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Abstract

Automatic methods used in geosciences to interpolate between orientation data have often limited applicability and strength,

in particular where large ranges of orientations occur. In this paper, we show that geostatistical methods yield rather strong and

powerful results when applied to directional data. The procedure involves the calculation of variograms, followed by a kriging

interpolation of the data. In order to free from the circular property of directional data, the treatment of initial angular data sets is

performed using scalar values provided by the direction cosines of double-angle values. The strength and application of the

method are demonstrated by the analysis of theoretical and natural data sets. Natural examples are focused on the calculation

and the analysis of cleavage trajectory maps.
D 2003 Elsevier B.V. All rights reserved.
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1. Introduction Two main applications of the statistical analysis of
The analysis of the spatial distribution of directional

data can have various applications in earth sciences,

including structural geology (e.g. construction of

cleavage trajectory maps) (Ramsay and Graham,

1970; Cobbold, 1979; Barbotin, 1987; Cobbold and

Barbotin, 1988), sedimentology (e.g. analysis of pale-

ocurrents) (Potter and Pettijohn, 1977), geomorpholo-

gy (e.g. analysis of maximum slope orientations),

paleomagnetism (e.g. analysis of principal directions

of anisotropy of magnetic susceptibility), geophysics

(e.g. construction of stress trajectory maps) (see Lee

and Angelier, 1994), or geodesy (e.g. analysis of

movement directions from GPS data).
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orientation data are (1) the calculation of mean prin-

cipal directions from a data population, and (2) the

analysis of variations of data in space (e.g. on maps or

cross-sections). Many automatic methods have been

developed to extract best principal directions from a

population of orientation data (calculation of eigen-

vectors and eigenvalues, see Angelier, 1994 and refer-

ences therein), or to detect structural preferred

orientations (e.g. Panozzo, 1984). Developments also

exist for the automatic analysis of spatial variations of

orientation data in geosciences (Young, 1987; Cobbold

and Barbotin, 1988; Lee and Angelier, 1994; Xu,

1996; Lajaunie et al., 1997). The treatment of direc-

tional data to analyse their variations in space requires

interpolation between local measurements, and this

raises two main problems. First, directional data are

circular, i.e. they can vary between 0j and 360j.
Consequently, classical statistics, as used for algebraic
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data sets, cannot be straightforwardly applied to direc-

tional data (see Upton and Fingleton, 1989). Second,

one can be interested in studying variations correlated

at a regional scale and this can induce a difficult ‘‘scale

problem’’ between the weight given to individual data

and the degree of data filtering required. For example,

most interpolation techniques tend to respect as best as

possible the original data, and this may fail if one

wants to extract regional-scale trends.

Data interpolation using geostatistics was first in-

troduced byMatheron (1962) to estimate ore volume in

mining engineering. Recently, this technique became

more common in geosciences, with various applica-

tions, such as the interpolation between scalar values,

like strain ellipticity (Mukul, 1998) or soil properties

(Bourennane, 1997). Further particular applications

have been developed like the treatment of vectors

(Young, 1987; Lajaunie et al., 1997), or the analysis

of curvilinear geometries (Xu, 1996). In particular,

Lajaunie et al. (1997) have described the use of kriging

interpolation to define the 3D geometry of geological

surfaces (e.g. lithological boundaries or foliation enve-

lopes). In this paper, we develop a geostatistical ap-

proach, with particular reference to the analysis of

structural data. We emphasize that the method can

solve problems classically encountered in the spatial

analysis of orientation data, provided a careful prelim-

inary analysis of the data set is made before proceeding

to an interpolation. The general technique is first

presented and then tested using both theoretical and

natural examples.
2. Methodology

A set of orientation data distributed throughout a

given domain can be regarded as a representative

sample of a continuous regionalized variable defined

for the whole area. This regionalized variable is a

deterministic function relative to the chosen reference

frame. However, data may also contain nonnegligible
Fig. 1. General principles of variogram calculation. (a) Example of spa

experimental variogram where the sample variance is plotted as a function o

vectors corresponding to a given class of distance; doted lines between the p

data pairs fitting the range of distance chosen here. (d) Sketch of the genera

line corresponds to the best-fit theoretical variogram (spherical function). (e

doted lines between the points represent the vectors for all the data set; thi
random and insignificant contributions. The kriging

method developed by Matheron (1962) allows to

interpolate between data points, taking into account

the different contributions involved in data values. The

method has been described as an ‘‘optimal prediction’’

for the interpolation of a variable between its location

and neighbouring scattered data points (Cressie,

1990). Detailed descriptions of kriging techniques

can be found in Isaaks and Srivastava (1989), Deutsch

(1991), Deutsch and Journel (1992), or Wackernagel

(1998). The general principle is to consider the region-

alized variable as one possible outcome of a random

function attached to the location of the considered data

point. One random function is thus defined for each

data point. The problem is then reduced to the analysis

of the variations of the parameters defining these

random functions, in order to estimate the spatially

dependent part of the data, which is equivalent to the

contribution of the regionalized variable.

