Уральский геологический журнал, 2003, № 3 (33), с.85-96

УДК 553.435

© Ю.М. Столяров

ЗЮЗЕЛЬСКОЕ КОЛЧЕДАННОЕ МЕСТОРОЖДЕНИЕ, УРАЛ

(НОВЫЙ ВЗГЛЯД НА СТРОЕНИЕ И ГЕНЕЗИС)

357514 г. Пятигорск, ул. Кочубея, 21, к.4, кв. 18 (Представлена д.чл. УАГН В.И.Кузнецовым)

Автореферат

Приведены данные, свидетельствующие об ином, нежели принято считать, строении месторождения, форме, размерах и условиях залегания рудных тел, а также генезисе. Утверждается, что рудные тела на месторождении простираются не в меридиональном, согласном с линейностью вулканических и тектонических структурах и элементов в регионе, а в субишротном направлении, падают круто к северо-востоку и находятся ныне в опрокинутом положении. Сделан вывод о двухэтажном (в структурном отношении) строении рудного поля и приуроченности месторождения к более древней толще вулканогенно-осадочных пород, залегающей ниже. Выявлен рудоподводящий канал. Отмечено обилие ангидрита в метасоматитах рудоподводящего канала. По совокупности признаков месторождение отнесено к кипрскому типу.

© Yu. M. Stolyarov

THE ZYUZELSKOYE MASSIVE SULPHIDE DEPOSIT IN THE URALS. (A NEW VIEW AT THE STRUCTURE AND GENESIS)

Abstract

The Zyuzelskoye massive sulphide deposit previously described as volcanogenic in origin syngenetic to Early Silurien dacit – basaltic volcanic (Uralian type) are reinterpreted as that syngenetic to Ordovician tholetic basaltic (Cyprus type).

85

Зюзельское колчеданное месторождение находится на Среднем Урале, приблизительно в 20 км к югу от Дегтярского месторождения (рис. 1). Оно расположено в западном борту Тагильского прогиба или погружения, в Западном тектоническом блоке (Зюзельский рудный район), тогда как Дегтярское – в Центральном (Дегтярский рудный район) [2,6].

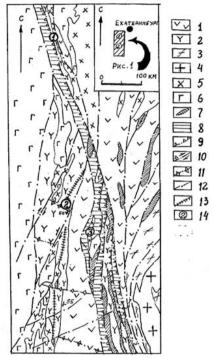


Рис. 1. Схема геологического строения Зюзельского и Дегтярского рудных районов (по [2] с упрощениями).

1 — базальт-андезитовая формация. 2 — контрастная дацит-базальтовая формация. 3 — парасланцы и амфиболиты. 4 — верхнепалеозойские граниты и гранодиориты. 5-6 — нижне-среднепалеозойские: нерасчлененные плагиограниты и диориты (5); нерасчлененные породы дунит-клинопироксенит-габбровой формации (6). 7 — серпентиниты. 8 — зона совмещения нерасчлененных тектонических блоков, включающих породы базальтандезитобазальтовой, дацит-базальтовой и карбонатно-флишоидной формаций. 9 — надвиги. 10 — сдвиги, направления падения и смещения по ним. 11 — синвулканические разрывы в породах контрастной формации. 12 — нерасчлененные тектонические разрывы. 13 — «рудолокализующий уровень». 14 — месторождения: 1 — Дегтярское, 2 — Зюзельское, 3 — Гумешевское.

Месторождение известно с 1905 года, считается достаточно хорошо разведанным и изученным, и длительное время (более 70 лет) эксплуатировалось.

И, тем не менее, в представлениях о его строении, геологической позиции, возрасте и происхождении и по сей день не мало «белых пятен» и противоречий, а то и явных заблуждений.

