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Abstract

We investigated the similarity between thermal–viscous coupling (TVC) and frictional sliding, proposed by Kameyama and

Kaneda [Pure Appl. Geophys. 159 (2002) 2011]. We consider a one-dimensional layer composed of viscous material, which is

sandwiched and sheared by two thick elastic layers. The rate of viscous deformation depends on the temperature Tc in the

viscous layer as well as shear stress s. The temperature Tc changes owing to heating by viscous dissipation and conductive

cooling. We carried out velocity-stepping tests for the steady-state deformation both numerically and analytically, and compared

the temporal evolution of small perturbations with that of the spring-block model with rate- and state-dependent friction (RSF).

We found that, as is the case of frictional slip stability, the manner of temporal evolution is classified into four regimes

depending on whether it is stable or not and whether it is monotonous or oscillatory with time. By further interpreting TVC in

terms of general RSF theory by Ruina [J. Geophys. Res. 88 (1983) 10359], we obtained the relations between the parameters

appearing in the phenomenological RSF law and the nondimensional parameters which characterize the nature of TVC. A

further improvement of this approach might be important for estimating the actual values of frictional constitutive parameters at

the deeper portion of seismogenic faults of interplate or inland earthquakes where a ductile deformation is expected to be

significant.
D 2003 Elsevier B.V. All rights reserved.
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1. Introduction

A constitutive relationship of faults, which relates

the fault slip, applied stress, and other geophysical
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ambient conditions, is one of the most important

factors in the study of earthquake occurrence. Under-

standing the constitutive relationship enables us to

estimate where and under which conditions unstable

(i.e. seismogenic) fault slip takes place. In these

decades, several realistic models of rock friction have

been proposed on the basis of laboratory experiments.

In particular, the rate- and state-dependent friction law

(e.g. Dieterich, 1979; Ruina, 1983) has been com-

monly employed both in interpreting the experimental

results of rock friction (e.g. Blanpied et al., 1998) and
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in numerical modeling of fault slip (e.g. Rice, 1993).

Earlier numerical studies of earthquake generation

(e.g. Tse and Rice, 1986; Stuart, 1988; Kato and

Hirasawa, 1997; Kuroki et al., 2002) have demon-

strated that this friction law reproduces many geo-

physical phenomena such as earthquake cycles and

related crustal deformation.

The uncertainty in the numerical modeling of

earthquake cycles, however, lies in estimating the

constitutive parameters along the modeled faults or

plate boundaries, especially those at depth. In most of

earlier numerical models (Tse and Rice, 1986; Stuart,

1988; Kato and Hirasawa, 1997; Kuroki et al., 2002),

the values of the constitutive parameters have been

assumed a priori, either by extrapolating from labo-

ratory experiments or by assuming a seismogenic

condition at a desired range of depth. This is because

the values of parameters in the deeper portion of

earthquakes faults are not well constrained. Since it

is difficult to conduct friction experiments of rocks

under the conditions for deep earthquake faults, it is

required to get deep physical insights into rock

friction theoretically in order to estimate the values

of constitutive parameters in the real faults or plate

boundaries and, hence, to further improve the models

of earthquake occurrence.

On the other hand, recent work by Kameyama and

Kaneda (2002) demonstrated that a shear deformation

of viscoelastic material bears a feature quite similar to

that of frictional slip with the help of thermal–viscous

coupling (hereafter denoted by TVC); namely an

interaction between temperature-dependence of vis-

cosity and temperature rise due to viscous dissipation.

In this paper, we extend the work of Kameyama and

Kaneda (2002) and investigate the similarity between

TVC and the rate- and state-dependent friction (here-

after denoted by RSF). In Section 2, we briefly review

the nature of the friction law. In Section 3, we develop
Fig. 1. Schematic cartoon o
the idea of TVC. By comparing the behavior of TVC

with that of RSF, we then discuss the properties of

TVC from a viewpoint of a general class of RSF. In

the earlier studies of TVC (Hobbs and Ord, 1988;

Ogawa, 1987), its application to earthquake occur-

rence has been limited to that of intermediate and/or

deep-focus earthquakes within subducting slabs. In

this study, in contrast, we seek for an applicability of

TVC to the earthquake occurrence in the shallow

portion of the Earth, such as interplate or inland

earthquakes, through the comparison between TVC

and RSF.
2. Nature of rate- and state-dependent friction law

In this section, we briefly review the nature of RSF.

There are several versions of this friction law (see

Marone, 1998; Scholz, 1998 for a review). According

to Ruina (1983), the RSF should follow two general

assumptions (hereafter denoted by GRSF); (i) the

friction depends on the slip rate V and the state of

the slip surface represented by the state variable H,

and (ii) the temporal evolution of state depends also

on V and H. That is,

l ¼ Frsf ðV ;HÞ;

dH
dt

¼ Grsf ðV ;HÞ:

8><
>: ð1Þ

Here l is the friction coefficient, and we ignored the

dependence on normal force N for simplicity.

