= ГЕОХИМИЯ =

УДК 546.29:551.352:523.68:523.161

ТЕМПЕРАТУРНЫЕ ЗАВИСИМОСТИ КОНЦЕНТРАЦИЙ ИЗОТОПОВ ГЕЛИЯ В ОБРАЗЦАХ ОКЕАНИЧЕСКИХ ПОРОД – КЛЮЧ К ПОНИМАНИЮ ПРОИСХОЖДЕНИЯ ИЗОТОПОВ ГЕЛИЯ И ИХ ВАРИАЦИЙ

© 2003 г. Г. С. Ануфриев, Б. С. Болтенков

Представлено академиком А.П. Лисицыным 17.09.2002 г.

Поступило 20.09.2002 г.

При исследовании изотопных составов гелия в коренных породах дна океана [1, 2], в океанических глубоководных илах и железо-марганцевых конкрециях (ЖМК) [3-5] было выяснено, что типичная величина отношения ³He/⁴He для образцов этих пород имеет один и тот же порядок величины ~10-5, что существенно больше, чем в атмосфере ~10⁻⁶ и в континентальных породах ~10⁻⁸-~10⁻⁷ [6]. Для объяснения высоких гелиевых изотопных отношений высказано на первый взгляд парадоксальное предположение, что причиной таких изотопных значений в породах дна океана является присутствие в них солнечного гелия, обогащенного изотопом ³Не (величина отношения ³He/⁴He ~10⁻⁴ [7]). При этом предполагается, что в коренных породах солнечный гелий – это реликтовый гелий, вошедший в состав Земли вместе с протовеществом Земли 4.6 · 10⁹ лет назад и сохранившийся в мантийном веществе, в осадочных породах - это современный (в геологическом масштабе времени) солнечный гелий, доставляемый на Землю космической пылью и вместе с ней входящий в состав осадочных пород [3–5].

Остается невыясненным вопрос, может ли влияние только одного источника "аномального гелия" – например мантийного – объяснить высокие значения величин ³He/⁴He как в коренных, так и в осадочных породах. Кроме того, на количественной основе не изучали возможность обогащения океанических осадочных пород легким изотопом ³He за счет нейтронно индуцированных ядерных реакций на легких изотопах, и в первую очередь на изотопе ⁶Li [8]. Эти исследования особенно важны для выяснения природы изотопа ³He в ЖМК, содержащих высокую концентрацию лития [9].

Физико-технический институт им. А.Ф. Иоффе Российской Академии наук, Санкт-Петербург Целью этой работы является продвижение в решении отмеченных проблем, а также получение убедительного доказательства аккумулирования конкрециями космической пыли, что важно как для целей использования потока космической пыли в геохронологических задачах [10], так и для выяснения роли космического материала в океанической металлогении [11].

В экспериментальной части работы исследовались образец железо-марганцевой конкреции из рудной провинции Кларион-Клиппертон (Тихий океан) и образец стекловатого базальта (13° с.ш., Восточно-Тихоокеанское поднятие). Извлечение гелия осуществляли методом ступенчатого подъема температуры при нагреве образцов в вакуумной экстракционной установке, включенной "в линию" с масс-спектрометром высокого разрешения, который позволял отделять относительно слабый пик изотопа ³Не от интенсивных мешающих фоновых пиков HD и H₃. Чтобы ослабить влияние статистического разброса числа космических пылинок в навеске, для анализа был отобран и измельчен сравнительно большой фрагмент ЖМК массой около 10 г. Образовавшийся порошок тщательно перемешан и примерно 2 г (табл. 1) было использовано в качестве навески при изотопном анализе гелия. Процедура измельчения использована также при приготовлении навески стекловатого базальта. Результаты измерений и ошибки приведены в табл. 1, а температурные зависимости концентраций в нормированных координатах на рис. 1.

