— ГЕОЛОГИЯ —

УДК 551.2

ПЕТРОЛОГИЧЕСКИЕ АСПЕКТЫ ГРАВИТАЦИОННОЙ НЕСТАБИЛЬНОСТИ ТЕКТОНИЧЕСКИ УТОЛЩЕННОЙ ЛИТОСФЕРЫ В КОЛЛИЗИОННЫХ ОРОГЕНАХ

© 2003 г. А. И. Киселев, член-корреспондент РАН И. В. Гордиенко, В. В. Лашкевич

Поступило 27.05.2003 г.

Механическое отслоение и удаление нижних частей мантийной литосферы обычно называют деламинацией безотносительно к тому, какой механизм ее обеспечивает. Впервые термин "деламинация" был предложен П. Бердом [1], согласно которому литосферная мантия отщепляется от вышележащей коры благодаря подъему и внедрению между ними астеносферного материала. В это же время Г. Хаусман и др. [2] предложили другой механизм, который обусловлен гравитационной (конвективной) нестабильностью низов тектонически утолщенной литосферы, сопровождаемой полным или частичным отделением ее мантийной части и погружением в астеносферу. Вместо широко используемой деламинации иногда применяют выражение – "разрушение мантийного корня" (mantle unrooting), однако это не затемняет сущности процесса и вытекающих из него следствий.

Сравнительно недавно деламинация стала использоваться как альтернатива в объяснении быстрых региональных поднятий и растяжений, сопровождаемых литосферным утонением и увеличением магматической активности в коллизионных орогенах. Деламинация подразумевает отрыв и быстрое погружение низов тектонически утолщенной литосферы в астеносферную мантию вследствие возникшей между ними инверсии плотностей. Потенциальная энергия, управляющая этим процессом, реализуется, когда горячая низкоплотностная астеносферная мантия замещает отделившуюся часть холодной, плотной литосферы и взаимодействует с ее оставшейся утоненной частью. Термическое и механическое воздействие астеносферы на утоненную делами-

Российской Академии наук, Иркутск

Геологический институт

Сибирского отделения

нацией литосферу рассматривается как главная причина постколлизионного магматизма, в том числе и батолитообразования в складчатых областях, испытавших мощное тектоническое утолщение во время коллизии.

Цель настоящей работы состоит в исследовании путем численного моделирования влияния вещественных различий между литосферой и астеносферой, а также фазовых переходов на возможность механического обрушения низов литосферы после ее тектонического утолщения. Обычно в стандартных моделях деламинации не рассматриваются плотностные изменения в коре и литосферной мантии, обусловленные фазовыми изменениями и вариациями их состава при тектоническом утолщении. Мы акцентируем внимание на то, что эти эффекты могут быть очень важными, возможно, преобладающими по отношению к эффекту простого изменения термальной структуры мантии. Ниже рассматриваются результаты численного моделирования эклогитизации базальтовой нижней коры, а также изменения фазового состава и плотности нижележащего перидотита, обусловленных тектоническим утолщением литосферы и ее погружением в астеносферу. Концептуальная основа построения модели показана на рис. 1, где изображено положение геотерм и разрезов литосферы до и после литосферного утолщения с последующей деламинацией [3]. Принятые модельные составы нижней коры, литосферной мантии и астеносферы приведены в табл. 1.

Химический состав нижней коры представляют кварцевый толеит и щелочной оливиновый базальт, которые использовались в экспериментах по фазовому переходу базальта в эклогит [4]. Состав абиссального перидотита, характеризующий постархейскую литосферу [5], использован в модели как аналог литосферной мантии. Количественные оценки валового состава астеносферы четко не определены. Поэтому в качестве двухсторонних ограничений ее состава приняты примитивная мантия (A1) по [6] и абиссальный перидотит (A3). Слабо истощенный шпинелевый лер-

Институт земной коры Сибирского отделения

Российской Академии наук, Улан-Удэ

цолит из Килбоурн-Холл (Мексика) взят как модельный состав астеносферы (А2), промежуточный между составами примитивной мантии и абиссального перидотита [7]. Следует подчеркнуть, что примитивная мантия является наиболее плотной и фертильной в ряду возможных модельных составов астеносферы, в той или иной степени обедненных базальтовой составляющей, и, скорее всего, может соответствовать астеносфере ранних этапов эволюции мантии в раннем докембрии.

