— ГЕОЛОГИЯ =

УДК 552.332.4(470.5)

ПОЗДНЕПАЛЕОЗОЙСКИЕ УЛЬТРАМАФИЧЕСКИЕ ЛАМПРОФИРЫ НА СРЕДНЕМ УРАЛЕ

© 2003 г. С. В. Прибавкин, Е. В. Пушкарев

Представлено академиком В.А. Коротеевым 06.06.2003 г.

Поступило 06.06.2003 г.

Ультрамафические лампрофиры – это редкие гипабиссальные породы, бедные Si и богатые Na, K, Ca, Mg, Cr, Ni, Sr, Ba, REE, летучими компонентами. Они формируются на стадии континентального рифтогенеза или тектоно-магматической активизации платформ и орогенных поясов и образуют отдельные дайки, дайковые поля или диатремы. Происхождение ультрамафических лампрофиров связывают либо с мантийными выплавками, генерируемыми на больших глубинах (100–150 км) при высоком давлении CO₂, либо со сложными процессами фракционирования, аккумуляции, контаминации и кислотно-щелочного взаимодействия базальтовых магм при их подъеме на поверхность [11].

Данные, полученные в последнее десятилетие, свидетельствуют о широком проявлении в эпоху кратонизации Урала в пермское и юрское время тектонической и магматической активности, играющей важную роль в формировании месторождений алмазов, золота, серебра, редких металлов и других полезных ископаемых [3, 6 и др.]. В это время на всем протяжении Уральского складчатого пояса отмечаются проявления щелочного, лампроитового и кимберлитового магматизма, в том числе образуются ультрамафические лампрофиры, обнаруженные и изученные нами в Шарташском гранитном массиве на Среднем Урале.

Шарташский гранитный массив расположен у восточной окраины Екатеринбурга. Он принадлежит поясу окраинно-континентальных надсубдукционных гранитоидных массивов Среднего Урала [4]. Вмещающие массив средне-нижнедевонские вулканиты основного состава представляют собой фрагмент островодужной коры, расположенный между двумя древними континентальными блоками: Сысертским на западе и Мурзинско-Адуйским

Институт геологии и геохимии им. А.Н. Заварицкого Уральского отделения

Российской Академии наук, Екатеринбург

на востоке. Дайки ультрамафических лампрофиров, ранее описанные как лампроитоподобные породы [5], прорывают граниты Шарташского массива с возрастом 328 ± 8 млн. лет и 87 Sr/ 86 Sr-отношением 0.70339 [8]. Они также секут золотоносные сульфидно-кварцевые жилы Шарташского шеелитового рудопроявления (рис. 1, 2). Дайки слагают маломощные (1-15 см) крутопадающие тела субширотного простирания, вскрытые щебеночным карьером и прослеженные в его бортах на глубину более 20 м. Иногда наблюдаются взаимные пересечения даек, свидетельствующие о многократном внедрении близких по составу щелочных магм. В строении даек четко выражены тонкозернистые зоны закалки (1-3 см) и более раскристаллизованные центральные части. Контакты с вмещающими гранитами резкие. Иногда по границе наблюдается реакционная оторочка, сложенная параллельно-волокнистым феррорихтеритом, а

Рис. 1. Схема геологического строения Шарташского гранитного массива [4] и положение в нем ультрамафических лампрофиров. *1* – вмещающие вулканогенно-осадочные толщи; *2* – крупнозернистые граниты; *3* – среднезернистые граниты; *4* – мелкозернистые граниты; *5* – дайки гранитоидов, спессартитов и керсантитов; *6* – ультрамафические лампрофиры.

Рис. 2. Схема геологического строения дайки ультрамафического лампрофира. *1* – гранит; *2* – закаленная зона дайки; *3* – центральная зона дайки; *4* – реакционная амфиболовая кайма; *5* – кварцевая жила; *6* – гумбеит.

ореол метасоматических преобразований гранитов достигает 10 см. В дайках часто наблюдаются ксенолиты вмещающих среднезернистых и аплитовидных гранитов, размером 1–8 см, часть из которых испытала частичное плавление и интенсивные метасоматические преобразования. Возраст даек, определенный К–Аг-методом по флогопиту и контактово-реакционному амфиболу, составляет 260–274 млн. лет.

