УДК 550.4

—— ГЕОХИМИЯ —

ПЕРВЫЕ ДАННЫЕ ОБ АНОМАЛЬНЫХ НАКОПЛЕНИЯХ СУРЬМЫ В ГЕРМАНИЕНОСНЫХ УГЛЯХ

© 2003 г. В. В. Середин

Представлено академиком Н.П. Лаверовым 04.10.2002 г.

Поступило 11.10.2002 г.

Средние содержания сурьмы в углях, согласно большинству глобальных и региональных оценок, варьируют между 0.5 и 2 г/т [1–5]. Аномальные концентрации встречаются не часто и достигают в углях Болгарии 16 [3], США 35 [2], Китая 120 г/т [4]. На территории СССР высокие содержания Sb (до 100 г/т) отмечались в Донбассе, Северо-Сосьвинском бассейне Урала (средние по 10 пробам – 76 г/т) и на ряде месторождений Узбекистана (средние по 32 пробам – 210 г/т) [6]. Данные о геологической позиции и природе подобных аномалий в литературе отсутствуют.

В германиеносных углях высокие концентрации Sb либо не отмечались совсем [7], либо без приведения каких-либо конкретных цифр указывалось, что ее содержания в отдельных месторождениях могут в 100 раз превышать кларк сурьмы для осадочных пород, т.е. достигать примерно 100–200 г/т [8]. К постоянным элементам-спутникам Ge относили только W и Be, содержания которых в углях таких месторождений могут составлять соответственно сотни и десятки г/т [7, 8].

Таким образом, обзор литературных данных показывает, что Sb несомненно может накапливаться в углях в резко аномальных количествах. Однако степень изученности таких аномальных концентраций вплоть до настоящего времени остается практически на нулевом уровне. Между тем из-за высокой токсичности Sb и ее способности возгоняться и накапливаться в летучей золе при сжигании углей на ТЭС [5] подобные угли должны быть объектом пристального внимания как потенциальный источник экологической опасности и как перспективное сырье для попутного получения этого элемента. Последнее особенно относится к германиеносным углям, переработка летучей золы которых предусмотрена технологическими схемами получения Ge [8].

Институт геологии рудных месторождений, петрографии, минералогии и геохимии Российской Академии наук, Москва В настоящем сообщении приводятся первые данные о мощных накоплениях Sb в германиеносных углях Павловского буроугольного месторождения (Приморье). Полученная информация позволяет сделать выводы о закономерностях ее распределения в разрезе металлоносной угленосной молассы, формах нахождения, возрасте и природе сурьмяного оруденения. Показано, что германиеносные угли Павловского месторождения могут рассматриваться как комплексное сырье для получения не только германия, но и сурьмы, добыча и переработка которых должна проводиться с учетом высокой токсичности последней.

Содержания сурьмы были определены в 34 интервальных пробах углей и углистых пород из скважины 25-д, пробуренной в центральной части зоны развития германиевого оруденения. Это месторождение германия под разными названиями (Чехезское, Павловское и др.) неоднократно рассматривалось ранее в литературе [7–10], что избавляет от необходимости останавливаться на характеристике его геологического строения.

Изученной скважиной вскрыты 4 пласта (сверху вниз): Шн, Шв, Шн, I (рис. 1). Первые три пласта имеют мощность от 0.3 до 0.6 м и были опробованы одной пробой каждый. Из нижнего пласта I мощностью 5.2 м отобрано 26 проб. Кроме того, были опробованы вмещающие углистые песчаники кровли и углистые алевролиты подошвы этого пласта. Толщина секций варьировала здесь от 0.1 до 0.8 м. Содержания Sb были также определены в глинистых породах переотложенной коры выветривания гранитов, подстилающих угленосную толщу, а также в угольных включениях, захороненных в перекрывающих угольные пласты миоценовых алеврито-песчанистых и плиоценовых песчано-галечниковых отложениях.