Существуют также геологические предпосылки для суждения о вещественном составе астеносферы. Некоторые перидотитовые орогенные массивы (Ланцо в Италии, Лерц во Франции и др.) рассматриваются как примеры локального контакта и взаимодействия литосферы и астеносферы [8]. В пределах этих массивов к астеносферному веществу отнесены неметасоматизированные порфирокластические плагиоклазовые и шпинелевые перидотиты, по составу отвечающие DMM (деплетированной мантии океанических хребтов). Как полагают, DMM, фрагментами которой являются альпинотипные офиолиты и абиссальные перидотиты, представляет собой глобальный резервуар, существующий с докембрия, частью которого является астеносфера [8].

Инструментом моделирования послужил программный комплекс расчета равновесных минеральных парагенезисов "Селектор" [9] на базе принятых модельных составов (табл. 1) и *PT*-па-

Рис. 1. Условное изображение положения разрезов и геотерм литосферы до и после тектонического утолщения с последующей деламинацией по [8] с небольшими добавлениями.

раметров, соответствующих геотерме, характеризующей тектонически утолщенную литосферу (рис. 1, геотерма 2). Одним из исходных условий моделирования является то, что утолщение про-

Оксид	Бедный щелочами кварцевый толеит	Щелочной оливи- новый базальт	Абиссальный перидотит А3	Шпинелевый лерцолит А2	Примитивная мантия А1
	1	2	3	4	5
SiO ₂	49.88	45.39	43.60	44.80	44.80
TiO ₂	2.14	2.52	0.02	0.12	0.21
Al_2O_3	13.89	14.69	1.18	3.34	4.45
Fe ₂ O ₃	2.84	1.87	0.00	0.00	0.00
FeO	9.65	12.42	8.22	8.72	8.40
MgO	8.48	10.37	45.20	39.24	37.20
CaO	10.82	9.14	1.13	3.14	3.60
Na ₂ O	1.84	2.62	0.02	0.27	0.34
K ₂ O	0.08	0.78	0.00	0.03	0.03
P_2O_5	0.22	0.02	0.00	0.01	0.02
MnO	0.16	0.18	0.14	0.00	0.14
Cr_2O_3	0.00	0.00	0.22	0.46	0.43
NiO	0.00	0.00	0.00	0.26	0.27
Сумма	100.00	100.00	99.73	100.07	99.89

Таблица 1. Модельные составы нижней коры (1, 2), литосферной мантии (3) и астеносферы (3-5)

Примечание. 1, 2 – по [4], 3 – по [5], 4 –среднее из 8 анализов по [7], 5 – по [6]. NiO, P₂O₅ и Cr₂O₃ в расчетах не участвуют.

ДОКЛАДЫ АКАДЕМИИ НАУК том 392 № 3 2003

Рис. 2. а – результаты расчета равновесных минеральных парагенезисов для нижней коры, литосферной мантии (АЗ) и астеносферы (А1) после тектонического утолщения в соответствии с геотермой 2 (см. рис. 1). б – рассчитанные плотности и их вариации на границах: нижняя кора–литосферная мантия–астеносфера в сухих условиях при разных модельных составах астеносферы (табл. 1, А1, А2, А3).

исходит в изотермических условиях при постоянстве температуры подошвы литосферы (1300°С), сопровождаемое только уменьшением температурного градиента в литосферной колонне. Исходя из этого, сделан пересчет РТ-параметров континентальной геотермы, соответствующей тепловому потоку 50 м $Br \cdot m^{-2}$ [10], с учетом двойного утолщения литосферы (геотерма 2 на рис. 1 и 2). Температура астеносферы на глубине 200 км в нашей модели принята равной 1600°С. Таким образом, разрез литосферы (нижняя кора + литосферная мантия) и верхней части астеносферы представляет собой три подстраивающих друг друга закрытых в термодинамическом смысле системы с заданными валовыми составами и соответствующими РТ-параметрами. Суть моделирования состояла в определении равновесных минеральных парагенезисов и их плотностей в рамках заданных давлений, температур в соответствии с пересчитанной геотермой и списком вероятных минеральных фаз отдельно для каждой системы и, в конечном счете, в выяснении возможности инверсии плотностей в областях перехода от коры к литосферной мантии и от последней к астеносфере.