We study the stability of steady-state slip of GRSF

using a spring-block model, which is schematically

illustrated in Fig. 1. Here we assume a quasi-static

motion of block for simplicity and, hence, ignore the

effect of inertia, which may affect a dynamic behavior

of the model (Rice and Tse, 1986). According to the
f spring-block model.
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linear stability analysis by Ruina (1983), a growth rate

k of infinitesimal perturbations of the state variable,

friction coefficient, and slip velocity (denoted by yH,

yl, and yV, respectively) is determined by the follow-

ing quadratic equation,

k2 � ðb � c � 1Þxk þ x2c ¼ 0: ð2Þ

In Eq. (2), we introduced three parameters x, b and c
defined by,

x ¼ �Grsf ;H; ð3Þ

b ¼ Frsf ;H

Frsf ;V

Grsf ;V

Grsf ;H
; ð4Þ

c ¼ � k=N

Frsf ;VGrsf ;H
; ð5Þ

where the commas in subscripts indicate partial dif-

ferentiation, k is the spring constant, Vs is the slip

velocity of the block for a steady state, and N is the

normal force acting on the block. Eq. (3) comes from

the fact that �Grsf,H corresponds to the healing rate

of yH (note that d(yH)/dt=Grsf,VyV +Grsf,HyH) and,

in other words, acts as an intrinsic evolution rate of

the system. From Eqs. (4) and (5), we can understand

the meanings of b and c as follows. The parameter b
represents the ratio of the rate of decrease in yl due to

yV through the change in yH ( =�Frsf,HGrsf,V yV) to
the rate of increase in yl directly coming from yV
( =xFrsf,V yV). The parameter c, on the other hand,

represents the ratio of the rate of elastic loading by yV
( = kyV) to the rate of increase in frictional resistance

directly coming from yV ( =xNFrsf,V yV).
To describe in detail the conditions of slip stability

obtained above, we assume in the following a phe-

nomenological form of this friction law (hereafter

denoted by ‘‘laboratory-derived RSF’’, or LRSF).

For example, we employ ‘‘Ruina–Dieterich’’ or

‘‘slip’’ law (e.g. Ben-Zion and Rice, 1995), which

has been widely employed in numerical modeling of

fault slip (e.g. Rice, 1993). This friction law is given

by the two equations,

l ¼ lo þ H þ aln
V

Vc

� �
;

dH
dt

¼ � V

dc
H þ bln

V

Vc

� �� �
:

8>><
>>: ð6Þ
Here dc is the characteristic slip length, and lo and Vc

are constants. In particular, the parameters a and b

determine whether steady-state sliding is potentially

stable or not to a velocity perturbation, and dc
represents the length scale over which the evolution

of l occurs through the evolution of H during a slip.

In this case, the paramters x, b, and c can be written

as,

x ¼ Vo

dc
; b ¼ b

a
; c ¼ kdc

Na
; ð7Þ

where Vo is the slip velocity at the steady state.

To see how the evolution of infinitesimal perturba-

tions differs depending these parameters, we solve Eq.

(2) for the growth rate k. Here we define the functions
Arsf and Drsf as

Arsf ðb; cÞu
1

2
ðb � c � 1Þ; ð8Þ

Drsf ðb; cÞu
1

4
ðb � c � 1Þ2 � c; ð9Þ

so that the solution k can be written as k ¼ ðArsfFffiffiffiffiffiffiffiffi
Drsf

p
Þx. Fig. 2 shows the variations in Arsf and Drsf

depending on b and c. The solid line divides the b–c
plane into the regime with Arsf >0 (indicated by the

letter ‘‘U’’) and that with Arsf < 0 (indicated by the letter

‘‘S’’). The dashed line, on the other hand, divides the

b–c plane into the regime withDrsf >0 (indicated by S1

andU1) and that withDrsf < 0 (indicated by S2 and U2).

As can be seen from the figure, the b–c plane is divided
into four regimes by the two lines, namely the regimes

U1 (Arsf >0,Drsf >0), U2 (Arsf >0,Drsf < 0), S1 (Arsf < 0,

Drsf >0), and S2 (Arsf < 0, Drsf < 0).

Fig. 2 implies that the response of steady state to an

infinitesimal perturbation differs between the regimes

owing to the difference in the sign of Arsf and Drsf.

The sign of Arsf classifies the stability of steady state

to an infinitesimal perturbation; the steady state

becomes unstable in the regimes U1 and U2

(Arsf > 0), while it becomes stable in the regimes S1

and S2 (Arsf < 0). In addition, the sign of Drsf classifies

the type of temporal evolution of the perturbation; the

temporal evolution occurs monotonously in regimes

S1 and U1 (Drsf >0), while it takes place in an



Fig. 2. Regime diagram for the variation in the growth rate k of

infinitesimal perturbation depending on the changes in b and c
obtained for the spring-block model with rate- and state-dependent

friction law. The solid and dashed lines indicate the plots of Arsf = 0

and Drsf = 0, respectively. See the text as for the definitions of the

labels ‘‘U1’’, ‘‘U2’’, ‘‘S1’’, and ‘‘S2’’.
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oscillatory manner in the regimes S2 and U2

(Drsf < 0). We confirmed that the above classification

is valid by comparing the numerical results of the

evolution of finite-amplitude perturbation conducted

by Ruina (1983).

