adrv þ KlsPrvdz ¼ qsgAdz ðA2Þ

Here, A is the cross-sectional area of the sand, P its

perimeter, ls the coefficient of sidewall friction and qs

the sand density. The second term in the equation is

the frictional force between sand and container.

By integrating Eq. (A2), we obtain:

rv:expðKlsPz=AÞ ¼ qsgA=ðPKlsÞexpðKlsPz=AÞ þ C

ðA3Þ

Here, C is a constant. For boundary conditions,

rv = 0 at z = 0, the equation reduces to:

rv ¼ qsgD=ð4KlsÞð1� expð�4Klsz=DÞÞ ðA4Þ

Here, D is the diameter of the cylinder.

For shallow depths, the profile of vertical stress is

close to a straight line of slope qsg (Fig. A1a).

Further down, the vertical stress tends asymptotically

to a constant value. From that depth on, sidewall

friction totally counteracts the additional weight of

sand.

For a given cylinder, the vertical stress depends on

ls, in other words, on the material of the container.

Krantz (1991) used a cylinder made of glass, whereas

the cylinders used Cobbold and Castro (1999) and

Schellart (personal communication, 2002) were made

of transparent plastic material. To determine the coef-

ficient of friction between sand and plastic material, we



Fig. A1. Testing Jansen’s model of sidewall friction. The model applies to granular material within a container (a). Vertical stress decreases

exponentially with depth as a result of sidewall friction. For tests, sand was in cylindrical container suspended above balance (b). For two

different methods of preparing sand pack (see text), results were similar (right). Measured weight of sand was systematically smaller than true

weight. Jansen’s model fits data well for sidewall friction of ls = 0.35, which was measured independently, and stress ratio of K= 0.5, which is

close to theoretical predictions.
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did some additional shear tests (Fig. A2). We sus-

pended a cylinder containing sand above a transparent

plastic sheet, resting on a balance. Then we applied an

increasing shear load until sand and container slid over

the plastic sheet. We tested three grades of Fontaine-

bleau sand, having grain sizes of (1) less than 0.5 mm,

(2) between 0.315 and 0.400 mm and (3) between

0.200 and 0.315mm. The coefficient of sliding friction,

ls, was between 0.3 and 0.4.

To quantify sidewall friction in a shear apparatus,

we placed a given weight of sand in a suspended

transparent plastic cylinder, 9 cm in diameter (Fig.

A1b). We used Fontainebleau sand with a grain size

between 0.200 and 0.315 mm and we tested two

methods of preparing samples. In Method 1, the

cylinder hung 0.2 mm above a balance; a known
mass of sand was poured into it from a height of

10 to 20 cm; and the weight of sand supported

by the balance was then recorded. In Method 2,

the cylinder rested on the balance; the sand was

slowly sprinkled into it; and the container was then

suspended.

The results of these tests are diagnostic of

sidewall friction. Regardless of the method used

to prepare samples, Jansen’s model (Eq. (A4)) fits

the data well. The best-fit exponential curve is for

ls = 0.35 and K = 0.5. These parameters seem to be

realistic. The coefficient of friction is close to that

determined in our shear tests.

The same experiments were done with a cylin-

der made of glass. The best-fit exponential curve

was for ls = 0.1 and K = 0.5. This shows that



Fig. A2. Plots of shear stress versus normal stress for various tests not involving fluid flow. Tilting of sand pack lying on transparent plastic

sheet resulted in shearing at contact (a). For various grades of sand, yield envelopes are linear and no correction is necessary. For shear tests

where sand lies in plastic container, sidewall friction influences results. Assuming that sand has linear yield envelope and no cohesion (full line),

Jansen’s model predicts that measurements will deviate (b), so that best-fit straight line (dotted) will indicate small coefficient of internal friction

(0.63) and large cohesion (130 Pa). For shear tests by Krantz (c) and Schellart (d), raw data indicate nonlinear envelopes, whereas corrected data

indicate linear ones. Corrected values of cohesion are much smaller than uncorrected values, whereas corrected values of internal friction are

larger than uncorrected values.
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friction between sand and glass was much smaller

than that between sand and transparent plastic

material. Glass is, therefore, preferable for reducing

boundary friction.