Все пробы истирались до аналитического порошка и озолялись в муфельных лабораторных печах при температуре 550°С и доступе кислорода. Предполагается, что такой режим озоления позволяет минимизировать потери большинства летучих компонентов [5, 6]. В частности, для сурьмы они в этом случае не превышают 10–20% [11].

Рис. 1. Стратиграфическая колонка по скв. 25-д. 1 – глины; 2 – песчано-галечниковые отложения; 3 – песчано-алевритовые отложения; 4 – алевролиты, аргиллиты; 5 – угли; 6 – глинистые отложения перемытой коры выветривания гранитов; 7 – угольные включения.

Содержания Sb и Ge определялись методами нейтронно-активационного (INAA) и рентгенофлуоресцентного (X-ray) анализа соответственно. При анализе золы угольных включений использовался масс-спектрометрический метод (ICP MS). Этот же метод использовался в качестве контрольного при определении содержаний Sb и Ge в золах углей (табл. 1). Пересчет содержаний с золы на уголь осуществлялся по стандартной методике [5, 6].

Аномальные концентрации Sb (66.3–1175.3 г/т угля и 209.2–15000 г/т золы) установлены в 17 пробах, представляющих угольные включения в отложениях миоцена, маломощные угольные

Таблица 1. Содержания Sb и Ge (г/т) в золах углей, определенные различными методами

Мироби	S	b	Ge		
ле проов	INAA	ICP MS	X-ray	ICP MS	
22	2195.1	2240	3428.0	4890	
37	5596.9	4940	6442.5	6330	

пласты и верхнюю 3-метровую часть самого нижнего пласта (табл. 2). В угольном включении из плиоценовых аллювиальных осадков, а также в нижней части пласта I и подстилающих его глинах концентрации Sb резко снижаются и в большинстве случаев не превышают фонового для углей и осадочных пород уровня.

Вертикальное распределение содержаний Sb в данном сечении характеризуется следующими особенностями.

1. В угольных включениях концентрации направленно убывают от 825 до 66.3 г/т по мере удаления от подошвы к кровле верхнего горизонта песчаников.

2. Среди маломощных пластов максимальные содержания (1106.4 г/т) отмечаются в самом верхнем пласте Шн, перекрытом песчаниками, а минимальные (110.9 г/т) – в пласте Шв, залегающем среди глинистых пород. Пласт Шн, залегающий на песчаниках и перекрытый алевролитами, характеризуется промежуточным уровнем концентраций (301.4 г/т).

3. Аномальные содержания Sb в пласте I (663.4 г/т) фиксируются только в верхней его части, перекрытой песчаниками; в его нижней половине, которая подстилается глинистыми породами, они равняются всего 3.3 г/т.

Эти данные указывают на литологический контроль распределения концентраций Sb в угольных пластах изученного сечения. Содержания ее в угольных пластах, контактирующих с горизонтами песчаников, заметно выше, чем в пласте, залегающем среди алевролитов. Увеличение концентраций в угольных включениях по направлению от кровли к подошве верхнего горизонта песчаников координируется с аналогичным увеличением содержаний от пласта IIн, расположенного в кровле нижнего горизонта песчаников, к верхней части пласта I, находящегося в его подошве.

Распределение Sb в разрезе пласта I аналогично распределению Ge (рис. 2). Это позволяет рассматривать Sb (наряду с W и Be) в качестве еще одного элемента-спутника германиевого оруденения. Концентрации Sb и Ge постепенно убывают сверху вниз независимо от зольности опробованных интервалов, но резко снижаются в пробах углистых пород по сравнению с соседними пробами углей. Тем не менее концентрации Sb в углистых песчаниках кровли (проба 36) и углистых алевролитах партинга (проба 41) также резко аномальны (617.2 и 108.8 г/т соответственно). Средние содержания Sb (рассчитанные с учетом толщины опробованных интервалов) во всем пласте мощностью 6 м (включая подстилающие и перекрывающие углистые породы) составляют 333.4 г/т угля или 911.2 г/т золы. В самой богатой верхней части пласта мощностью 1.2 м средние