Fig. 2 also shows that the regimes for an

unstable evolution take place only when b>1 and

c < b� 1. This is consistent with the earlier results

of frictional slip stability that steady-state sliding is

unstable only when a� b < 0 and the spring constant

k is smaller than a threshold value kc=(b� a)N/dc
(Ruina, 1983).
Fig. 3. Schematic illustration of conceptual model employed in this

study.
3. Nature of thermal–viscous coupling

In this section, we discuss the nature of TVC by

using a one-dimensional model of shear deformation

similar to those employed in Ogawa (1987) and

Kameyama and Kaneda (2002). First we introduce

the conceptual model and fundamental equations.

Next we carry out velocity-stepping tests both numer-

ically and analytically, to reveal a similarity of TVC
with the frictional behavior obtained in Section 2. We

then investigate the similarity between TVC and RSF

by interpreting TVC in terms of GRSF.

3.1. Model description

In Fig. 3, we schematically show the conceptual

model employed here. We consider shear deforma-

tion of a viscous material with an infinite Prandtl

number in a layer of half-width h placed between

two elastic layers of thickness L. The inner viscous

layer and outer elastic layers correspond to the

frictional surface and the spring for the spring-block

model, respectively. (Or, if we regard the present

model as an actual fault, the inner and outer layers

can be regarded as a fault zone and host rocks,

respectively.) The viscosity of material in the inner

layer is assumed to depend both on stress s and

temperature T. The z-axis is chosen to run across the

layers, and the center and outer boundaries are

chosen to be z = 0 and z =F (L + h), respectively.

The material moves in the x-direction with a constant

velocity FVw at the outer boundaries z =F (L + h),

respectively. The temperature is assumed to be Tc
and Tw in the inner and outer layers, respectively.

The assumption for temperature-distribution comes

from a simplification of the steady-state temperature-

distribution obtained by one-dimensional numerical

calculations (Kameyama and Kaneda, 2002), and

similar to that employed in the ‘‘heterogeneous

model’’ of Ogawa (1987).



Table 1

Values of physical parameters adopted in the numerical calculations

presented in Figs. 4, 5 and 6

Symbol Description Value

G rigidity in outer layers 8� 1010 Pa

h half-thickness of inner layer 105 m

qCp volumetric heat capacity 2.4� 106 J/m3 K

j thermal diffusivity 10� 6 m2/s

An pre-exponential constant 3.24� 10� 16 Pa� n s� 1

n stress index 3.5

En activation energy 5.4� 105 J/mol K

R universal gas constant 8.31 J/mol K

Tw temperature in elastic layers 900 K
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The motion of the material in the layer is given by,

2Vw ¼ 2hėvðs;T¼TcÞ þ 2L
1

G

ds
dt

; ð10Þ

where e˙v is the strain rate due to viscous deformation

in the inner layer, and G is the shear modulus or

rigidity in the outer layers. Here we assumed that the

shear stress s is constant in the inner and outer layers.

Eq. (10) can be further simplified as,

2Vw ¼ 2h ėvðs;T¼TcÞ þ
1

Geff

ds
dt

� �
; ð11Þ

where GeffQ(h/L)G is an ‘‘apparent’’ or ‘‘effective’’

rigidity. Eq. (11) means that the deformation of the

entire layer is mathematically equivalent to that of a

layer of half-thickness h composed of a Maxwell

viscoelastic material whose rigidity is Geff.

We assume that the equation for the change in the

temperature Tc in the inner viscous layer is given by,

qCpð2hÞ
dTc

dt
¼ �2qCpj

Tc � Tw

h
þ sėvðs;TcÞð2hÞ;

ð12Þ

where qCp is the volumetric heat capacity, and j is the

thermal diffusivity. In Eq. (12), the left-hand term

represents the rate of change in the thermal (internal)

energy in the viscous layer, the first term in the right-

hand side represents the conductive heat flux flowing

out of the layer across the layer interfaces (z =F h),

and the second term represents the rate of heating by

viscous dissipation in the layer. Here we assumed that

the temperature in the outer layers Tw is constant. This

implies that the timescale of thermal conduction over

the inner layer is much longer than that considered

here.

3.2. Velocity-stepping test for thermal–viscous

coupling

In this subsection, we carry out velocity-stepping

tests to demonstrate the behavior of TVC. In partic-

ular, we focus on the differences in the temporal

evolution due to the difference in Geff, to compare

well with the behavior of the spring-block model (Fig.