The geostatistical approach is here applied to the

analysis and modelling of spatially scattered local

directional data. After building a georeferenced data-

base, the procedure used comprises two main steps, as

follows (see Appendix A).

2.1. Quantification of spatial variations of the data

set

For spatial interpolation purposes, it is often ad-

mitted that two close data points may have a more

similar value than two distant ones. Common techni-

ques, such as inverse distance weighting, are based on

this hypothesis. The main problems with this ap-

proach are (1) to determine the maximum distance

for which data values show significant mutual depen-

dence, (2) to estimate how and how fast this depen-

dence decreases with increasing distance, and (3) to

take into account the effects of possible anisotropies

in the spatial variations of the data. The quantification

of such parameters can be provided by the computa-

tion of experimental variograms.
tial data set (in 2D, unscaled). (b) Example of point cloud on an

f the separating distance jhj between data points. (c) Selection of the
oints represent the vectors for all the data set; thick segments join the

l variogram corresponding to the cloud variogram (b); the continuous

) Selection of the vectors corresponding to a given class of direction;

ck segments join the data pairs fitting the range of direction chosen.
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To compute an experimental angular variogram,

one first calculates the differences Dai,j between direc-
tions attached to pairs of data locations (Appendix
A.1). Considering a scattered set of points, the dis-

crepancy between values at two distant locations, for

example x3 and x6 in Fig. 1a, is expressed by the half-
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squared difference (expressed in deg2) C between the

two angular values a3 and a6 attached to these points.

This squared difference, the sample variance, is given

by

C ¼
�
Dax3;x6

2

�2

ð1Þ

This value is calculated for each pair of points of the

data set (Fig. 1b). Considering that the sample variance

is independent of the location of the considered pair of

points (an assumption defined as the intrinsic hypoth-

esis, see Wackernagel, 1998), the experimental vario-

gram is a function of the separating vector h (Fig. 1a),

and is expressed as:

CðhÞ ¼ 1

2
½Dai;ðiþhÞ�2 ð2Þ

This function is symmetrical with C(� h) =C(h).
Assuming that data variations are isotropic, a

general variogram can be simply imaged as the plot

of the half-squared differences against the separating

distance jhj between all the pair of points (Fig. 1b). In

order to improve the analysis of the variogram, it is

sliced in classes of distance Hk and the values calcu-

lated for data pairs fitting a given class are averaged

(see class H8 in Fig. 1b and the corresponding fitting

vectors in Fig. 1c). The equation of the general

variogram (Fig. 1d) becomes:

CðHkÞ ¼
1

2nk

Xnk
1

½Dai;ðiþhÞ�2 ð3Þ

where i and j correspond to data points separated by a

distance jhjaHk, and nk is the number of data pairs

fitting the class Hk.

The experimental variogram defines a curve repre-

senting the increasing discrepancy (i.e. the decreasing

of mutual dependence) between data, as a function of

their degree of proximity jhj (Fig. 1d). The minimum

width of classes of distance Hk and the maximum

distance of computation are imposed by the minimum

and maximum distances between data points, respec-

tively. When approaching highest distances, the num-

ber of data pairs fitting the classes can be low (Fig.

1b) and the corresponding part of the variogram is

thus poorly constrained.
Four important statistical parameters come up from

an experimental variogram (Fig. 1d) (Matheron,

1962).

– The variogram can reach a constant value, class-

ically defined as the sill, with increasing distance of

calculation. This means that the variations of the

variable are correlated up to distances smaller than

the total size of the studied domain.

– The maximum correlation distance for which the

variogram reaches the sill is defined as the range.

For distances larger than the range, data are no

longer correlated.