Все исследователи, изучавшие Зюзельское месторождение [1-8, 11, 12]. Характеризуют его как довольно типичный для Среднего Урала колчеданный объект. В числе присущих ему особенностей отмечаются, прежде всего, преимущественно серно- и медноколчеданный тип его руд и высокое (до 0,2 %) содержание в них кобальта, а также большое число и небольшие размеры (длина до 50-80, мощность — 3-7, иногда до 10-15 м) рудных тел, а главное — расположение их в виде «групп» или «систем» плотно сбитых линз или линзовидных тел (Западная. Северная, Восточная и др.) в пределах нескольких субширотно простирающихся зон. Причем отдельные рудные тела, как отмечается, залегают согласно со сланцеватостью вмещающих пород. Последняя же простирается в субмеридиональном (аз. пр. 5-15°) направлении и падает к востоку под углами 65-75°.

Считается, что непосредственно вмещающими породами являются вулканиты базальтового и андезито-базальтового состава [1, 4, 6, 8] позднеордовикско-раннесилурийского возраста. Последние в рудном поле и на большей части района, по данным одних исследователей [1, 4, 6] залегают полого или близгоризонтально, а по данным других [2] - моноклинально с падением на восток под углом 40-70°. Считается, что положение месторождения и рудных тел контролируется либо субмеридиональной зоной смятия и рассланцевания, секущей эту толщу [1, 4, 6, 8]; либо – неким, единым для района стратиграфическим ("рудоносным" или "рудоконтролирующим") уровнем, общим или синхронным с "дегтярским" [2]. Э.Н. Баранов [1] и А.П. Наседкин и др. [6] рассматривают месторождение, как вулканогенное, гидротермально-метасоматическое. Э.Н. Баранов [1] и В.Ф. Рудницкий [8] считают, что Зюзельское месторождение, в отличие от большинства месторождений Среднего Урала, деформировано относительно слабо и не испытало скольконибудь значительных дислокаций с изменением первичного залегания. П.Я. Ярош [11, 12], Ф.П. Буслаев и др. [3, 4], напротив, утверждают, что месторождение подверглось весьма интенсивному воздействию различных агентов динамического и гидротермального метаморфизма, которые привели к разнообразным и весьма глубоким изменениям руд и вмещающих пород, в частности, - появлению на глубоких горизонтах ангидрита и обогащению серы сульфидов легким изотопом ³²S.

Результаты исследований и анализа геологических материалов показывают, что Зюзельское месторождение состоит (вернее – состояло на момент отложения и захоронения руд) не из множества мелких (как принято считать), а не из нескольких, но довольно крупных (более 200-300 м в длину, мощностью до 80 м), расположенных на одном (стратиграфическом) уровне, простирающихся (ныне) не в субмеридиональном, а в таком субширотном направлении (аз. пр. 300-315°) и падающих круто (под углом около 80°) к северо-востоку пласто - или линзообразных тел сплошных колчеданных руд. Последние в результате интенсивных тектонических дислокаций разбиты на серию поперечных к простиранию залежей кливажных или тектонических пластин различной толщины (от долей метра до 10-15м)*, ступенчатого смещенных относительно друг друга по вертикали, а местами и по горизонтали (рис. 2). Кроме того, залежи (а следовательно, и месторождение) еще разбиты серией более поздних меридиональных тектонических нарушений сдвигового характера на различной длины отрезки или блоки, ступенчато смещенные относительно друг друга к северу (левый сдвиг) на десятки и сотни метров. На представленном фрагменте плана (рис. 2, А) их - три, с амплитудами 120-150 и 40-50 м, чем, повидимому, не исчерпывается их число и область распространения**. При этом судьба срезанной, самой западной части месторождения, смещенной по 1-му нарушению, судя по ряду признаков, к югу, на расстояние, вероятно, более 300 м, остается неизвестной.

88

^{*} именно "пластины", которыми на месторождении подразумеваются "рудные тела" и "линзы", залегают согласно со сланцеватостью.

 $^{^{**}}$ одно из подобных нарушений, срезающих колчеданную залежь на верхних горизонтах месторождения, описано А.Н. Заварицким [5] со ссылкой на Л. Дюпарка и Г. Сигга (1914).

Не исключено, если исходить из кинематической схемы перемещений блоков при сбросо-сдвиговых тектонических деформациях, что данные сдвиги являются оперяющими (т. е. 2-го порядка) по отношению к более крупному (1-го порядка) нарушению север-северо-восточного простирания, также, повидимому, сдвигового характера, которое, вероятно, проходит вблизи западной границы известной части месторождения***.

