= ХИМИЯ =

УДК 548.736.6

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА F-КАНАСИТА

© 2003 г. Р. К. Расцветаева, К. А. Розенберг, А. П. Хомяков, И. В. Рождественская

Представлено академиком Л. Н. Когарко 10.02.2003 г.

Поступило 14.02.2003 г.

Кристаллическая структура канасита – редкого минерала, впервые найденного в Хибинах, определена в 1969 г. [1]. Ее основу составляют трубчатые кремнекислородные радикалы [Si₁₂O₃₀], объединенные зигзагообразными плотноупакованными стенками из октаэдров Na и Ca. Уточнение структуры, проведенное позднее для другого образца из Хибинского щелочного массива [2], выявило упорядочение в заселении октаэдрических позиций стенки катионами Са и Na при совместном заселении одной из них, что послужило причиной понижения симметрии от геометрически возможной пр. гр. С2/т до Ст. В [3] сообщалось об исследовании кристаллической структуры триклинного канасита из чароититов Южной Якутии, отличающегося от изученных ранее хибинских образцов повышенным содержанием фтора (5.6 ф.е.). Якутский канасит, получивший название франкаменит, по мнению авторов [3], вследствие высокого содержания фтора характеризуется упорядоченным заполнением октаэдров стенки, в результате чего его симметрия понижается до триклинной. В этом же образце найдена позиция, заполненная молекулами воды, которая не была описана ранее.

В настоящей работе исследована кристаллическая структура канаситоподобного минерала 3054 из Хибинского щелочного массива с повышенным содержанием фтора. По химическому составу (в том числе по содержанию фтора) исследованный образец близок к франкамениту. Его химический состав, изученный на электронном микрозон-

Институт кристаллографии им. А.В. Шубникова Российской Академии наук, Москва Московский государственный университет им. М.В. Ломоносова Институт минералогии, геохимии и кристаллохимии редких элементов Российской Академии наук, Москва Санкт-Петербургский государственный университет де, отвечает эмпирической формуле (Z = 2): (Ca_{4.5}Mn_{0.45}Fe²⁺_{0.05})Na₃K₃Si₁₂O₃₀F_{2.8}(OH)_{1.2} · nH₂O.

Основные характеристики кристалла и дифракционного эксперимента приведены в табл. 1. При уточнении структуры минерала в моноклинном варианте в качестве стартового использовали набор координат атомов ОН-канасита из Хибин [2]. Из разностного синтеза найдена дополнительная к К(3) позиция К(3b) и позиция, заселенная молекулами воды. На заключительном этапе введена поправка на поглощение, использованы смешанные кривые атомного рассеяния и проведено уточнение модели в анизотропном приближении тепловых колебаний атомов. Окончательные координаты атомов приведены в табл. 2,

Таблица 1. Кристаллоструктурные данные и характеристики эксперимента

Характеристика	Значение
Параметры ячейки, Å	a = 18.846(4)
	b = 7.242(1)
	c = 12.650(2)
	$\beta = 111.84(2)$
Объем ячейки, Å ³	V = 1602.6
Пр. гр., Z	<i>Cm</i> ; 1
Излучение; λ, Å	$MoK_{\alpha}; 0.71069$
Плотность $\rho_{\rm выч}$, г/см ³	2.694
Размеры кристалла, мм	$0.1\times0.1\times0.2$
Дифрактометр	SYNTEX $P2_1$
Область съемки	-32 < h < 32;
	0 < k < 12;
	-21 < l < 21
$\sin\theta/\lambda$	0.90
Общее число отражений	2692
Число независимых отражений	1498 $F > 5\sigma(F)$
<i>R</i> -фактор анизотропного уточнения	0.044
Программа уточнения	AREN [4]
Программа учета поглощения	DIFABS [5]