№ пробы	Порода	Пласт	Мощность, м	A^{d}	Sb		Ge	
					зола	порода	зола	порода
14	1			4.2	11.0	0.5	595.2	25.0
15	1			6.2	1069.4	66.3	6780.6	420.4
16	1			10.4	2179.8	226.7	7459.6	775.8
17	1			5.5	15000.0	825.0	40000.0	2200.0
22	3	IIIH	0.6	50.4	2195.1	1106.4	3428.0	1727.7
24	2	Пв	0.6	10.7	1036.5	110.9	10434.5	1116.5
27	2	Πн	0.3	38.0	793.2	301.4	2615.4	993.9
36	4	Ι	0.4	65.6	940.8	617.2	295.6	193.9
37	2	Ι	0.8	21.0	5596.9	1175.3	6442.5	1352.9
38	2	Ι	0.2	13.3	7098.2	944.1	10514.4	1398.4
39	2	Ι	0.2	12.0	8583.0	1030.0	13897.2	1667.7
40	2	Ι	0.2	34.0	1914.4	650.9	2049.6	696.9
41	2	Ι	0.2	52.0	209.2	108.8	578.3	300.7
42	2	Ι	0.2	10.6	4190.7	444.2	10554.6	1118.8
43	2	Ι	0.2	10.6	3790.0	401.7	9410.1	997.5
44	2	Ι	0.2	18.0	983.8	177.1	2686.9	483.6
45	2	Ι	0.2	18.0	897.3	161.5	2213.9	398.5
46	2	Ι	0.2	19.0	512.1	97.3	1773.4	337.0
47	2	Ι	0.2	16.6	102.6	17.0	375.5	62.3
48	2	Ι	0.2	36.0	11.5	4.1	91.4	32.9
49	5	Ι	0.1	85.0	0.6	0.5	10.9	9.3
50	3	Ι	0.3	53.7	2.0	1.0	20.2	10.9
51	2	Ι	0.2	18.1	32.6	5.9	168.0	30.4
52	3	Ι	0.2	52.0	2.7	1.4	22.0	11.5
53	3	Ι	0.2	56.6	3.0	1.7	19.3	10.9
54	3	Ι	0.2	52.1	1.4	0.7	17.5	9.1
55	2	Ι	0.2	33.7	2.1	0.7	32.5	11.0
56	2	Ι	0.2	46.5	0.9	0.4	22.5	10.5
57	2	Ι	0.2	39.5	4.2	1.7	245.4	97.0
58	2	Ι	0.2	37.8	6.0	2.3	220.8	83.5
59	2	Ι	0.2	35.7	8.6	3.1	148.5	53.0
60	5		0.2	74.9	3.7	2.8	34.2	25.6
61	5		0.2	72.3	8.7	6.3	34.9	25.2
62	6		0.5		1.2	1.2	5.0	5.0

Таблица 2. Содержания Sb и Ge (г/т) в пробах из скв. 25-д

Примечание. Порода: 1 – угольное включение; 2 – уголь; 3 – углистый алевролит; 4 – углистый песчаник; 5 – глина с рассеянным углистым веществом; 6 – глина.

концентрации Sb достигают 1112.6 г/т угля или 6107.4 г/т золы. Такие содержания примерно в тысячу раз превышают нормальные для углей концентрации.

Хорошо известно, что главным носителем германия в углях является органическое вещество, с которым он связан в соединения типа комплексных гуматов. Согласно экспериментальным данным, в бурых углях в такой форме находится от 75 до 96% от его суммарного количества [5]. Сходство в распределении Ge и Sb позволяет предположить, что и последняя находится в данных углях преимущественно в органической форме. Косвенным подтверждением этого предположения являются результаты сканирующей электронной

СЕРЕДИН

Рис. 2. Распределение зольности (%) и содержаний Sb и Ge (г/т) в пласте I. 1-3 – угли: 1 – малозольные ($A^d < 15\%$), 2 – среднезольные ($15 < A^d < 35\%$), 3 – высокозольные ($35 < A^d < 50\%$); 4 – углистые породы ($50 < A^d < 70\%$); 5 – безуглистые и слабоуглистые глины ($A^d > 70\%$).