По условиям моделирования химические составы (системы), представляющие нижнюю кору, литосферную мантию и астеносферу, не содержат флюидной фазы и могут быть описаны 10 независимыми компонентами (Al, Ca, Fe, Mg, Mn, K, Na, Si, Ti, O). Добавление "нейтрального" флюида (С-О-Н-N) в состав астеносферы осуществлялось на последних шагах моделирования для оценки его влияния на плотность. При выборе вероятных зависимых компонентов (минеральных фаз) в системах использовалась взаимосогласованная база термодинамических свойств минералов [11]. Выбранные фазы (минералы) представлены твердыми растворами в их идеальной смесимости и отдельными компонентами, список которых приводится ниже (курсивом выделены твердые растворы):

Ортопироксен – Орх (энстатит + ферросилит); оливин – ОІ (форстерит + фаялит + тефроит); клинопироксен – Срх (диопсид + геденбергит + + Са-чермакит + Мд-чермакит + акмит + лейцит); гранат – Gt (альмандин + андрадит + гроссуляр + + пироп + спессартин); шпинель – Sp (герцинит + + Мд-шпинель); плагиоклаз – Pl (альбит + анортит); магнетит – Мt (магнетит + магнезиоферрит + ульвошпинель); ильменит – Пт (ильменит + гейкилит + пирофанит); андалузит, кианит, силлиманит, корунд, кварц, кристобалит, тридимит, коэсит, стишовит, гематит, железо металлическое, периклаз, рутил – Ru.

Вычисление объемов миналов твердых растворов проводилось по методике, приведенной в [11]. Сумма объемов миналов равна объему фазы, и, соответственно, величина отношения вес/объем является чистой плотностью породы. Изменение плотности в зависимости от давления и температуры связаны как с фазовыми переходами (типа шпинель-гранат или кварц-коэсит), так и с перераспределением элементов между фазами при изменении РТ-параметров. По расчетам равновесия в мультисистеме, состоящей из трех систем в координатах *T* = 400–1300 и 1600°С и *P* = 6–20, 20–70, 70-75 кбар, определены равновесные парагенезисы минеральных фаз, их количественный состав и плотность (рис. 2). Для нижней коры с увеличением глубинности очевидна смена гранулитового парагенезиса эклогитовым. При этом происходит существенное увеличение плотности. Разница в содержании петрогенных компонентов в модельных составах нижней коры не отразилась существенным образом на плотностных различиях новообразованных эклогитов.

На границе нижняя кора-мантия (P = 20 кбар) отмечается резкая инверсия плотностей: абиссальный перидотит здесь примерно на 6% легче, чем эклогит. Аналогичная ситуация отмечается в

ДОКЛАДЫ АКАДЕМИИ НАУК том 392 № 3 2003

Минеральные фазы, об. %

(a)

орогенном поясе Квинлинг-Даби, в котором неизмененные эклогиты нижней коры имеют плотность 3.47 ± 0.04 г/см³, которая на 0.2 г/см³ выше, чем плотность перидотитовых ксенолитов, представляющих верхнюю мантию Восточого Китая [12]. Отмеченная выше разница в плотностях является движущей силой деламинации эклогитов, которая имеет важное значение в эволюции континентальной коры и корово-мантийном взаимодействии.

По условиям моделирования нижней границе литосферы соответствуют P = 70 кбар и T = = 1300°С. Температура астеносферы на 300°С выше. Этот температурный перепад связан с условно "мгновенным" погружением основания блока утолщенной литосферы в горячую область астеносферы ($T = 1600^{\circ}$ C). Данное допущение следует из соотношения времени тектонических, метаморфических и магматических событий в эволюции коллизионных орогенов (30-50 млн. лет) и времени (более длительного – 130 млн. лет по [2]) термальной релаксации утолщенной литосферы при кондуктивной передаче тепла из глубин. Рассчитанная плотность астеносферы в пограничной области получилась выше, чем у литосферы (рис. 2б). Это связано с тем, что вещественные различия между модельными составами для литосферы (А3 – абиссальный перидотит) и астеносферы (А1 – примитивная мантия, А2 – лерцолит КН) оказались слишком велики, чтобы быть скомпенсированными принятой разницей температур (300°С) между ними. Эти различия выражены в разном количественном содержании оливина, граната, клино- и ортопироксена в литосферной мантии и астеносфере (рис. 2а). В сухих условиях инверсия плотностей за счет температурной разницы между литосферой и астеносферой достигается только при одинаковом их составе и составляет 0.015 %. Инверсия плотностей между астеносферой, представленной составами А1 и А2, и литосферой в этом варианте достигается лишь при содержании в них соответственно не менее 1.4 и 0.83 мас. % условного нейтрального флюида (рис. 3). Эти величины превышают оценочное содержание флюида в примитивной мантии (0.83 мас. %) по [13]. Инверсия плотностей возрастет, если добавить 30 км эклогитовой коры к 170 км перидотитовой мантии, поскольку произойдет увеличение плотности литосферной мантии примерно на 1%.