Позиция	x/a	y/b	z/c	Q	$U_{_{3KB}} \times 100,$ Å ²
K(1)	0.1570(2)	0	0.4988(3)	2	2.8(1)
K(2)	0.3422(2)	0.5	0.4997(3)	2	3.0(1)
K(3a)*	-0.0016(8)	0.5	0.505(1)	2	4.5(1)
K(3b)*	0.511(3)	0	0.558(8)	2	7(1)
Ca(1)	0.2456(2)	0.5000	-0.0032(3)	2	1.30(6)
Ca(2)	0.1608(1)	0.2475(2)	0.1552(1)	4	0.66(5)
Ca(3)	0.0002(4)	0.5000	-0.0005(6)	2	1.61(6)
М	0.3321(1)	0.2490(3)	0.8418(1)	4	1.27(6)
Na(1)	0	0	0	2	0.51(1)
Na(2)	0.2498(3)	0	0.0047(4)	2	1.0(1)
Si(1)	0.0173(1)	0.2382(8)	0.2474(2)	4	2.23(7)
Si(2)	0.1433(1)	0.2286(6)	0.7520(2)	4	1.75(7)
Si(3)	0.1361(1)	0.5000	0.3679(2)	2	0.3(1)
Si(4)	0.2016(1)	0.5000	0.6309(2)	2	0.17(9)
Si(5)	0.3543(1)	0.2871(3)	0.2490(2)	4	0.82(7)
Si(6)	0.2931(2)	0.0000	0.3671(3)	2	1.7(1)
Si(7)	0.3599(2)	0.0000	0.6318(3)	2	1.5(1)
Si(8)	0.4798(1)	0.2869(2)	0.7513(1)	4	1.0(7)
O(1)	0.0299(3)	0.253(1)	0.1332(4)	4	1.0(3)
O(2)	0.0807(4)	0.322(1)	0.3546(5)	4	0.9(1)
O(3)	0.2009(9)	0	0.2826(8)	2	2.5(4)
O(4)	0.1979(3)	0.5	0.4977(5)	2	1.5(3)
O(5)	0.1517(4)	0.3142(9)	0.6409(5)	4	0.5(1)
O(6)	0.0606(3)	0.2881(9)	0.7529(6)	4	1.5(3)
O(7)	0.2835(3)	0.257(1)	0.1302(4)	4	0.4(3)
O(8)	0.2160(3)	0.246(1)	0.8606(5)	4	2.9(3)
O(9)	0.4307(4)	0.228(1)	0.2384(7)	4	2.8(3)
O(10)	0.3435(4)	0.175(1)	0.3563(5)	4	2.8(3)
O(11)	0.3281(7)	0	0.4969(5)	2	2.3(4)
O(12)	0.3069(8)	0	0.7136(9)	2	1.9(4)
O(13)	0.4151(3)	0.1787(9)	0.6400(5)	4	2.1(2)
O(14)	0.4634(3)	0.247(1)	0.8550(5)	4	1.8(2)
O(15)	0.1774(5)	0.5	0.2806(8)	2	1.4(4)
O(16)	0.2858(5)	0.5	0.711(1)	2	2.3(4)
O(17)	0.0273(5)	0	0.2865(7)	2	0.6(2)
O(18)	0.1316(5)	0	0.7089(7)	2	0.5(2)
O(19)	0.3655(6)	0.5	0.2892(8)	2	2.6(4)
O(20)	0.4697(5)	0.5	0.7067(9)	2	2.3(4)
F(1)	0.1324(5)	0	0.0286(7)	2	1.4(2)
F(2)	0.3674(7)	0	0.9669(9)	2	2.5(4)
(F, OH)**	0.3590(7)	0.5	0.958(1)	2	2.8(4)
OH	0.1273(4)	0.5	0.0242(7)	2	2.4(3)
H ₂ O	-0.003(1)	0	0.502(2)	2	2.6(3)

Таблица 2. Координаты, кратность позиций и изотропные тепловые параметры атомных смещений

* Заселенность позиций K(3a) = 0.76, K(3b) = 0.24; ** отвечает составу 1.5F + 0.5OH.