микроскопии. При исследовании образцов из скв. 25-д никаких собственных минералов Ge и Sb не было обнаружено. В то же время анализ состава локальных участков угля, лишенных минеральных примесей, показал постоянное наличие небольших пиков этих элементов, продуцированных собственно органическим веществом. К аналогичному выводу о преобладании органических форм нахождения Sb в большинстве угольных месторождений Болгарии ранее пришла Г. Ескенази [3].

Рассмотренные закономерности распределения Sb позволяют сделать вывод о том, что ее накопление в углях обусловлено взаимодействием органического вещества с обогащенными Sb и Ge металлоносными растворами, циркулирующими в угленосной молассе. Отсутствие высоких концентраций в нижней части пласта I указывает на то, что на данном участке месторождения растворы мигрировали вдоль его кровли в горизонтальном направлении. Очевидно, что отмеченный литологический контроль содержаний Sb в углях обусловлен большей проницаемостью для растворов песчаников по сравнению с алевролитами.

Подобный литологический контроль очень характерен для эпигенетического уранового оруденения в контактовых зонах угольных пластов, образованного на буроугольной стадии развития угольных бассейнов. Как и в рассмотренном случае, уран сильно накапливается в пластах, контактирующих с горизонтами песчаников, по которым циркулировали инфильтрационные кислородные воды. На участках, перекрытых тонкозернистыми породами, содержания урана резко снижаются. Однако имеется и весьма существенное отличие. Это значительная (3 м) мощность обогащенного Sb интервала в пласте I. Для сравнения - мощность эпигенетического уранового оруденения в угольных пластах обычно составляет первые десятки сантиметров и лишь в единичных случаях достигает 1-1.5 м [12].

Такое увеличение мощности рудной зоны в данном случае, очевидно, можно связывать с большей проницаемостью органического вещества для металлоносных растворов. Обогащение всех без исключения пластов и отсутствие аномальных содержаний Sb в угольных включениях в вышележащих плиоценовых отложениях пока-

зывает, что металлоносные растворы циркулировали в угленосной молассе в миоценовое время, т.е. после ее накопления, но до отложения плиоценового аллювия. Органическое вещество в этот период проходило обычные диагенетические трансформации (гумификацию, гелификацию) и было, вероятно, гораздо более проницаемо для растворов, чем пласты бурых углей, в период формирования уранового оруденения. Таким образом, накопление Sb в углях Павловского месторождения происходило, скорее всего, на стадии диагенеза.

Высокие совместные концентрации Ge и Sb (десятки-сотни мкг/л) [13], в сотни и тысячи раз превышающие обычные их содержания ($n \cdot 0.01$ – $n \cdot 0.1$ мкг/л) в поверхностных и подземных водах [14], фиксируются только в термальных водах современных вулканических областей. Это подтверждает представления о связи германиевого оруденения Павловского месторождения с позднекайнозойским вулканизмом [7, 10]. Вероятно, в позднем миоцене под месторождением "Спецугли" существовала крупная гидротермальная система надочагового типа, аналогичная тем, которые функционируют сейчас в вулканических районах Камчатки и Курильских островов. Отличие состоит в том, что в рассматриваемом случае парогидротермы разгружались не в атмосферу, а в подземные воды, циркулирующие в угленосной молассе, насыщая их сурьмой и другими компонентами, вынесенными из магматических очагов и выщелоченными из гранитов фундамента.