Influence of sidewall friction on measurements of

internal friction and cohesion

By neglecting boundary effects during shear tests,

an experimenter may overestimate the normal stress

that acts on the failure surface.
One way of illustrating this effect is to assume that

we know the true properties of a given batch of sand

and then to calculate what the apparent properties

will be if we mistakenly neglect sidewall friction.

Consider a sand which fails when s = rn, so that l = 1

and c = 0. Now consider shear tests in the cylinder

used by Cobbold and Castro (1999), for heights of

sand ranging between 2 and 10 cm. Because of errors

in the estimation of normal stress, the failure enve-

lope will be incorrect (Fig. A2b). The best-fit straight

line to the incorrect data gives l = 0.63 and c = 130



Fig. A3. Effects of sidewall friction during fluid flow. Plots are for

measured effective normal stress as function of theoretical effective

normal stress. Jansen’s model fits data well. Effects of sidewall

friction are inferred for small values of fluid ratio, k, but are

negligible for large values (k= 0.8).
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Pa. Thus, by neglecting sidewall friction, the exper-

imenter may overestimate cohesion and underesti-

mate internal friction.

Correcting the results of Krantz and Schellart

In the shear tests of Krantz (1991), the internal

diameter, D, of the cylinder was 14 cm, whereas, in

those of Schellart (2000), it was 3.2 cm. The apparent

failure envelopes are curved (Fig. A2). Following

Schellart, we consider these curves in two parts and

plot two straight lines, a steep one for small normal

stresses and a gentle one for large normal stresses.

The steep lines have slopes of 1.4 (for Krantz’s data)

and 1.5 (for Schellart’s data). The gentle lines have

slopes of 0.94 and 0.87, respectively. For Krantz’s

data, steep and gentle lines intersect at rn = 1500 Pa,

which is equivalent to a height, h, of about 8 cm of

sand in the cylinder. Hence, r = h/D = 0.57. For

Schellart’s data, the intersection is at about 300 Pa

(h = 1.8 cm), so that r = 0.56. The similar values of r

given by Schellart’s data and Krantz’s data indicates

that the curvature of the failure envelopes is due to

sidewall friction and does not represent the mechan-

ical behaviour of the sand.

By using Eq. (A4), we can apply a correction to

the normal stresses. For both data sets, the corrected

points follow straight lines better than do the

uncorrected points. For Krantz’s data, the corrected

coefficient of friction is 1.17 and the corrected

cohesion is 420 Pa (instead of 520 Pa). For Schel-

lart’s data, the corrected values are l = 1.6 and

c = 66 Pa. The former value is close to the slopes

of straight lines fitted to uncorrected data, where

r < 0.56. It also agrees with the results of extension-

al tests.

In conclusion, sidewall friction has nonnegligible

effects, and shear tests should be done where r < 0.6.

Even then, Jansen’s model provides a useful correc-

tion to the data.

Boundary effects for shear tests involving a fluid flow

Using the apparatus previously described (Fig. 3),

we have estimated the effect of sidewall friction for

shear tests involving vertical fluid flow. The tests were

for sand thicknesses of 2–7 cm and for three values of

k. On plots of normal stress versus theoretical effec-
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tive stress, rnV=(1� k)qsgh, we have fitted the best

exponential curve to the data (Fig. A3). In so doing,

we have assumed a constant K because the packing

visibly did not change. As k increases, the estimated

values of ls decreases. For k = 0.8, the data seem to

indicate no frictional effect.

Variation of ls does not necessarily imply a

decrease in frictional resistance between sand and

plastic container. We think rather that sidewall

friction can oppose not only the weight of the

sand, but also the upthrust provided by migrating

air. We speculate that these two frictional forces,

which have opposite senses, can cancel each other

for k = 0.8.
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