Габлица З.	Характе	ристика ко	ординацион	ных полиэдров
------------	---------	------------	------------	---------------

Пози- ция	Состав	кч	Расстояние катион–анион, Å				
	Cocrab		мини- мальное	макси- мальное	сред- нее		
Si(1)	4Si	4	1.553(7)	1.784(6)	1.63		
Si(2)	4Si	4	1.542(5)	1.731(5)	1.62		
Si(3)	2Si	4	1.57(1)	1.628(8)	1.61		
Si(4)	2Si	4	1.534(9)	1.673(8)	1.64		
Si(5)	4Si	4	1.55(1)	1.658(8)	1.61		
Si(6)	2Si	4	1.525(7)	1.66(1)	1.61		
Si(7)	2Si	4	1.583(7)	1.68(1)	1.64		
Si(8)	4Si	4	1.605(7)	1.674(6)	1.63		
K(1)	2K	10	2.87(1)	3.23(1)	3.00		
K(2)	2K	10	2.710(8)	3.304(9)	2.96		
K(3a)	1.52K	11	3.01(1)	3.29(1)	3.12		
K(3b)	0.48K	7	2.72(8)	3.23(7)	2.82		
Ca(1)	1.7Ca + 0.3 Mn	6	2.357(7)	2.438(8)	2.39		
Ca(2)	3.5Ca + 0.5 Mn	6	2.329(6)	2.449(7)	2.38		
Ca(3)	2Ca	6	2.29(1)	2.386(9)	2.37		
М	2Na + 2Ca	6	2.274(8)	2.392(7)	2.33		
Na(1)	2Na	6	2.38(1)	2.50(1)	2.42		
Na(2)	2Na	6	2.34(1)	2.458(8)	2.41		

состав позиций и характеристика координационных полиэдров – в табл. 3.

При уточнении структуры в триклинной симметрии (пр. гр. P1) не удалось достичь соответствия структурной модели и химического состава образца (содержание Са и Na существенно отличалось от данных химического анализа), при этом R-фактор был выше, чем в моноклинной симметрии.

Кристаллохимическая формула изученного минерала при Z = 1: Na₄Ca₂ (Na₂Ca₂)(Ca_{1.7}Mn_{0.3}) $(Ca_{3.5}Mn_{0.5})K_6[Si_{12}O_{30}]_2F_{4.0}(F_{1.6}OH_{0.4})(OH)_2 + 2H_2O.$ Разделение анионов на F, OH и H₂O проведено на основе расчета локального баланса валентных усилий (табл. 4). Молекула воды входит в окружение двух атомов K, в то время как OH и F располагаются в стенке на стыке четырех октаэдров с разной заселенностью Na и Ca. Для компенсации отрицательного заряда на атоме F необходимо участие 2Na⁺ + 2Ca²⁺, а на атоме кислорода ОН-группы $1Na^+ + 3Ca^{2+}$ или $4Ca^{2+}$, что согласуется с нашими данными, рассчитанными по методике [6]. Из табл. 4 следует, что значения валентных усилий на атомах F находятся в пределах 0.806-0.994, что близко к значениям 1.192, 1.129 и 1.211, в то время как величина 1.392 соответствует ва-

ДОКЛАДЫ АКАДЕМИИ НАУК том 391 № 2 2003

Рис. 1. Структура минерала в проекции на плоскость (010). Здесь и на рис. 2 черные кружки – К, белые – H₂O.

лентному усилию на атоме О, принадлежащему ОН-группе.

Общий вид структуры минерала представлен на рис. 1. Трубчатый радикал, образованный четырьмя волластонитовыми цепочками кремнекислородных тетраэдров, в направлении, перпендикулярном (010), имеет сечение в виде вытянутого восьмиугольника, а в направлении, перпендикулярном (001), чередуются четырех- и шестиугольные окна (рис. 2). Позиции внутри трубчатого радикала заняты катионами К и молекулами воды. Изученный минерал характеризуется индивидуальным распределением катионов Na, Ca и Mn по позициям октаэдрической стенки (рис. 3). Позиция M, заполненная Са в OH-канасите [1, 2], в данном минерале имеет смешанное заполнение Na + + Са в равных пропорциях. Позиция Na(2), ранее заселенная Са, в изученном образце заполнена

Рис. 2. Трубчатый радикал [Si₁₂O₃₀] в проекции на плоскость (001).