Поведение Sb в процессе промышленного сжигания во многом аналогично Ge. В высокотемпературной (>1000°С) зоне ТЭС оба этих элемента переходят в газообразную фазу и затем при снижении температуры конденсируются на частицах летучей золы. Уровень их накопления в летучей золе может в десятки раз превышать содержания в исходном топливе [5] и, соответственно, будет намного выше, чем в золе, полученной в лабораторных условиях (см. табл. 2). При том уровне концентраций, которые были зафиксированы в углях скв. 25-д, можно прогнозировать, что содержания Sb в летучей золе будут достигать первых процентов. Такие содержания сравнимы с теми, которые характерны для сурьмяных руд традиционных типов и намного превышают концентрации Sb в золах углей (150 г/т), которые предлагается рассматривать как промышленно значимые для их использования в качестве рудного сырья [15]. Это позволяет оценивать германиеносные угли Павловского месторождения как комплексное сырье, пригодное для попутного получения не только германия, но и сурьмы.

Сурьма относится к одним из наиболее токсичных неорганических компонентов углей. Она входит в число 11 элементов (наряду с As, Hg, Be, Se, Cd, Cr, Pb, Co, Ni, Mn), которые рассматриваются законодательными актами США как самые опасные загрязнители атмосферы [2]. В СССР предельно допустимые концентрации оксидов и галогенидов Sb в воде составляли всего 0.05 мг/л. В воздухе населенных пунктов даже разовые содержания не должны превышать 0.3 мг/м³ [5]. Для товарных углей России и продуктов их обогащения порог токсичности Sb определен в 6 г/т [15], что в сотни раз ниже, чем содержания, установленные в изученных углях.

В связи с этим добыча и переработка германиеносных углей Павловского месторождения, очевидно, должна сопровождаться специальными мероприятиями, направленными на снижение поступления Sb в воздушный и водный бассейны, а также дополнительными мерами по охране труда. В противном случае здоровью людей, работающих и живущих в районе этого месторождения, может грозить серьезная опасность.

СПИСОК ЛИТЕРАТУРЫ

- 1. Юдович Я.Э., Кетрис М.П., Мерц А.В. Элементыпримеси в ископаемых углях. Л.: Наука, 1985. 239 с.
- Finkelman R.B. Organic Geochemisty. N.Y.: Plenum, 1993. P. 593–607.
- 3. Eskenazy G.M. // Chem. Geol. 1995. V. 119. P. 239–254.
- Ren D., Zhao F., Wang Y., Yang S. // Intern. J. Coal Geol. 1999. V. 40. P. 109–118.
- 5. Шпирт М.Я., Клер В.Р., Перциков И.З. Неорганические компоненты твердых топлив. М.: Химия, 1990. 240 с.
- Клер В.Р., Волкова Г.А., Гурвич Е.М. и др. Металлогения и геохимия угленосных и сланцесодержащих толщ СССР: Геохимия элементов. М.: Наука, 1987. 239 с.
- Костин Ю.П., Шарова И.Г., Бурьянов А.В. В кн.: Полезные ископаемые в осадочных толщах. М.: Наука, 1973. С. 182–194.
- Иванов В.В., Кац А.Я., Костин Ю.П. и др. Промышленные типы природных концентраций германия. М.: Недра, 1984. 246 с.
- 9. Левицкий В.В., Седых А.К., Ульмясбаев Ш.Г. // Отеч. геология. 1994. № 7. С. 61-67.
- Seredin V.V., Danilcheva J. In: Mineral Deposits at the Beginning of the 21st Centure. Lisse: Swets & Zeitlinger Publ. 2001. P. 89–92.
- 11. Finkelman R.B., Palmer C.A., Krasnow M.R. et al. // Energy Fuels. 1990. V. 4. P. 755–766.
- 12. Кисляков Я.М., Щеточкин В.Н. Гидрогенное рудообразование. М.: Геоинформмарк, 2000. 608 с.
- Чудаев О.В., Чудаева В.А., Карпов Г.А. и др. Геохимия вод основных геотермальных районов Камчатки. Владивосток: Дальнаука, 2000. 162 с.
- 14. *Reimann C., de Caritat P.* Chemical Elements in the Environment. B.; Heidelberg: Springer, 1998. 398 p.
- Жаров Ю.Н., Мейтов Е.С., Шарова И.Г. Ценные и токсичные элементы в товарных углях России. М.: Недра, 1996. 238 с.