– The variogram can show a nonzero ordinate at the

origin. From a theoretical point of view, this value

comprises the random part of the random functions

defined for the studied domain. It thus corresponds

to the nonregionalized part of data values (in grey

in Fig. 1d), which can include background noise,

as well as local effects that can be significant at a

scale much smaller than that of the study area. For

mining purpose, Matheron (1962) defined this

ordinate at the origin as the nugget. The region-

alized part of the data is the difference between the

sill and the nugget.

– The experimental trend of the variogram indicates

the way the variance increases with increasing

distance within the data set. It can be fitted to a

theoretical function, classically chosen as spherical

(Fig. 1d), exponential, Gaussian or power function,

which depends on the values of the range, sill, and

nugget (see Wackernagel, 1998).

For a given data set, the range of data variations can

change according to the considered space direction.

Such anisotropy in data variance can be detected by

calculating variograms along particular space direc-

tions. The procedure is the same as for omnidirectional

variograms, except that the overall computation space

is sliced into orientation classes for which individual

variograms are calculated. For each class, the calcula-

tion uses the data pairs separated by a vector h whose

orientation is comprised in the orientation range of the

class (Fig. 1e). During calculation, the number of

orientation classes must be large enough to reveal

the anisotropy, but not too large, so that the number

of data pairs used for each variogram remains suffi-

ciently large.
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2.2. Interpolation between data

As for general statistical studies, geostatistics can-

not be directly performed on angular values. The

kriging interpolation is therefore made using direction

cosines (Appendix A.2). Each individual directional

data is thus expressed by its two direction cosines.

The variogram analysis can then be performed on the

sums of the two direction cosines (Young, 1987) or

on each set of direction cosines (this study) (For the

examples presented in this paper, both techniques

yield similar results). Detailed descriptions of the

calculation procedure can be found in Cressie

(1991) or Wackernagel (1998), and a brief summary

is given below.

As for other weighted moving average techni-

ques, the interpolation is made along a regular grid

covering the whole studied area. At each node

location, ordinary kriging is performed using all

adjacent data points p located inside a given search

circle (Fig. 2). The radius of the search circle

corresponds to the range estimated from the vario-

gram analysis. From the theoretical function de-

duced from the variogram, covariance values are

calculated between all involved data points. A set of

C. Gumiaux et al. / Tecton
Fig. 2. Illustration of data interpolation along a regular grid. For a given no

this point. The radius of the circle is defined by the range deduced from

points) are implied in the calculation of the interpolated value attached to
p equations relating covariance values to distances

between data points, including the considered grid

node, defines the ordinary kriging system. At each

point p, the direction cosines are weighted according

to the solution of the corresponding equation. A

weighted mean of direction cosines is then comput-

ed, and attributed to the grid node. Finally, these

latter values are reconverted into angular values

(Appendix A.2; Fig. 12).

From the interpolated grid, various types of repre-

sentation of the distribution and variations of direc-

tional data can be made. These are in particular

trajectory maps or contour maps. To draw trajectories,

we used the algorithm proposed by Lee and Angelier

(1994, p. 165).
3. Examples of variogram modelling and kriging

of directional data

3.1. Recognition of maximum size of correlated

directional changes (Fig. 3)

In this example, constant N120j striking directions

occur across a given domain, and a disc-shaped
de of the grid (thick cross), a circular neighbourhood is given around

the variogram analysis. All data values located in the circle (black

the given node (modified after Wackernagel, 1998).
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perturbation of 6 units wide has been introduced

within this continuous field (Fig. 3a). The maximum

deviation is of 45j in the middle of the disc and

linearly decreases toward zero at disc boundary. The

variogram corresponding to this model has been

calculated from points scattered across the whole area

(Fig. 3b). The variogram reaches a clear sill for

increasing separation distances, and a spherical theo-

retical function fits the experimental data. The range

value is well defined as 3 units, which exactly equals

the radius of the perturbation. For larger distances,

data are not correlated.

The maximum distance of spatial correlation be-

tween directional data has already been considered as

an important parameter for interpolation (Lee and

Angelier, 1994). The example shown here emphasizes

that this parameter can be directly constrained from

the variogram before performing interpolation.

3.2. Recognition of anisotropies (Fig. 4)

Directional data can present strong anisotropies in

their variation trends. To illustrate relationships be-

tween anisotropy and variograms, a regular fold-

shaped pattern has been drawn, with axial planes

striking N30j (Fig. 4a). The direction of the folded

trajectories has been digitized for few localities (Fig.