Лампрофиры имеют бурый цвет на выветрелой поверхности и черный, темно-серый - на свежей. Структура пород порфировая, текстура массивная, реже флюидальная. Вкрапленники представлены фенокристами титанистого флогопита, размером 2-5 мм и в количестве 5-25%, а также карбонатными, амфибол-кварц-карбонатными, реже тальковыми псевдоморфозами, предположительно по вкрапленникам оливина (3-6 мм; 5-20%). Кроме того, в породе наблюдаются "глазки" (1–1.5 мм; <5%), иногда принимающие шести-, восьмигранный облик, состоящие из кварца, калиевого полевого шпата, альбита, железистого доломита, находящихся примерно в равных пропорциях. В них же отмечается присутствие монацита, сфена, ортита. Пока не ясно, являются ли "глазки" псевдоморфозами по какому-то первичному минералу (лейциту или другому фельдшпатоиду) или представляют собой флюидные пузырьки, присутствие которых весьма характерно

Рис. 3. Классификационная диаграмма (Na₂O + K₂O) – SiO₂ для вулканических пород (Le Bas et al., 1986 г.). Залитыми ромбами показаны составы ультрамафических лампрофиров.

для лампрофиров [11]. Основная масса пород состоит из микролитов размером 0.5–1.5 мм магнезиального титанистого биотита (35–40%) и метакристаллов доломита (0.5–3 мм; 5–40%), заключенных в базис из ксеноморфного доломита, ортоклаза, альбита, кварца, гематита. Такие минералы, как кварц, альбит, доломит, амфибол (рибекит, феррорихтерит), гематит, а также сульфиды (пирит, халькопирит), тальк и хлорит, являются вторичными, сформированными при перекристаллизации стекловатого базиса породы и замещении ранних вкрапленников. Акцессорные минералы представлены апатитом, титанитом, титанистым манганортитом, монацитом, хромшпинелидом, магнетитом, рутилом.

Химический состав пород заметно варьирует по содержанию кремния, кальция, магния, железа, что связано с внутренней неоднородностью даек, автометасоматическими преобразованиями и экзогенными процессами выщелачивания карбоната (табл. 1). Все это затрудняет классификацию пород. Тем не менее на классификационной диаграмме сумма щелочей-кремнезем (рис. 3) составы пород ложатся в поля фоидитов и базанитов. Они характеризуются ультраосновным составом $(SiO_2 41-42 \text{ мас. } \%)$, в пересчете на сухой остаток), преобладанием калия над натрием ($K_2O/Na_2O =$ = 1.6-5), имеют умеренный индекс агпаитности (K₂O + Na₂O)/Al₂O₃ = 0.7–0.9 и обладают высокими концентрациями TiO_2 (3–4 мас. %) и P_2O_5 (2.5 мас. %), что характерно для пород щелочноультраосновных комплексов. Исследуемые породы характеризуются значительным обогащением крупноионными литофильными (K, Rb, Sr, Ba, Th)

Компонент	Sh-2	Sh-3	Sh-1	Пс-70	Компонент	Sh-2	Sh-3	Sh-1	Пс-70
SiO ₂	37.75	39.47	44.55	38.61	Ga	23.65	22.12	23.32	18.99
TiO ₂	3.14	3.16	3.92	3.12	Y	27.83	21.95	25.29	24.54
Al_2O_3	9.91	9.85	9.43	8.82	Nb	189.93	164.86	172.43	159.31
Fe ₂ O ₃	8.39	6.20	6.29	8.42	Та	13.84	11.82	14.55	12.91
FeO	12.55	11.59	8.25	4.13	Zr	368.73	282.17	348.33	339.95
MnO	1.45	0.89	0.04	0.20	Hf	10.06	8.43	10.70	9.69
MgO	3.85	9.24	10.50	7.93	Мо	0.35	0.23	0.26	0.17
CaO	4.31	3.65	3.81	11.16	Sn	3.52	3.73	3.54	
Na ₂ O	1.68	1.17	1.44	2.98	Pb	12.41	11.60	24.75	10.61
K ₂ O	5.75	5.93	5.29	4.88	U	17.12	8.31	46.34	5.90
P_2O_5	2.48	2.24	2.15	2.37	Th	13.51	10.84	12.52	11.08
П.п.п.	7.88	4.67	2.52	8.67	La	263.36	217.43	253.77	199.00
Сумма	99.14	98.06	98.19	101.29	Ce	481.29	392.83	464.62	401.55
$\overline{Fe/(Fe + Mg)}$	0.74	0.51	0.42	0.60	Pr	53.13	46.31	51.24	47.92
Li	127.36	316.42	209.86	139.70	Nd	194.37	153.50	183.84	167.88
Rb	87.16	114.29	115.15	67.67	Sm	23.10	18.35	22.40	19.91
Cs	2.15	3.64	4.11	2.60	Eu	5.80	4.87	5.93	4.63
Be	3.50	5.50	3.84	3.07	Gd	10.58	8.91	10.51	9.73
Sr	549.95	618.54	705.79	1051.8	Tb	1.22	0.99	1.25	1.09
Ba	1545.0	2586.5	3133.0	2358.8	Dy	5.65	4.60	5.59	4.81
Sc	24.28	25.70	24.75	19.81	Но	0.96	0.80	0.97	0.83
V	276.24	281.87	249.27	222.13	Er	2.44	1.98	2.40	1.95
Cr	215.43	571.79	545.96	251.08	Tm	0.34	0.27	0.33	0.27
Co	37.55	52.28	54.38	36.58	Yb	2.31	1.68	2.02	1.62
Ni	88.52	290.13	271.29	127.74	Lu	0.32	0.23	0.27	0.24
Cu	3.50	5.50	33.91	57.89	K ₂ O/Na ₂ O	3.42	5.07	3.67	1.64
Zn	151.75	261.31	254.45	121.60	Th/Nb	0.07	0.07	0.07	0.07