1) with LRSF.
We consider the temporal evolution in s and Tc
when a steady-state solution for Vw = Vwo = j/h is

perturbed by a sudden velocity step yVw = 0.1Vwo at

time t = 0. In the following analysis, the material

properties are taken to be close to those of olivine.

In addition, the viscous deformation takes place by the

power-law creep described by,

ėvðs;TÞ ¼ Ans
nexp � En

RT

� �
: ð13Þ

In Eq. (13), all of the constants are chosen to give a

strain rate close to that associated with dislocation

creep of dry olivine (Karato et al., 1986; Kameyama et

al., 1999). The adopted values of parameters are

summarized in Table 1. We carried out numerical

calculations for various values of L, to see how the

variation in the rigidity Geff affects the temporal

evolution of perturbations.

In Fig. 4, we show the temporal evolution of s and

Tc in response to the velocity step at t= 0 for several

cases listed in Table 2. There are four types of the

temporal evolution of perturbations. In Case 1 where

Geff is the largest, the stress s increases very rapidly

during a short period around t= 0 in response to the

step change in Vw, and then gradually decreases to the

value for the new steady state during the subsequent

period of t < 10h2/j. The temperature Tc gradually

increases to the new steady-state value during

0 < t < 10h2/j. In Case 2, the temporal evolution of

both s and Tc is characterized by a decaying oscillation
which evolves toward the new steady state. In Case 3,

both s and Tc oscillate with time in response to the

velocity step. However, the amplitude of the oscilla-

tion grows with time and, neither s nor Tc reaches new



Fig. 4. Temporal evolution of shear stress s and temperature Tc in the viscous layer for the cases of stable evolution (a and b) and unstable

evolution (c and d). The units of stress and temperature are G = 8� 1010 Pa and G/qCp = 3.33� 104 K, respectively.
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steady-state values. In Case 4 where Geff is the small-

est, both s and Tc gradually increase at a much lower

rate than in other cases for t>0 and, instead of reaching

the new steady state, a sudden drop in s and an

explosive increase in Tc occur at tf 1.4h2/j.
By comparing these results and those in Section 2,

we notice that the four types of the temporal evolution

of perturbations for TVC are the same as those

obtained from the linear analysis for GRSF. Thus,

we can conclude that TVC behaves quite similarly to

that of LRSF.
Table 2

The values of h/L( =Geff /G) adopted in the numerical calculations

presented in Fig. 4. Also shown are the values of nondimensional

parameters f and g for initial states, and the type of temporal

evolution of ys and yTc estimated from f and g

Case h/L( =Geff /G) g f Type

1 1.0� 10� 2 5.302 17.652 S1

2 2.5� 10� 3 5.302 4.413 S2

3 1.0� 10� 3 5.302 1.7652 U2

4 1.0� 10� 4 5.302 0.17652 U1
3.3. Linear analysis of velocity-stepping test

In this subsection, we conduct a linear analysis of

the steady-state solution of Eqs. (11) and (12) to study

the behavior of the model in detail. In particular, we

discuss which quantities determine the type of tem-

poral evolution of perturbations in response to a

velocity step.

Suppose that the temperature Tc changes from Ts to

Ts + yTc, and stress s changes from ss to ss + ys when

the velocity Vw slightly increases from Vwo to

Vwo + yVw. Here, Ts and ss are the steady-state solution
and yTc and ys are perturbations. By substituting the

above equations into Eqs. (11) and (12), we obtain the

equations for steady-state values as well as the line-

arized equations for perturbations yTc and ys. The

equations for steady-state values are,

0 ¼ Geff

Vwo

h
� ės

� �
; ð14Þ

0 ¼ � j
h2

ðTs � TwÞ þ
1

qCp

ssės; ð15Þ
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and the linearized equations for perturbations ys and

yTc are,

d

dt
ys ¼ �Geff

Bėv
Bs

� �
ðss;TsÞ

ys

� Geff

Bėv
BT

� �
ðss;TsÞ

yTc þ
Geff

h
yVw; ð16Þ

d

dt
yTc ¼

1

qCp

ss
Bėv
Bs

� �
ðss;TsÞ

þės

" #
ys

þ ss
qCp

Bėv
BT

� �
ðss;TsÞ

� j
h2

" #
yTc: ð17Þ

Here we introduce three nondimensional parameters f,

g, and n defined by,

fu
h2

j
Geff

Bėv
Bs

� �
ðss;TsÞ

; ð18Þ

gu
h2

j
ss

qCp

Bėv
Bs

� �
ðss;TsÞ

; ð19Þ

nu
ss
ės

Bėv
Bs

� �
ðss;TsÞ

; ð20Þ

respectively. The parameter n is an index of the stress-

dependence of the rate of viscous deformation, and

equivalent to n in Eq. (13). The physical meanings of f

and g will be discussed in detail in Section 3.4. By

using f, g, and n, Eqs. (16) and (17) can be written as,

h2

j
d

dt
ðysÞ ¼ �f ys � qCp

Geff

ss
gyTc þ

hGeff

j
yVw;