4a) and variograms have been calculated from this

data set. The omnidirectional variogram shows a bell-

shaped envelope, with a maximum half-variance of

about 2000 deg2 for separation distances of about the

half of the total model size (Fig. 4b). This suggests
Fig. 3. Illustration of relationships between largest-scale directional varia

variogram (b).
some periodical distribution. Consistently, a periodi-

cal trend appears clearly in oriented variograms

approaching a WNW–ESE direction, and a maxi-

mum ratio between the amplitude and the wavelength

of the signal is observed on the N120j oriented

variogram (Fig. 4c). This direction actually corre-

sponds to the one along which changes in data

attitude are maximum (Fig. 4a). In contrast, the

perpendicularly N30j oriented variogram is flat, with

rather low values (Fig. 4d). This feature means that

directions remain constant along any given N30j
striking line (Fig. 4a).

This example emphasizes that oriented variogram

are powerful tools to detect anisotropies in orientation

distributions. Furthermore, the wavelength of the

periodicity of the oriented variograms provides an

estimate of the wavelength of the anisotropy. Indeed,

for ideal situations, these two values should be equal

(6 units, Fig. 4a,c).

3.3. Recognition of orientation domains (Fig. 5)

In this example, regularly spaced directional data

have been distributed across a rectangular area (Fig.

5a). The variogram analysis and the interpolation

method along nodes of a regularly spaced grid have

been performed on this data set, and trajectories were

constructed across the whole area. A very good

consistency is observed between trajectories and

initial data (Fig. 5b). The maximum range of initial

directions is rather moderate (around 45j), and the

segments representing directional data seem to show
tions present in the direction field (a) and the range given by the



Fig. 4. Illustration of relationships between an anisotropy in direction variations (a) and variations in periodical trends of omnidirectional (b) and

oriented variograms (c, d).
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Fig. 5. Example of detection of domainal distributions. Example data set (a) and interpolated trajectories (b) showing apparently rather moderate

and smooth directional variations. Direction contour map (c) and frequency diagram (d) outlining the occurrence of three distinct directional

domains.
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smooth variations from west to east (Fig. 7b). This is

also suggested by the trajectory map. From these, we

could conclude to regular variations of directions

across the area. In fact, these variations are not as

continuous as suggested by trajectories. Thus, a 2j-
spaced contour map drawn from the interpolated grid

shows local tightening of orientation contours (Fig.

5c), which could reflect different lateral variations in

the gradients of orientation changes. This is con-

firmed by a frequency histogram of interpolated

direction data that shows a multimodal distribution

pattern with three well-defined maxima (Fig. 5d). On

the map, these maxima correspond to the three

domains separated by high lateral gradients under-

lined by contour attitudes (Fig. 5c). In the western

domain, N120j directions are dominant. To the east,

domains A and B are marked by dominant directions

around N80j and N100j, respectively. The differ-

ences in the maximum frequencies of the three peaks
of the histogram result from the different size of the

three domains.

In this model example, the computed trajectories

are in good agreement with the initial directional

data and outline well the overall trend of direction

variation at regional scale. It also points out that

other representations of the data and additional

statistical calculations (e.g. lateral gradients, frequen-

cy analysis, profile extractions) can be useful to

better describe regional trends. In our example, a

domainal distribution of data is outlined, a feature

that was not clearly detectable by the simple trajec-

tory map.
4. Strength and limits of the method

To test the method further, we consider an example

of regularly spaced directional variables (segments in
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Fig. 6a). The total angular range is 0–180j, thus

covering the entire possible values for nonoriented

data. The variations are continuous across the whole

area and the directions show a particularly highly

variable zone around the middle of the rectangle.

4.1. Comparison of kriging interpolation with other

methods

Fig. 6 shows a comparison between automatic

construction of trajectories using different interpola-

tion methods, including the kriging interpolation

(Lajaunie et al., 1997; this study). Fig. 6a shows

the result of an interpolation technique based on the

resolution of a system of quadratic functions for the

entire data set (Barbotin, 1987). Fig. 6b shows the

result for the fit of a single continuous polynomial

function to the entire data set (Lee and Angelier,

1994). The third treatment is based on a mobile

average technique where the interpolation does not

consider the data set as a whole (Lee and Angelier,

1994). Instead, the method is a step-by-step one: only

data lying within a disk centred on a given location
Fig. 6. Comparison between different methods of automatic interpolation a
are treated together. For the average calculation, data

pairs are weighted as an inverse function of the

separation distance. This procedure is repeated for

all nodes of the grid. Results are shown in Fig. 6c.