Рис. 3. Октаэдрическая стенка в проекции на плоскость (001).

Na, а позиция Ca(1), в которой в OH-канасите находится Na, имеет смешанное заполнение (Ca + + Mn).

Центросимметричность структуры в целом, которой подчиняется трубчатый радикал, нарушается в данном образце расщеплением позиции К вокруг центра симметрии и упорядочением атомов Na и Ca. Позиция *M* связана псевдоцентром с

Анион	Na(1)	Ca(2)	Na(2)	Ca(1)	М	Ca(3)	K(1)	K(2)	K(3a)	K(3b)	$\Sigma V_i(O)$	$\Sigma V_i(\mathbf{F})$
F(1)	0.208		0.232	0.376×2							1.192	0.853
OH		0.336		0.319×2		0.418					1.392	0.994
F(2)			0.182		0.241 + 0.378	0.328					1.129	0.806
F, OH	0.151	0.346			0.278 + 0.436						1.211	0.866
H ₂ O							0.089	0.121			0.21	0.19

Таблица 4. Локальный баланс валентных усилий на анионах

ДОКЛАДЫ АКАДЕМИИ НАУК том 391 № 2 2003

позицией Ca(2), соответственно позиция Na(1) с позицией Ca(3) и Na(2) - с Ca(1). В отличие от F-канасита, триклинный франкаменит имеет большее число независимых октаэдрических позиций (восемь), две из которых соответствуют позициям Na(1) и Ca(3) и заполнены Na и Ca, как и в изученном нами образце. Остальные октаэдрические позиции франкаменита характеризуются смешанным (Na + Ca) заполнением. Таким образом, изученные ранее ОН-канаситы [2] имеют одну независимую октаэдрическую позицию со смешанным заполнением, новый образец содержит три таких позиции, а триклинный франкаменит – шесть. В отличие от ОН-канаситов [1, 2] франкаменит и F-канасит содержат воду, которая локализуется в центре трубки из кремнекислородных тетраэдров между атомами калия. Не исключено, что и ОН-канасит, изученный ранее [2], содержит некоторое количество молекул воды, не найденных структурным анализом.

Таким образом, F-канасит и франкаменит, несмотря на близость валового химического состава, существенно различаются по симметрии и заполнению катионами Na, Ca, Mn октаэдров стенки. Причем изученный нами минерал сохраняет моноклинную симметрию, несмотря на повышенное, по сравнению с изученными ОН-канаситами из Хибин, содержание фтора (5.6 ф.е.). В результате минерал 3054 можно трактовать как фтористый аналог канасита либо как моноклинный аналог франкаменита.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проекты № 02–05–64080 и 02–05–64152).

СПИСОК ЛИТЕРАТУРЫ

- 1. Чирагов М.И., Мамедов Х.С., Белов Н.В. // ДАН. 1969. Т. 185. № 3. С. 672.
- Рождественская И.В., Никишова Л.В., Баннова И.И., Лазебник Ю.Д. // Минерал. журн. 1988. Т. 10. № 4. С. 31.
- Никишова Л.В., Лазебник К.А., Рождественская И.В. и др. // Минерал. журн. 1992. Т. 14. № 1. С. 71.
- 4. *Андрианов В.И.* // Кристаллография. 1987. Т. 32. № 1. С. 228.
- 5. *Walker N., Stuart D. //* Acta cryst. A. 1983. V. 39. № 2. P. 158.
- 6. Brese N.E. // Acta cryst. B. 1991. V. 47. № 2. P. 192.