Общая протяженность известной (восточной) части месторождения, судя по данным горных работ и поискового бурения, около 1 км по простиранию и около 0,5 км по падению, что свидетельствует о довольно значительных ее размерах, а следовательно — еще больших размерах изначального объекта и далеко еще не исчерпанных возможностях обнаружения новых рудных тел, как в смещенной неизвестной части месторождения, так и на восточном, наиболее слабо изученном фланге известной. При этом руды восточного фланга, в отличие от руд центральной части, которые в основном — серноколчеданные, значительно обогащены медью [1, 5, 8, 11], что согласуется с обычной, свойственной большинству колчеданных месторождений латеральной зональностью.

Представленная картина в морфологическом и структурном отношениях осложняется еще роями многочисленных поперечных к простиранию залежей даек диабазов и порфиритов, внедрившихся по системе субпараллельных трещин. В результате этого рудные пластины оказались "впаяны" в тела довольно прочных диабазов и порфиритов, благодаря чему значительно лучше, чем оставшиеся вне даек части, сохранили свой первоначальный вид и форму (рис. 2, A, Б).

Внедрение даек вызвало довольно сильные околоконтактовые изменения руд: перекристаллизацию, образование магнетита, пирротина и некоторых других минералов, а также миграцию с частичным переотложением более подвижных сфалерита и халькопирита в боковые породы. Указанные явления, правда, вне очевидной их связи с дайками, отмечались в свое время А.Н. Заварицким [5] П.Я. Ярошем [11]. Сами же дайки, в отли-

 *** два наиболее крупных по [2] сдвига с амплитудами смещения по ним до 10 км, проходящие одно западнее, а другое восточнее Зюзельского месторождения, показаны на рис. 1.

чие от боковых пород, превращенных в разнообразные кварцсерицит – и хлоритсодержащие с обильным пиритом и рутилом сланцы, изменены относительно слабо и большей частью массивны. Отмечается только эпидотизация да прожилки с кварцем, карбонатом и хлоритом при полном, за исключением редких вкраплений и гнезд, отсутствии сульфидов.

Как и для большинства колчеданных месторождений на Среднем Урале, для Зюзельского также характерна проявленная довольно локально весьма интенсивная ангидритизация (содержание ангидрита до 10-25 %) вмещающих пород [1, 9, 11, 12], особенно в рудоподводящем канале [10]. В серицит-кварцевых метасоматитах последнего, кроме свободных выделений, этот минерал присутствует еще в виде сингенетичных микровключений, также весьма обильных, в метасоматическом кварце и пирите [10]. Размер предположительно трубообразного тела ангидритсодержащих метасоматитов канала, выделенного и оконтуренного, наряду с другими, и по этому признаку (или критерию), в поперечном сечении не менее 600 м. Причем западная и нижняя его границы, как и протяженность по оси канала, достоверно не определены. В направлении, перпендикулярном к плоскости расположения рудных залежей, ангидритсодержащие метасоматиты канала, по наблюдениям автора, непрерывно прослеживаются по ряду скважин на 300-400 м от основания залежей, расположенных над его устьем (т. е., по оси канала) к северо-востоку с некоторым воздыманием (около 10-15°) к горизонту, а по совокупности других признаков* - по меньшей мере еще на 400-500 м в том же направлении и выходят на поверхность приблизительно в 700-800 м к северо-востоку от выходов рудных тел (рис. 2, A, B).

Следует, однако, особо подчеркнуть, что на Зюзельском месторождении, в отличие от большинства колчеданных месторождений Среднего Урала, ангидритсодержащие метасоматиты, определяющие местоположение рудоподводящего канала и сам канал, располагаются не в лежачем, а в висячем (ныне) боку за-

90

^{*} интенсивное кварц-серицитовое изменение пород, сопровождаемое прожилковой вкрапленной пиритовой минерализацией, аномально высокое содержание Co, Mo и Ba [1, 10].