Fig. 6d shows trajectories obtained with the geo-

statistical method.

The two first techniques are characterized by (1)

the treatment of the data set as a whole, and (2) the

direct use of orientations as algebraic values. Results

emphasize that these constraints can lead to irrelevant

interpolations, especially if the orientation range

exceeds 90j. Indeed, poor correlations are observed

between data and trajectories. Thus, bulk interpolation

methods do not seem to be adapted to the treatment of

directional data. Even for the case of simple direction

fields, as the one presented here, the smooth regional

trend of the data set is not detected. The two other

methods (Fig. 6c,d) can be considered as based on

mobile average techniques for the interpolation. In the

step-by-step technique proposed by Lee and Angelier

(1994), the circularity of directions is taken into

account. Indeed, data used are angles, but the refer-

ence frame is adapted to a convenient orientation with
nd resulting direction trajectories. See text for further explanations.
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respect to the considered data set averaged at each

node of the grid (see ‘‘acute angle’’ technique of Lee

and Angelier, 1994). In the present analysis, this

particular problem is treated by means of the direction

cosines. In the previous study of Lajaunie et al.

(1997), the interpolation technique used partial deriv-

atives of orientation data. For the example presented,

marked by rather smooth local variations of direction,

the two methods yield very satisfying results. The

resulting trajectories are nearly the same and the

regional trend of the directions is well respected. In

particular, both methods detect a singular point (triple

point, or neutral point) in the middle part of the map.

Looking at initial data, hand-made trajectories would

have drawn this singular feature.

4.2. Analysis of strongly disturbed data

Individual data can vary strongly in space, even for

close sampling locations. This can be due to the errors

attached to initial measurements. It can also result

from mixing of data of different origin (e.g. data from

maps of different type, scale or age), and from

subsequent computations (digitization, calculations).

Strong local variations can also reflect very local

effects that are not directly linked to the regional-

scale tendencies (e.g. see Fig. 3).

In order to examine the effect of introducing noise

within the data set, we start with the ideal example

presented in Fig. 6. The initial data set (Fig. 7a) has

been combined with a random noise (Fig. 7b). To do

this, an angular positive or negative deviation com-

prised between zero and 40–50j was randomly

applied to each initial data. Corresponding omnidi-

rectional variograms are shown in Fig. 7c. The

diagram shows that the variogram for the original

data has a negligible ordinate at the origin, i.e. for

short separation distances between data points. This

reflects the smooth and continuous variations of

directions. The variogram for the disturbed data

presents a clear nugget effect of about 800 deg2,

which corresponds to a standard deviation of about

40j. This value is comparable to the maximum
Fig. 7. Illustration of the effect of background noise within data sets subm

Corresponding variograms; the background introduced on (b) is expressed

applied to (a) and (b), respectively. (f) Trajectories from the geostatistical

Trajectories from the inverse distance-weighting method applied to (a) an
deviation introduced on initial individual data. With

increasing distance, both variograms show more or

less linear evolutions on a relatively large part of the

diagram. This comparable trend suggests that both

sets of data record some common regional-scale

correlations. The lack of sill on the variogram for

the initial data set indicates that data are correlated at

distances larger than the map. In contrast, a sill

around 1200 deg2 could be present on the variogram

for the disturbed data set. This suggests that the

statistical analysis combines regional correlation

effects with more local effects. Indeed, if very local

correlations due to the background had completely

obliterated the initial correlations, then only the

nugget effect would appear on the variogram. The

directions have been interpolated for the two data

maps (Fig. 7a,b). The resulting grids are presented in

the form of trajectories (Fig. 7d,e). Trajectories are

very similar for both maps. This shows that, even for

the highly disturbed data set, regional-scale correla-

tions are strongly favoured with respect to local ones.

This is because the nugget effect has been taken into

account in the interpolation processing. If this effect

is neglected, then the interpolation produces a result

that strongly fits the original data set at local scale,

and thus favours local correlations with respect to

regional ones (Fig. 7f).

For comparison, the interpolation method based

on the inverse distance-weighting is shown in Fig.

7g,h for the undisturbed and disturbed data sets,

respectively. Fig. 7g (same as Fig. 6c) shows consis-

tent trajectories. In contrast, trajectories for the dis-

turbed data set do not reflect the trends observed for

the undisturbed set. The pattern of trajectories is in

fact quite similar to the one obtained by the geo-

statistics neglecting the nugget effect (Fig. 7f). This

shows that the inverse-distance weighting tends to

strongly favour local correlations, i.e. individual

original data.