ð21Þ

h2

j
d

dt
ðyTcÞ ¼

1

qCp

ss
Geff

f 1þ 1

n

� �
ys þ ðg � 1ÞyTc:

ð22Þ
The solution of Eqs. (21) and (22) is given by,

ys ¼ hGeff

j
yVw

1� g

f ð1þ g=nÞ þ
hGeff

j
yVw

1

k2 � k1

� j
h2

þ k2
1� g

f ð1þ g=nÞ

� �
expðk1tÞ

� hGeff

j
yVw

1

k2 � k1

� j
h2

þ k1
1� g

f ð1þ g=nÞ

� �
expðk2tÞ; ð23Þ

yTc ¼
hss

qCpj
yVw

1þ 1=n

1þ g=n

� hss
qCpj

yVw

1

k2 � k1

f þ k1
g

� j
h2

þ k2
1� g

f ð1þ g=nÞ

� �
expðk1tÞ

þ hss
qCpj

yVw

1

k2 � k1

f þ k2
g

� j
h2

þ k1
1� g

f ð1þ g=nÞ

� �
expðk2tÞ; ð24Þ

where k1 and k2 are the roots of the quadratic equation

k2 � ðg � f � 1Þ j
h2

k þ f 1þ g

n

� 
 j
h2

� 
2

¼ 0: ð25Þ

(In obtaining Eqs. (23) and (24), we assumed that

k1 p k2.)
To see the temporal evolution of perturbations, we

solve Eq. (25) and study the nature of k. Here we

define two functions Atvc and Dtvc as,

Atvcðf ; gÞu
1

2
ðg � f � 1Þ; ð26Þ

Dtvcðf ; g; nÞu
1

4
ðg � f � 1Þ2 � f 1þ g

n

� 

; ð27Þ

so as to write the solution of Eq. (25) as k ¼ ðAtvcFffiffiffiffiffiffiffiffi
Dtvc

p
Þðj=h2Þ.

We show in Fig. 5 the plots of Atvc( f, g) = 0 and

Dtvc( f, g, n) = 0 by solid and dashed lines, respective-

ly. We assumed n= 3.5, the value obtained for the

deformation of dry olivine due to dislocation creep

(Karato et al., 1986). The meanings of the labels in



Fig. 5. Regime diagram for the variation in the growth rate k of

infinitesimal perturbation depending on the changes in f and g. The

solid and dashed lines indicate the plots of Atvc = 0 and Dtvc = 0,

respectively. The employed value of n is 3.5. See the text as for the

definitions of ‘‘U1’’, ‘‘U2’’, ‘‘S1’’, and ‘‘S2’’.
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Fig. 5 are the same as those in Fig. 2. From the same

reason as in Fig. 2, the steady state becomes unstable

in the regimes U1 and U2 where Atvc >0, while it

becomes stable in the regimes S1 and S2 where

Atvc < 0. In addition, the temporal evolution of pertur-

bation occurs monotonously in regimes S1 and U1

where Dtvc>0, while it takes place in an oscillatory

manner in the regimes S2 and U2 where Dtvc < 0.

We now apply the above classification of solution

to the numerical results presented in Fig. 4. In Table 2,

we also show the values of nondimensional parame-

ters f and g for the initial state of the calculations (i.e.

steady state for Vw =Vwo) and the class of solutions

expected from the values of f and g. From Table 2 and

Fig. 4 we can conclude that the classification from the

linear analysis is valid for the numerical calculations

presented in Fig. 4.

3.4. Meanings of nondimensional parameters ob-

tained from linear analysis

In the previous subsection, we conducted a linear

analysis for TVC, and demonstrated that the evolution

of infinitesimal perturbations is controlled by three
nondimensional parameters f, g, and n. In this section,

we discuss the physical meanings of f and g.

We examine how the stress s evolves with time in

response to a velocity step. We split the response into

two parts; namely a short-term response where a

temperature change can be ignored and a long-term

response where a temperature change is taken into

account.

We first consider the short-term response without a

temperature change. By assuming yTc = 0 in Eq. (21)

we get

d

dt
ðysÞ ¼ � j

h2
f ys þ Geff

h
yVw: ð28Þ

This equation means that ys evolves with time in

response to yVw at an evolution rate of (j/h2)f. In
other words, f is the ratio of a timescale of thermal

diffusion (h2/j) to the stress relaxation time of Max-

well viscoelastic material. Taken together with the

assumption of yTc = 0, the parameter f characterizes

the rate of temporal change of s which takes place

instantaneously and/or in the absence of changes in Tc.