Современные оценки содержания флюидов для мантии в целом неопределенны и ограничиваются сравнительно низкими величинами: для H₂O – от 0.04% [14] до 0.1% [4] и 0.83% для сложного флю-ида в примитивной мантии [13]. Отсюда следует, что только флюидсодержащая астеносфера, отвечающая составу DMM, является наиболее подходящей средой для деламинации тектонически утолщенной литосферы. В настоящей модели

Рис. 3. Полученная зависимость плотности модельных составов астеносферы от содержания в них флюида (С–О–Н–N) у основания литосферы ($T = 1600^{\circ}$ С, $P_{oбщ} = 70$ кбар). А1 – абиссальный перидотит, А2 – шпинелевый лерцолит КН, А3 – примитивная мантия.

абиссальный перидотит ближе всего соответствует резервуару DMM. Более фертильные составы астеносферы (лерцолит КН, примитивная мантия) разрешают деламинацию только при неправдоподобно высоком содержании в их составе флюидов.

Полученные результаты численного моделирования подтверждают вероятность гравитационной нестабильности как на границе нижняя кора-мантия в сухих условиях вследствие эклогитизации нижней коры базитового состава, так и на границе литосфера-астеносфера. На уровне литосфера-астеносфера деламинация в сухих условиях возможна только при изохимичности их составов. В других случаях необходимо предположить присутствие в астеносфере определенного количества флюидной фазы, которая понижает не только ее плотность, но и вязкость.

Работа выполнена при финансовой поддержке РФФИ (проекты 02–05–65286, НШ–767.2003.5).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Bird P.* // J. Geophys. Res. 1979. V. 84. № B13. P. 7561– 7571.
- Houseman J.A., McKenzie D.P., Molnar P. // J. Geophys. Res. 1981. V. 86. № B7. P. 6115–6132.
- 3. England P., Houseman G. // J. Geophys. Res. 1989. V. 94. № B12. P. 17561–17579.
- Рингвуд А.Э., Грин Д.Х. В сб.: Земная кора и верхняя мантия. М.: Мир. 1972. С. 574–589.
- 5. *Boyd F.R.* // Earth and Planet. Sci. Lett. 1989. V. 96. № 1/2. P. 15–26.
- McDonough W.F. // Earth and Planet. Sci. Lett. 1990. V. 101 P. 1–18.
- Basaltic Volcanism Study Project 1981. Basaltic Volcanism on the Terrestrial planets / W.M. Kaula, J.W. Head, R.B. Merril et al. Eds. N.Y.: Pergamon, 1981. 1286 p.

ДОКЛАДЫ АКАДЕМИИ НАУК том 392 № 3 2003

- 8. *Menzies M.A., Bodinier J.L., Thirlwall M. et al.* Astenosphere–Lithosphere Relationships within Orogenic Massifs. V Intern. Kimberlite Conf. Extend. Abstr. Brasilia, 1991. P. 281–284.
- 9. Карпов И.К., Чудненко К.В., Кулик Д.А. и др. // Геохимия. 2001. № 11. С. 1207–1219.
- 10. *Pollack H.N., Chapman D.S.* // Tectonophys. 1977. V. 38. № 3/4. P. 279–296.
- 11. *Holland T.J.B., Powell R. //* J. Metamorphic Geol. 1998. V. 16. P. 309–343.
- 12. Gao Sh., Zhang B., Jin Zh. et al. // Sci. China. Ser. D. 1999. V. 42. № 4. P. 423–433.
- Зотов А.И. В сб.: Физико-химический анализ процессов минералообразования. М.: Наука, 1989. С. 38–45.
- 14. Драйбус Г., Ягоутс Э., Венке Х. // Геология и геофизика. 1997. Т. 38. № 1. С. 269–275.