This example emphasizes that the geostatistical

method, via the variogram analysis, allows to separate

local effects and (or) errors in data from significant

regional-scale tendencies.
itted to interpolation. (a) Original data set. (b) Disturbed data set. (c)

by a nugget effect. (d, e) Trajectories from the geostatistical method

method applied to (b) without taking the nugget into account. (g, h)

d (b), respectively.
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4.3. Analysis of irregularly spaced data

During field studies, measurements or calculations

of directional data can be done from micro-scale to

outcrop-scale, and even up to regional scale (e.g.

analysis of satellite images). It is admitted that a

highest density of measurements and a regular distri-

bution of them throughout the studied area are optimal

conditions to constrain the spatial variations of the

C. Gumiaux et al. / Tecto252
Fig. 8. Illustration of the effect of sampling heterogeneities on interpolati

same direction field as (a). (c) Corresponding variograms. (d, e) Trajector
considered parameters (e.g. Lee and Angelier, 1994;

Mukul, 1998). Unfortunately, data sets are often het-

erogeneous, because of outcrop conditions and of

logistics.

In order to test the strength of the geostatistical

analysis with respect to sampling heterogeneity, we

again use the example introduced in Fig. 6. The initial

regular distribution of data (Fig. 8a) has been modi-

fied by introducing substantial sampling heterogene-
on results. (a) Original data set. (b) Heterogeneous sampling of the

ies from data sets (a) and (b), respectively.
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ities (Fig. 8b). The variogram for these irregularly

spaced data is reported in Fig. 8c, together with the

one coming from the original regularly spaced data.

Both variograms follow the same trend. This compar-

ison highlights that the variogram analysis remains

powerful even for nonideally distributed data. On the

basis of the variogram analysis, the kriging interpola-

tion has been performed for both data sets (Fig. 8d,e).

The trajectory maps are again very similar. This shows

that the interpolation method is not much sensitive on

the initial data distribution, even where highly clus-

tered data occur (Fig. 8b, bottom right). If we compare

in detail the resulting trajectory maps, we can see that

the position of the singular point, lying in the middle

of the rectangle, is slightly shifted to the right for the

interpolation of the irregularly spaced data points

(compare Fig. 8d and e). In the latter, the singular

point corresponds to a zone relatively depleted in

number of data. The shift of the singular point shows

that a minimum of measurements is necessary to

interpolate correctly the directions within highly var-

iable zones.
5. Examples of application to natural strain fields

5.1. Shear zones

Shear zones are very common structures where the

characterization of strain gradients can be useful for

the analysis of strain patterns and attached kinematics.

Across shear zones, increasing shear strain is marked

by the rotation of the principal strain plane (cleavage

or foliation), and by a convergence of strain trajecto-

ries (Ramsay and Graham, 1970).

The geostatistical method has been applied to a

famous example of small-scale shear zone described

by Ramsay and Graham (1970) (Fig. 9a). To do this,

a sampling of foliation directions has been made on a

photograph of the shear zone (Fig. 9b). Interpolated

data are presented on a trajectory map (Fig. 9c) and

on a direction contour map (Fig. 9d). Consistent

rotations of the foliation and tightening of trajectories

with increasing shear strain are well expressed on the

trajectory map. Some additional information can be

found in the contour map. Thus, along-strike varia-

tions of principal strains are observed and define

three domains. The central domain corresponds to
the overall strike of the shear zone, and appears as

the narrowest part of it (Fig. 9a). Domains to the left

and to the right correspond to wider shear zone

segments.

5.2. Syntectonic plutons

Strain patterns within and around syntectonic plu-

tons emplaced in the ductile crust generally reflect the

interference between strains due to pluton emplace-

ment (e.g. ballooning effect; Ramsay, 1989) and

strains due to regional tectonics (see Brun and Pons,

1981). This leads to complex foliation patterns that

can in particular include singular points (neutral or

triple points) and concentric fabrics around pluton

boundaries.

The example presented here is a small syntec-

tonic Hercynian pluton (Landudal leucogranite)

from the western part of Central Brittany (France)

(Fig. 10a). In this area, Hercynian deformations are

related to regional dextral strike-slip associated with

the South Armorican Shear Zone (Fig. 10a) (Gapais

and Le Corre, 1980; Hanmer et al., 1982; Gumiaux

et al., in press). At regional scale, strike-slip

deformation resulted in the development of a sub-

vertical cleavage bearing a subhorizontal stretching

lineation.