лежей (рис. 2 В), что свидетельствует об опрокинутом положении рудных тел и месторождения в целом.

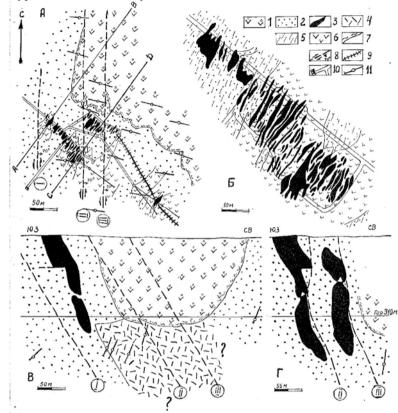


Рис. 2. А – план горизонта 310 м; Б – деталь рис. 2, А; В – разрез по линии A-B; Γ – фрагмент разреза по линии C-Д.

1 — «Верхняя» толща. Вулканиты дацит-базальтовой и базальт-андезито-базальтовой формаций. 2-5. «Нижняя» толща. 2 — кварц-серицитовые и др. метасоматиты с вкрапленностью пирита. 3 — колчеданные рудные тела. 4 — ангидритсодержащие метасоматиты рудоподводящего канала. 5 — сланцы кварцево-серицитовые. 6 — дайки диабазов и порфиритов. 7 — предполагаемая граница «верхней» и «нижней» толщ. 8 — разрывные нарушения. 9 — предполагаемая линия простирания «рудного уровня». 10 — подземные горные выработки. 11 — проекции буровых скважин и точки пересечения их с плоскостью горизонта или разреза.

91

В подобном же положении, как известно, находится и Дегтярское месторождение, на котором ангидритсодержащие метасоматиты рудоподводящего канала (по данным автора) также

находятся в висячем боку. Однако, если на Дегтярском месторождении рудное тело залегает согласно с вмещающей его толщей вулканогенно-осадочных пород продуктивной формации [1, 2, 6, 7], то на Зюзельском – рудные залежи с их субширотным, «пайхойским» простиранием, напротив, резко несогласны по отношению к вулканитам «продуктивной» формации, а также вулканическим и тектоническим структурам в районе с их субмеридиональным «общеуральским» простиранием и линейностью, что свидетельствует о явной ксеногенности Зюзельского месторождения данным комплексам и структурам, и, следовательно, принадлежности этого месторождения иным структурам и совершенно другому комплексу вулканогенных или вулканогенно-осадочных пород, иного, скорее всего, более раннего тектоно-магматического цикла, а именно, кремнистобазальтовой (спилит-диабазовой) формации [6, 7].

Это согласуется со многими другими данными и особенностями месторождения, которые, кстати, также не находят удовлетворительного объяснения с позиций традиционных представлений о пространственно-временной и генетической связи месторождения с вулканизмом позднеордовикскораннесилурийского возраста, с накоплением толщ контрастной дацит-базальтовой и базальт-андезитбазальтовой формации [1, 2, 6-8, 11, 12].

Это — прежде всего, отмеченный выше резкий контраст в степени изменения и рассланцевания непосредственно вмещающих пород, которые на значительной площади превращены, по существу, в разнообразные сланцы серицитолитовой фации метаморфизма, и секущих их и колчеданные залежи даек диабазов и порфиритов, которые, как и эффузивные их аналоги «рудоносной» дацит-базальтовой и андезит-базальтовой формации, относительно слабо изменены и практически не рассланцованы.

Обращают на себя внимание и довольно значительные геохимические различия руд Зюзельского и находящегося неподалеку от него и относящегося к той же рудоносной формации 92

Дегтярского месторождения [2, 3, 6, 7]. Первое, как известно, относится к кобальтсодержащему медному, а второе – барийсодержащему медно-цинковому, уральскому типу месторождений.

Все это, в конечном счете, приводит к выводу о двухэтажном или двухъярусном строении рудного поля, а следовательно, и района, обусловленном наличием в разрезе, по меньшей мере, двух толщ или комплексов вулканогенных или вулканогенно-осадочных пород (условно – "верхнего" и "нижнего"), отличающихся возрастом, составом, степенью дислоцированности и метаморфизма, а главное – рудоносностью и залегающих резко несогласно по отношению друг к другу.