Eq. (28) also indicates that smaller f slows down

the rate of stress reduction due to the viscous defor-

mation. From an analogy of stick–slip behavior of

rocks in laboratory experiments, shear instability takes

place only when the rate of stress reduction due to

viscous deformation is smaller than that due to elastic

deformation. Indeed, Fig. 5 shows that the evolution

of perturbation is more unstable for smaller f. This is

consistent with the results of the linear stability

analysis of shear zone formation (Ogawa, 1987).

Next we consider the long-term response including

a temperature change. We assume that a new steady

state is achieved for a suffciently long time after

giving a velocity step (exp(k1t) and exp(k2t)! 0 for

t!l). By letting t!l in Eq. (23) we obtain,

ysðt!lÞ ¼
hGeff

j
yVw

1� g

f ð1þ g=nÞ ; ð29Þ

or,

ys
yVw

� �
ðt!lÞ

¼ hGeff

j
1� g

f ð1þ g=nÞ : ð30Þ

Note that the denominator in Eq. (30) is always

positive. Eq. (30) means that the parameter g deter-



Fig. 6. Variation of the logarithm of nondimensional parameter g

depending on Tw and Vw. The values of g is calculated for the set of

parameters in Table 1. The thick contour indicates log10 g= 0, i.e.

g= 1. The units of temperature and velocity are G/qCp = 3.33� 104

K and j/h= 10� 11 m/s, respectively.
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mines the sign of (ys/yVw)(t!l) and, in other words,

determines whether the steady state is potentially

stable or not. When g>1, the sign of (ys/yVw)(t!l)

is negative (‘‘velocity-weakening’’) and, hence, an

unstable evolution is expected to occur. This is

consistent with the results of the linear stability

analysis. Indeed, Fig. 5 shows that the regimes U1

and U2 where an unstable evolution occurs take place

only when g>1, implying that the inequality g>1 is

necessary for the occurrence of instability. (Note that

Eq. (30) can be applied to the rate-dependence of

friction only when a steady state is considered. The

steady-state deformation is purely viscous (see Eq.

(14)), which is consistent with the fact that frictional

sliding is inelastic.)

The meaning of the parameter g can be also

understood from the viewpoint of the occurrence of

thermal instability. Thermal instability takes place

when there is a positive feedback in temperature rise;

a subtle positive temperature perturbation must cause

a further temperature increase. As can be seen from

Eq. (22), the condition g>1 is necessary for the

occurrence of the positive feedback. The two terms

yTc and B(yTc)/Bt have the same sign only when g>1.

The parameter g is also referred to as Gruntfest

number (Gruntfest, 1963), which is defined by the

ratio of a timescale of thermal diffusion to that of

temperature rise by viscous dissipation. Earlier ana-

lytical studies of shear zone formation (e.g. Gruntfest,

1963; Ogawa, 1987) demonstrated that an instability

due to shear heating takes place when the Gruntfest

number is larger than a threshold value.

We note that the parameter g depends on ambient

conditions. In Fig. 6, we show the variation in g

depending on Tw and Vw. Fig. 6 clearly shows that g is

larger for lower Tw or higher Vw. This feature can be

understood from the effects of heating by viscous

dissipation. The rate of viscous dissipation becomes

higher when the stress and/or the viscous strain rate

are higher. A lower Tw yields a higher viscosity and,

hence, results in a higher stress and a higher rate of

viscous dissipation for a given velocity. A higher Vw,

on the other hand, causes a higher rate of viscous

strain and, hence, results in a higher rate of viscous

dissipation for a given Tw.

The dependence on Tw of g described in Fig. 6

implies that the sign of (ys/yVw)(t!l) for the steady-

state deformation in the present model changes from
negative to positive (‘‘velocity-strengthening’’) as

temperature Tw becomes higher. This feature captures

the basic feature of actual rock friction. As demon-

strated by rock friction experiments (e.g. Stesky,

1978; Blanpied et al., 1998), frictional slip tends to

be stable for a higher ambient temperature. This

tendency is qualitatively consistent with the tempera-

ture-dependence of g described above.

3.5. Relations between parameters of thermal–

viscous coupling and parameters of rate- and state-

dependent friction

In the previous sections, we conducted the linear

analysis of steady states both for the cases with TVC

and with LRSF. The comparison of the results sug-

gests that the evolution of perturbations in TVC is

quite similar to that in LRSF. In both cases, the type of

evolution is classified into four regimes (see Figs. 2

and 5). Moreover, the evolution becomes more unsta-

ble either when the parameter g or b is larger or when

f or c is smaller. The similarity implies that the

parameters f and g obtained for TVC can be related

with the constitutive parameters appearing in LRSF.
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To study the relations between the parameters more

clearly, we discuss TVC from a viewpoint of GRSF

by Ruina (1983). We examine the shear stress acting

in the inner viscous layer. From the assumption of

viscous rheology ėv = ėv(s,TcÞ, the shear stress s can be

written as,

s ¼ sðėv;TcÞuFtvcðėv;TcÞ: ð31Þ

In addition, Eq. (12) for the temporal change of Tc can

be rewritten as,

dTc

dt
¼ � j

h2
ðTc � TwÞ þ

1

qCp

sðėv;TcÞėvuGtvcðėv;TcÞ:

ð32Þ

The above two equations mean that TVC is a special

case of GRSF, if we regard s as a frictional force lN,
Tc as a state variable H, and e

˙
v as a slip velocity V.