Line segments in Fig. 10b show the strike of the

cleavage measured in the deformed sediments

(Hanmer et al., 1982). At distance from the pluton,

fabrics strike EW to ENE–WSW. At the vicinity of

the pluton, the cleavage shows rather variable

orientations.

Avariogram analysis and an interpolation have been

performed on these direction data (Fig. 10c). On the

map, the trajectories show that the mean azimuth of the

cleavage is around N70j–N80j, which corresponds to
the regional-scale orientation of the cleavage in this

part of Central Brittany (Gumiaux et al., in press). This

regional trend is consistent with dextral strike-slip

along the South Armorican Shear Zone. In the

middle of the study area, where the pluton is

located, the interpolation procedure calculates ellip-

tical trajectories (dashed lines). Moving away from

the pluton, trajectories tend to wrap around pluton

boundaries. At pluton tips, elliptical fabrics (dashed

lines) and trajectories wrapping around the pluton

(full lines) define cleavage triple points. This over-



Fig. 9. Example of application of the geostatistical method on a natural shear zone (a) (photograph from Ramsay and Huber, 1983, Fig. 3.3,

p. 36). (b) Sampled data set. (c) Corresponding strain trajectories. (d) Direction contour map showing the occurrence of along-strike domains.

See text for further comments.

C. Gumiaux et al. / Tectonophysics 376 (2003) 241–259254



Fig. 10. Example of application of the geostatistical method to the analysis of strain patterns in and around a syntectonic pluton. (a) General

sketch map of the area. (b) Cleavage direction data. (c) Computed trajectory map. See text for further comments.
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all pattern of strain trajectories is consistent with

some kind of pluton ballooning during regional

shearing.

The occurrence of triple points can be further

tested. During kriging, the direction cosines are used

to calculate the interpolated direction. For a given set

of orientation data, the length of the mean vector

defined by the direction cosines is a direct estimate of

the local direction variance. This parameter represents

the degree of data concentrations around the mean

vector, and has been defined as the parameter R (see

Upton and Fingleton, 1989). When R equals 1, all the

directions considered are parallel and the resulting

mean is perfectly constrained. With decreasing R

value, the resulting mean angle becomes less con-

strained, down to undefined when R equals zero. This

is what is expected to occur within a neutral point

(triple point) (see Fig. 6). On Fig. 10c, low R values

have been contoured, with increasing grey levels

from R equals 0.5 to zero. From numerical models,
Brun (1981) demonstrated that two pairs of neutral

zones, inside and outside the pluton, could develop

during syntectonic ballooning. These zones are locat-

ed at pluton tips, at high angle to the regional

shortening direction. This is actually consistent with

our interpolation results, which show four zones of

low R values. Two of them are well outside the

pluton and are clearly located within the cleavage

triple points defined by cleavage trajectories. The two

more internal ones are located at the tips of the area

marked by elliptical trajectories.

Thus, the interpolation method provides consistent

results for this complex example where rather few

orientation data are available (Fig. 10b).
6. Concluding remarks

This study has emphasized that statistical analysis

of directions cannot be made with circular data.



Fig. 11. Illustration of problems attached to the calculation of mean

values from circular angular data.
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To avoid this problem, the use of direction cosines

during automatic data treatment appears a good

solution.

Geostatistics, in particular the analysis of vario-

grams, permit to describe and quantify the spatial

dependences of values from any kind of data set. The

method has been here developed for directional data.

The variogram analysis allows (1) to quantify the

scale of data correlation, (2) to detect and quantify

anisotropies in data variations, and (3) to quantify

local effects, as well as inherent errors included

within original data, and separate them from regional

effects.

Statistical parameters provided by variograms are

critical to constrain the way directional data should be

interpolated. Indeed, during interpolation, data

weighting depends on the best-fit equation of the

variogram curve. The strength of the interpolation

method is outlined by the treatment of nonideal

theoretical data sets, as follows.

– The influence of data heterogeneity, like a

substantial background noise, appears rather

limited. This is because the nugget value obtained

from the variogram analysis is taken into account

during interpolation.

– The influence of heterogeneously distributed data

appears also limited.

The method is convenient to draw direction trajec-

tories. It can also provide further information. We

have in particular emphasized the followings.