- 1. "Нижний" комплекс, рудоносный, более древний. Представлен интенсивно дислоцированными с проявлением разновременных, разноплановых деформаций сильно гидротермально измененными и рассланцованными, по-видимому, вулканогенно-осадочными породами с залегающими среди них телами колчеданных руд (Зюзельское месторождение). Залегание (по залеганию рудных тел) в пределах месторождения опрокинутое, простирание субширотное с крутым падением к северовостоку. Видимая мощность толщи не менее 1 км.*
- 2. "Верхний" комплекс, практически безрудный. Представлен известной, уже упоминавшейся сравнительно полого лежащей толщей относительно слабо измененных вулканитов базальтового и андезито-базальтового состава (дацит-базальтовая и базальт андезитобазальтовая формации) позднеордовикскораннесилурийского возраста [1, 2, 4-8, 11, 12].

В связи с этим, обнажающиеся местами среди вулканитов "верхнего" комплекса кварцево-серицитовые сланцы с залегающими среди них линзами колчедана — ни что иное, как выходы нижнего, более древнего рудоносного комплекса в "денудационных окнах" верхнего. Кстати, не исключено, что некоторые из них, а именно, те, что находятся на пути возможного движения смещенной западной части Зюзельского месторождения, являются выходами отдельных ее фрагментов.

С приведенными фактами и представлениями хорошо согласуются и другие особенности Зюзельского месторождения, в разное время отмечавшиеся различными исследователями, в частности, довольно сильный метаморфизм руд, катаклаз и раз-

* К сожалению, дать более полную характеристику толще и условиям ее залегания, особенно за пределами месторождения, пока не представляется возможным.

гнейсование их, особенно в краях рудных тел (пластин), а также замещение их серицитом и другими минералами [11, 12]. Околорудно же измененные породы по большей части превращены в различные сланцы, которые, во многих местах, особенно, в зонах предполагаемых нарушений, представляют собой типичные милониты или милонитизированные породы, практически полностью утратившие реликты первичных структур. Ангидрит, нередко присутствующий в этих породах, также несет отчетливые признаки воздействия на него динамометаморфизма: это – удлиненная или линзовидная ("очковая") форма выделений, ориентированных по сланцеватости; смещения и изгибы трещин и плоскостей спайности, двойниковых швов и т. д.

И, наконец, еще об одном, не отмечавшемся прежде, но весьма характерном для Зюзельского месторождения виде изменения и минерализации, свидетельствующем о длительной и сложной истории образования и преобразования месторождения, а именно - о довольно широко распространенной, местами довольно интенсивной альбитизации вмещающих пород и руд. Последняя, как показывают пока еще относительно немногочисленные, ограничивающиеся площадью самого месторождения наблюдения, почти с одинаковой степенью интенсивности проявлена и на глубине 300, и на глубине 800 м от поверхности, и вблизи и на довольно значительном (до 500 м) удалении от рудных тел, и охватывает практически все околорудно измененные породы, включая ангидритсодержащие метасоматиты рудоподводящего канала. Отмечается она и в относительно слабо измененных диабазах и диабазовых порфиритах, относящихся к верхней толще или сингенетичному ей дайковому комплексу. По данным единичных наблюдений признаки ее пока что не обнаружены только в дайкообразных телах кварцевых диоритов, довольно часто встречающихся на месторождении.

Рассматриваемая альбитизация проявляется преимуществен-94

но в виде гнездовых, неправильных или прожилковидных выделений или обособлений, сложенных гранобластовым агрегатом прозрачного, большей частью полисинтетически сдвойникованного альбита с размером отдельных зерен до 0,5 мм, замещающих основную ткань породы.

На участках интенсивной альбитизации нередко возникают альбиты, состоящие на 50-60 % из новообразованного альбита, с

включениями минералов замещаемой породы, в том числе и ангидрита.

Из более поздних изменений в этих породах отмечается только замещение альбита кварцем.