Из рисунка видно, что максимальное выделение изотопа ⁴He из ЖМК происходит в интервале температур 400–600°С, а максимальное выделение изотопа ³He при существенно более высокой температуре 800°С. Полученный результат беспрецедентен, так как показывает не только то, что температуры максимумов выделения изотопов одного и того же инертного газа существенно не совпадают, но и то, что легкий и более подвижный изотоп выделяется не при низкой по отноше-

T, ℃	ЖМК, навеска 1.96 г			Базальт, навеска 0.817 г		
	⁴ He · 10 ⁶ , см ³ /г	3 He \cdot 10 ¹² , cm ³ /r	$(^{3}\text{He}/^{4}\text{He}) \cdot 10^{5}$	⁴ He · 10 ⁶ , см ³ /г	3 He \cdot 10 ¹² , cm ³ /r	$(^{3}\text{He}/^{4}\text{He}) \cdot 10^{5}$
200	0.016 ± 0.002	0.08 ± 0.08	0.516 ± 0.052	0.33 ± 0.03	2.81 ± 0.28	0.85 ± 0.06
400	0.078 ± 0.008	0.407 ± 0.041	0.522 ± 0.036	1.67 ± 0.16	11.7 ± 1.2	0.70 ± 0.05
600	0.082 ± 0.008	0.971 ± 0.097	1.18 ± 0.08	1.67 ± 0.16	14.1 ± 1.4	0.845 ± 0.06
800	0.046 ± 0.004	3.367 ± 0.330	7.32 ± 0.51	0.39 ± 0.04	2.9 ± 0.3	0.755 ± 0.075
1000	0.010 ± 0.001	0.990 ± 0.090	9.90 ± 0.07	0.089 ± 0.009	1.0 ± 0.1	1.10 ± 0.11
1200	0.0022 ± 0.0005	0.21 ± 0.05	9.55 ± 2.2	≤0.05	≤0.04	
Сумма	0.234 ± 0.023	6.026 ± 0.6	2.57 ± 0.25	4.15 ± 0.41	32.48 ± 0.33	0.78 ± 0.08

Таблица 1. Результаты изотопных анализов гелия в образцах ЖМК и базальта

нию к ⁴Не и даже не при той же самой, а при более высокой температуре. Анализ возможных причин изотопного температурного эффекта приводит к единственно возможному объяснению. Но-

Рис. 1. Вариации концентраций изотопов гелия в нормированных координатах в зависимости от температуры нагрева образцов *T* в стоградусной шкале Цельсия. а – тихоокеанская железо-марганцевая конкреция; б – тихоокеанский стекловатый базальт.

сителями основных количеств изотопов ⁴Не и ³Не в конкрециях являются различные по своей природе материалы: носителем ⁴Не – терригенный компонент, не испытавший перед вхождением в осадочную породу теплового нагрева, а носителем ³Не – космический компонент – космическая пыль, вошедшая с космической скоростью (12–72 км/с) в атмосферу [12] и прогретая в результате торможения в ней до температуры <800°С.

Для сравнения на рис. 16 приведена температурная зависимость выделения изотопов ⁴He и ³He из тихоокеанского стекловатого базальта также с высоким изотопным отношением ³He/⁴He ~ 10⁻⁵, все вещество которого имеет одинаковую тепловую историю. Из рисунка видно, что оба гелиевых изотопа выделяются практически синхронно и имеют максимумы в интервале температур 400-600°С, как и изотоп ⁴Не в образце конкреции. Причем формы кривых газовыделения изотопа ⁴Не в обоих случаях очень похожи: некоторое заметное различие прослеживается только в области температуры $T = 800^{\circ}$ С. Вероятнее всего, это подчеркивает тот факт, что одновременно с изотопом ³Не космическая пыль транспортирует в осадочные породы и некоторое количество изотопа ⁴Не, температурный максимум которого (не выраженный отчетливо на рис. 1а) совпадает с максимумом изотопа ³Не при температуре 800°С. Кроме того, сравнение графиков для изотопа ³Не на рис. 1а и 1б указывает на их разительное отличие, что позволяет сделать вывод об отсутствии заметного вклада мантийного ³Не в общее содержание этого изотопа в веществе железо-марганцевой конкреции.