By using Ftvc and Gtvc, we derive the parameters

describing the equation of growth rate k. From an

analogy of Eqs. (3), (4) and (5), we can define a

characteristic evolution rate xV and two nondimen-

sional parameters f Vand gVas,

xVu� Gtvc;Tc ; ð33Þ

f Vu� Geff

1

Ftvc;ėvGtvc;Tc

; ð34Þ

gVu
Ftvc;Tc

Ftvc;ėv

Gtvc;ėv

Gtvc;Tc

; ð35Þ

where the commas in subscripts indicate partial dif-

ferentiation. The parameter xVis defined as the rate of

change in Tc owing to both conductive cooling and

viscous dissipation. The parameter f Vis the ratio of the
rate of elastic loading by the increase in ėv ( =Geff yėv,
where yėv is a perturbation in ėv) to the rate of the

increase in s directly coming from yėv ( =xVFtvc,ėvyėv).
The parameter gV represents the ratio of the rate of

decrease in s due to the increase in ėv through the

change in Tc ( =�Ftvc,Tc
Gtvc,ė v

yė v) to the rate of

increase in s directly from the increase in ėv ( =xFtvc,ėv
yėv). By using these parameters, the equation of

growth rate k can be written as k2 +xV( f V+ 1� gV)k+
(xV)2f V= 0. In addition, by comparing this equation
with Eq. (2), we obtain the correspondence between

x and xV, between b and gV, and between c and f V.
Next we derive the relations between the parame-

ters xV, f Vand gVand the parameters f, g, and n defined

in Section 3.3. By taking the partial derivatives of Ftvc

and Gtvc, we obtain,

xV¼ j
h2

þ 1

qCp

Bs
BTc

� �
ėv ¼

j
h2

1þ g

n

� 

; ð36Þ

f V¼ Geff

Bė
Bs

� �
xV�1 ¼ f 1þ g

n

� 
�1

; ð37Þ

gV¼ Bėv
BTc

� �
1

qCp

Bėv
Bs

� ��1

ėv þ s

" #
xV�1

¼ g 1þ 1

n

� �
1þ g

n

� 
�1

: ð38Þ

By further assuming the correspondence between xV
and x, between f Vand c, and between gVand b, we can
relate the nondimensional parameters f, g, and n with

the constitutive parameters appearing in the phenom-

enological friction law (LRSF) such as Eq. (6).

The differences between the parameters f and f V
and between g and gVcome from the difference in the

timescales assumed in the analysis. The definition of f

and g is done with the timescale of conductive cooling

(h2/j) only, while the definition of f Vand gVis with the
timescale which incorporates the effects of both

conductive cooling and viscous dissipation (see Eq.

(36)). Since the latter timescale is defined more

naturally from Eq. (32), the parameters fVand gVare
more appropriate for discussing the relationship be-

tween TVC and LRSF. However, the parameters f and

g are still useful as a proxy of b and c. As demon-

strated in Eq. (25), the parameters f and g can be used

in determining whether a steady state is stable or not

against a perturbation (see Eq. (26)).

We also notice that the parameters f and f Vand the

parameters g and gVbecome identical if we take the

limit of n!l. The condition is satisfied when the

viscous deformation is significantly small (namely

large ss/ės) and/or when the rate of viscous deforma-

tion is highly dependent on stress (namely large

(Bė v/Bs)(ss,Ts)). Considering the results of laboratory

experiments on the creep of crystals and on rock
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friction, these two conditions are most likely to be

satisfied under some conditions. The first condition is

qualitatively consistent with the assumption of LRSF

that a frictional slip takes place in a static or quasi-

static manner (Dieterich, 1979). The second condition

is approximately satisfied for a low-temperature plas-

tic deformation of crystals. For a low-temperature

plasticity, crystals deform owing to the glide motion

of crystalline dislocations without recovery. When the

mobility of dislocations is controlled by a lattice

resistance (‘‘Peierls stress’’), the rate of deformation

becomes highly dependent on stress (Guyot and Dorn,

1967; Frost and Ashby, 1982, Kameyama et al.,

1999).