Что касается происхождения Зюзельского месторождения, то представляется, что хотя оно и связано с более древним комплексом пород и более ранним тектоно-магматическим циклом, чем известные позднеордовикско-раннесилурийские колчеданоносные формации Среднего Урала, но по совокупности типоморфных признаков практически не отличается от большинства среднеуральских месторождений так называемого уральского типа [7], и, по-видимому, также как и они образовалось гидротермально-осадочным способом на дне моря, над или вблизи центра поствулканических эксгаляций. При этом, судя по обилию в метасоматитах рудоподводящего канала ангидрита, рудоносные растворы содержали довольно много окисленной серы (SO₂) и ее соединений.

Вместе с тем, если исходить из положения месторождения в разрезе, серно- и медноколчеданного состава руд, высокого содержания в них кобальта (до 0,2 %), а также руководствоваться другими аналогиями (наличие залежей выше толщи вулканитов основного состава с признаками подушечного сложения лав, роев секущих рудные залежи комагматичных им даек), то генетически оно, вероятней всего, связано с ранней кремнистобазальтовой (спилит-диабазовой) формацией Урала, и относится к кипрскому типу.

Я весьма признателен Ю.С. Николайченкову, М.Я. Волькинштейну и И.А. Субботину из ОАО "Уралцветметразведка", Г.В. Петрову и И.И. Зенкову из ОАО "Уральская геологосъемочная экспедиция" за любезное представление дополнительных материалов, а также Б.Т. Коновалову из НПП "Терра"

(г. Ессентуки), В.А. Снежко и В.С. Шишову из ФГУП "Каказгеосъемка" за техническую помощь и содействие в приведении лабораторных исследований.

Литература

1. Баранов Э.Н. Эндогенные геохимические ореолы колчеданных месторождений. М.: Наука. 1987. 296 с.

- **2. Барышев А.Н., Перижняк Н.А.** Особенности поисков колчеданных месторождений в дислоцированных толщах (на примере Дегтярского и Зюзельского районов Среднего Урала) // Тр. ШНИГРИ. Вып. 201. 1986. С. 26-35.
- **3.** Буслаев Ф.П., Игумнов С.А., Прокин В.А., Славина Т.П. Изотопный состав серы // Медноколчеданные месторождения Урала. Условия формирования. Екатеринбург: УрО РАН, 1972. С. 199-200.
- **4. Буслаев Ф.П., Ярош П.Я., Игумнов С.А.** Изотопный состав пирита Зюзельского месторождения // Геол. рудн. месторожд. 1979. № 2. С 89-92.
- **5.** Заварицкий А.Н. Геологический очерк месторождений медных руд на Урале // Тр. Геол. Ком. Вып. 173, ч. 1, 1927.
- **6. Медноколчеданные месторождения Урала.** Геологические условия размещения // В.А. Прокин, В.М. Нечеухин, П.Ф. Сопко и др. Свердловск: УНЦ АН СССР, 1985. 237 с.
- **7. Медноколчеданные месторождения Урала.** Геологические условия размещения // В.А. Прокин, И.Б. Серавкин, Ф.П. Буслаев и др. Екатеринбург: УрО РАН, 1992. 308 с.
- **8.** Рудницкий В.Ф. К вопросу об источниках рудного вещества Зюзельского колчеданного месторождения // Геохимия. 1980, № 11. С. 1750-1752.
- **9. Столяров Ю.М.** О гипогенной сульфид-сульфатной зональности рудных месторождений // Геол. рудн. месторожд. 1978. № 3. С. 36-48.
- **10.** Столяров Ю.М. Микровключения ангидрита в сульфидных рудах // Известия АН СССР, сер. Геол., 1992, № 10. С. 138-147.
- **11. Ярош П.Я.** О двух стадиях серпентинизации на Зюзельском колчеданном месторождении // Докл. АН СССР. 1962. Т. 147, № 6. С. 1455-1457.
- **12. Ярош П.Я.** О метасоматозе и метаморфизме колчеданных руд Зюзельского месторождения // Геол. рудн. месторожд., 1964, № 4. С.57-65.