На рис. 2 приведены графики изменения величин изотопных отношений гелия в ЖМК и стекловатом базальте, демонстрирующие существенное различие в поведении этих параметров: в конкреции отношение ³He/⁴He возрастает с ростом температуры и достигает рекордно большой для осадочной породы величины 10⁻⁴, что только в

ДОКЛАДЫ АКАДЕМИИ НАУК том 389 № 6 2003

4 раза меньше солнечного значения [7]. Некоторое падение величины отношения при максимальной температуре 1200°С, вероятнее всего, связано с ошибкой определения малого количества гелия, выделившегося при этой температуре. Можно считать, что в первом приближении величина отношения ³He/⁴He в базальте остается постоянной и слабо зависит от температуры нагрева образца. Этот результат является еще одним свидетельством различия в источниках ³He в конкреции и базальте.

Однако возникает вопрос, не могут ли океанические осадочные породы, обогащенные изотопом ³He, вовлекаемые в конвективные движения мантийного вещества в зонах субдукции литосферных плит, явиться источником мантийного ³He, обогащающего радиогенный ⁴He, что приводит к изотопному составу мантийного гелия с высоким значением отношения ³He/⁴He.

Существующие данные об изотопном составе мантийного гелия, содержащегося в газах гидротерм и вулканических газах вплоть до ${}^{3}\text{He}/{}^{4}\text{He} =$ $= 5 \cdot 10^{-5}$ [7, 13], и данные об изотопном составе мантийного гелия, захваченного природными алмазами вплоть до ${}^{3}\text{He}/{}^{4}\text{He} = 10^{-4}$ [14], а также концентрация мантийного изотопа ³Не в океанических базальтах вплоть до ³He 5 · 10⁻¹⁰ см³/г [1, 2] существенно большие, чем в осадочных породах, не могут быть объяснимы с позиции погружения осадочных пород в мантию в зонах субдукции. Эти величины, исходно меньшие в осадочных породах [3, 5], должны дополнительно уменьшаться за счет смешения с большим объемом мантийного вещества, содержащего исходно только радиогенный ⁴Не [7]. Таким образом, эффект погружения играет подчиненную роль, и изотопный состав гелия мантии определяется реликтом древнего солнечного гелия и радиогенным гелием.

Рассмотрим возможный вклад изотопов ³Не в изотопный состав гелия конкреций, образующихся в нейтронно индуцированной реакции на литии

⁶Li(n, ⁴He)³H $\frac{12.3 \text{ лет}}{\beta}$ ³He, где ³H – тритий. Соглас-

но экспериментальным данным, средняя концентрация лития в тихоокеанских конкрециях составляет величину $120 \cdot 10^{-6}$ г/г [9] при концентрации U 12.3 $\cdot 10^{-6}$ г/г и отношением Th/U ≈ 3.5 [15]. В этом случае в соответствии с данными работы [8] такие концентрации U и Th обеспечивают в глинах поток нейтронов $f_n = 15.6 \cdot 10^{-5}$ см⁻² \cdot с⁻¹. Принимая и для ЖМК этот поток нейтронов, можно найти скорость r_n генерации изотопа ³He в ЖМК по формуле $r_n = f_n sk \text{Li}$, где $s = 942 \cdot 10^{-24}$ см² – сечение ядерной реакции на литии, k = 0.075 – концентрация изотопа ⁶Li в литии, Li – концентрация лития.

Рис. 2. Вариации изотопных отношений 3 Не/ 4 Не в зависимости от температуры *T* нагрева образцов. *1* – конкреция; 2 – базальт.