Finally, we should recall a fundamental difference

between TVC and LRSF. In TVC, the temporal

change in the strength (viscosity) is caused by the

conductive cooling and viscous heating, both of

which determine the rate of change in Tc. This implies

that the growth of perturbations for the case of TVC is

controlled by ‘‘characteristic time’’ rather than ‘‘char-

acteristic distance’’ for the case with LRSF. In LRSF,

the characteristic time is determined by the timescale

over which a slip distance is equal to dc at a given slip

rate, which means that the characteristic length scale

is of primary importance.
4. Discussion and concluding remarks

We developed the idea of the similarity between

thermal–viscous coupling (TVC) and frictional slip

proposed by Kameyama and Kaneda (2002). By

carrying out velocity-stepping tests both numerically

and analytically, we found that the stability of steady-

state deformation is determined by three nondimen-

sional parameters f, g, and n (see Eqs. (18)–(20)). By

applying the theory of generalized rate- and state-

dependent friction (Ruina, 1983) to TVC, we obtained

the relationship between the nondimensional parame-

ters defined for TVC and the constitutive parameters

appearing in the phenomenological form of rate- and

state-dependent friction law (LRSF). In addition, from

the temperature-dependence of the parameter g we

demonstrated that the steady-state deformation of this

model is unstable for lower Tw while it is stable for

higher Tw. This is consistent with the conjecture that

the downdip limit of seismogenic zones is marked by
the transition in slip stability due to temperature rise

with depth (Scholz, 1990). Although TVC has been

applied only to a model of intermediate- or deep-focus

earthquakes within subducting slabs (Hobbs and Ord,

1988; Ogawa, 1987), these results might suggest that

TVC is also applicable to an estimation of constitutive

parameters of slip along seismogenic faults in the

shallow portion of the Earth.

In applying the present analysis of TVC to actual

faults, uncertainty lies in an estimation of L, the

thickness of host rocks surrounding a fault zone.

The value of L can be roughly estimated by assuming

that L is close to the dimension of the fault surface,

because L represents the size of the region where

elastic energy is stored. However, uncertainty in L

does not affect the condition whether a steady-state

deformation is velocity-weakening or velocity-

strengthening. Indeed, the parameter g, which deter-

mines whether thermal instability occurs or not, is

independent of L (see Eq. (19)).

Instead, we should note that the present model

assumed a ductile or viscous flow law, under which

the dependence on normal stress of shear resistance is

ignored. This assumption requires that the entire fault

zone deforms in a ductile manner. Thus, the present

model can be applicable, to some extent, to the

estimation of constitutive parameters near the down-

dip limit of seismogenic zones of interplate or inland

earthquakes, since a ductile deformation is expected to

be significant in those regions (Shimamoto, 1985; Iio

and Kobayashi, 2003). Owing to the assumptions of

flow law, however, the present model cannot be

applicable in the brittle friction regime. In the brittle

regime, the temporal evolution of frictional resistance

is most likely to be controlled by the evolution of the

contact state of interfaces (e.g. Bowden and Tabor,

1964; Rabinowicz, 1965; Dieterich and Kilgore,

1994), which is attributed to a viscous creep at contact

junctions (e.g. Rice et al., 2001; Nakatani, 2001). In

this case, the assumption of the present model is not

valid because viscous creep takes place only in very

narrow regions. Indeed, the brittle frictional resistance

depends on normal stress, which disagrees with a flow

law.

In addition to the ductile flow law, the present

model is based on several assumptions inappropriate

for a model of actual fault slip. First, velocity-weak-

ening is not the only possible mechanism for the
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occurrence of unstable slip. Several mechanisms other

than thermal–viscous coupling have been proposed as

a dominant mechanism for the localization of defor-

mation, or shear instability, in the ductile fields (e.g.

Poirier, 1980; Kameyama et al., 1997). Furthermore, a

temperature rise does not always decrease the strength

of material if the effect of melting is taken into

account. High-speed friction experiment at room tem-

peratures (Tsutsumi and Shimamoto, 1997) demon-

strated that frictional melting increases the steady-

state friction in the velocity-weakening regime.

Nonetheless, an important result of our study is

that we obtained one possible estimation of the

constitutive parameters of LRSF, especially at depth

along seismogenic faults. In most earlier studies of

earthquake cycles using the LRSF law (e.g. Tse and

Rice, 1986; Stuart, 1988; Kato and Hirasawa, 1997;

Kuroki et al., 2002), the distributions of the constitu-

tive parameters must have been assumed a priori,

because the values of constitutive parameters are not

well understood under the ambient conditions at

depth. Hence, further studies on the physical nature

of constitutive parameters are necessary, both theoret-

ically and experimentally, in order to thoroughly

understand the conditions for the occurrence of un-

stable seismogenic slip. We speculate that a further

improvement of the present approach could lead to a

successful estimation of the actual distributions of

frictional constitutive parameters along the entire

seismogenic faults.

The present approach may be applicable to any

irreversible (or inelastic) process other than TVC. If

the effect of a certain irreversible process, such as

motion of crystalline dislocations or crack growth, is

expressed in the form of GRSF, one can define

nondimensional parameters similar to f, g and n for

TVC, which can be then related to frictional consti-

tutive parameters in LRSF. We thus expect that an

extension of present approach may help to estimate

the effects of any irreversible process on frictional

constitutive relations.
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