– Contour maps, combined with direction histo-

grams, are convenient to detect domainal distri-

butions of directions.

– The interpolation leads to quantify the degree

of local consistency and of correlation between

neighbouring data. For example, well-oriented

domains can be distinguished from less-oriented

ones. Thus, in the example of pluton intrusion

presented in this paper, cleavage triple points have

been detected.

Compared with other methods of analysis of

directional data developed in geosciences, the geo-

statistical method appears particularly efficient, reli-

able, and can be applied at all scales. We have
focused this paper on the analysis of strain trajecto-

ries, but the method could be applied to any kind of

other directional data, like displacement vectors (e.g.

from GPS measurements), fault patterns, stress fields,

paleocurrents, topographic data, paleomagnetic data,

or directional data extracted from geophysical maps

or cross-sections (e.g. seismics, gravity and magnetic

data).
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Appendix A

Directional data are particular variables character-

ized by a circular property. Angles are indeed

expressed modulo p for nonoriented directions or
Fig. 12. Illustration of the different steps followed during processing and
modulo 2p for vectors. It follows that none of the

classical statistical calculations can be directly per-

formed on these data. Particular treatments for direc-

tions have been developed in detail elsewhere (e.g.

Mardia, 1972; Upton and Fingleton, 1989; Marcotte,

2001), and only a brief summary is given here.

A.1. Transformation of angular data for variogram

construction

The construction of a variogram requires the use of

angular differences Dai, j between pairs of directional

data i and j (Fig. 1). In this case, the angular variable

is independent of the chosen reference frame. It
interpolation of directional data. See text for further explanations.

 http:\\geo.polymtl.ca\~marcotte\ 
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follows that problems induced by the circularity of

angular variables can be solved by a simple data

correction modulo p (Upton and Fingleton, 1989):

Dai; j ¼ ai � aj if ðai � ajÞ<90j

and

Dai; j ¼ 180j � ðai � ajÞ if ðai � ajÞz90j

For example, for a pair of directions striking N5j
and N175j, the algebraic difference is (175� 5j)
= 170j (Fig. 11), which exceeds 90j andmust therefore

be changed to 10j. This value then becomes the same

as for angular differences falling in the 0–90j angular

range (e.g. 95� 85j = 10j) (Fig. 11b).

A.2. Transformation of angular data for kriging

interpolation

Problems induced by the circularity of orientation

data in their statistical analysis are further critical for

the interpolation between data than for the vario-

gram calculation. Indeed, the interpolation procedure

involves computations using angles and angular

means defined with respect to a given reference

frame. Therefore, additional transformations of orig-

inal data are required. This is illustrated in Fig. 11,

that shows an example of two data oriented N5j
and N175j.

For this example, the resulting mean direction is

intuitively estimated as striking north–south, irre-

spective of the reference frame (NS, Fig. 11a, and

N270j, Fig. 11b). Problems arise when the arith-

metic mean is directly calculated on these values

(5j + 175j)/2 = 90j (Fig. 11a). Staying in the same

NS reference frame, the estimate of the mean Fisher

vector also yields an east–west trend, which is at

90j from the correct north–south result (Fig. 11a).

For this simplistic example, one can see that if the

origin is changed from north to west, the algebraic

mean calculation, as well as that of the mean vector,

provides the correct result (Fig. 11b). However, this

transposition, which is trivial for two directions,

becomes much less straightforward for a set of many

values.

Different techniques have been proposed to treat

such nonoriented directions (e.g. Panozzo, 1984; Lee
and Angelier, 1994). A simple one, which we have

followed, has been described by Upton and Fingleton

(1989).

The first step consists in a preliminary doubling of

the algebraic values of the nonoriented directions

(Upton and Fingleton, 1989) (Fig. 12). The 0–180j
range of directions is thus enlarged to the entire 0–

360j range. Each direction is then considered as a unit
vector. This vector is projected on each of the refer-

ence axes in order to calculate the corresponding

direction cosines (Fig. 12). These latter variables are

not circular, and classical calculations can be per-

formed on them. This is for example illustrated in Fig.

12 for the estimate of a mean vector. On this basis, the

kriging interpolation is performed, yielding interpo-

lated directional data expressed by their direction

cosines. The last step consists in the calculation of

corresponding angles, which are halved in order to

reduce the angular range from 0–360j to the initial

0–180j range (Fig. 12).
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