Подставляя все величины в формулу для r_n в согласованных размерностях, получим скорость генерации изотопа ³He $r_n = 10^{-7}$ ат/г · с, или 3.5 ат/г · год. Типичный возраст глубоководных железо-марганцевых конкреций составляет величину 10^4 лет [5].Тогда количество накопленного ³He в конкреции при его стопроцентной сохранности составит величину ³He_n = $1.3 \cdot 10^{-15}$ см³/г, что в 10^3 – 10^4 раз меньше наблюдаемых значений (см. табл. 1 и [5]). Таким образом, при типичных величинах концентрации радиоактивных изотопов и лития в конкрециях вклад радиогенного ³He очень невелик и им можно пренебречь.

Проведенные эксперименты и анализ показали, что изотоп ³Не в океанической ЖМК имеет космическое (солнечное) происхождение, так как поставляется космической пылью и является ярким индикатором присутствия космической пыли в осадочных породах. Получено также, что вклад радиогенного ³Не, образующегося в нейтронно индуцированных ядерных реакциях на литии, невелик и может не приниматься во внимание. Эти результаты важны, так как открывают возможность изучения космической пыли в лабораторных условиях, а также возможность использования потока космической пыли для датировки осадочных пород. Получено также, что прогрев космических пылинок – носителей изотопа ³He – в результате торможения в земной атмосфере не превосходит 800°С. Тяжелый изотоп ⁴Не, как показывает анализ, связан в основном с терригенной составляющей в осадочной породе и может являться индикатором потока терригенного материала.

Получены также дополнительные доказательства того, что обогащение мантийного гелия изотопом ³Не связано с присутствием в мантии реликтового солнечного гелия, вовлеченного в процесс аккреции Земли $4.6 \cdot 10^9$ лет назад. Ключевым исследованием в определении природы и происхождения изотопов гелия в океанических породах явились температурные зависимости концентраций и изотопных отношений гелия.

СПИСОК ЛИТЕРАТУРЫ

- Ануфриев Г.С., Крылов А.Я., Болтенков Б.С. // ДАН. 1978. Т. 241. № 6. С. 1424–1427.
- 2. *Ozima M., Zashu S. //* Earth and Planet. Sci. Lett. 1983. V. 62. № 1. P. 24–40.
- 3. Крылов А.Я., Мамырин Б.А., Силин Ю.И., Хабарин Л.В. // Геохимия. 1973. № 2. С. 284–288.
- 4. *Sano Yu., Toyoda K., Wakita H. //* Nature. 1985. V. 317. № 6037. P. 518–520.
- 5. Ануфриев Г.С., Болтенков Б.С. // Литология и полез. ископаемые. 1996. № 5. С. 552–560.

- Ануфриев Г.С., Крылов А.Я. В кн.: Космохимия метеоритов, Луны и планет. Киев: Наук. думка, 1980. С. 80–104.
- 7. Ануфриев Г.С. // Изв. АН СССР. 1981. Т. 45. № 4. С. 539–546.
- 8. *Lal D.* // Chem. Geol. Isotope Geosci. Sect. 1987. V. 66. № 1. P. 89–98.
- 9. Батурин Г.И. Геохимия железомарганцевых конкреций океана. М.: Наука, 1986. 328 с.
- 10. *Ануфриев Г.С.* В сб.: I Рос. конф. по изотопной геохронологии: Тез. докл. М., 2000. С. 31–33.
- Андреев С.И. Металлогения железомарганцевых образований Тихого океана. СПб.: Недра, 1994. 192 с.
- 12. Бронштэн В.А. Физика метеорных явлений. М.: Наука, 1981. 416 с.
- Ануфриев Г.С. В кн.: Современные данные изотопной геохимии и космохимии. Л.: Наука, 1985. С. 43–71.
- 14. Honda M., Reynolds J.H., Roedder E., Epstein S. // J. Geophys. Res. 1987. V. 92. № B12. P. 12507–12521.
- 15. *Волков И.И*. В кн.: Геохимия донных осадков. Сер. Океанология. М.: Наука, 1979. Т. 2. С. 414–467.