Таблица 1. Содержания петрогенных компонентов (мас. %) и малых элементов (г/т) в ультрамафических лампрофирах

Примечание. Sh-2 – зона закалки. Sh-1, Sh-3 и Пс-70 – центральная часть дайки. Петрогенные компоненты определены рентгенофлюоресцентным методом в ИГГ УрО РАН; редкие элементы – методом индукционно-связанной плазмы (ICP-MS) в Университете г. Гранада (Испания) и в лаборатории ИМГРЭ (Москва).

и высокозарядными элементами (Zr, Nb, Hf, Ta, Y, P, Ti), а также легкими РЗЭ (табл. 1). По некоторым дискриминационным отношениям (Zr/TiO₂ = 0.01; Nb/Y = 7; Ti/V = 134; Ni/Co = 5–5.5 и содержанию V 250–280 г/т) шарташские лампрофиры сопоставимы с породами базанит-щелочно-базальтоидного ряда [12], лампроитами, лейцититами и слюдяными кимберлитами.

Для более точной классификации исследуемых пород внутри этих семейств можно использовать величину Та–Nb-аномалии или Th/Nb-отношение. Наличие в рассматриваемых породах положительной аномалии Та и Nb (рис. 4) и сравнительно низкого Th/Nb-отношения, менее 0.15, свидетельствует о их принадлежности к слюдяным кимберлитам, либо щелочным и ультрамафическим лампрофирам. На основании данных по минералогии и химии пород мы относим их к семейству ультрамафических лампрофиров.

Дополнительную информацию о природе изучаемых жильных пород несет единственный из сохранившихся первичных минералов – флогопит, а также обнаруженные в нем микровключения высокожелезистого хромшпинелида, на особенностях состава которых мы кратко остановимся ниже.

Вкрапленники флогопита обладают зональностью, хорошо заметной в шлифах. Центральная часть вкрапленников имеет медово-желтый цвет, а кайма – красно-бурый. Микрозондовые исследования показали, что состав ядер отвечает хро-

ДОКЛАДЫ АКАДЕМИИ НАУК том 393 № 1 2003

мистому, барийсодержащему титан-флогопиту. К краям зерен наблюдаются резкий ступенчатый рост железистости, одновременно с этим происходит увеличение марганца, падение алюминия, титана и хрома (табл. 2). Слюда в основной массе лампрофиров представлена титансодержащим магнезиальным биотитом. Состав слюд является хорошим индикатором процессов, происходящих в расплаве, а также играет важную роль в классификации пород семейства лампрофиров, лампроитов и кимберлитов [10]. Так, по сравнению с флогопитами из лампроитов изученная слюда обладает более высокими содержаниями глинозема (13–15 мас. %). Одновременное падение глинозема и титана от центра к краю вкрапленников и далее к слюде в основной массе, установленное в шарташских лампрофирах, соответствует закономерностям, известным в ультрамафических и щелочных лампрофирах, а также кимберлитах. В отличие от последних изученный флогопит характеризуется более высокими содержаниями титана (5-6 мас. %).

Хромшпинелид встречается в виде мелких идиоморфных кристаллов (<0.01 мм), заключенных группами по нескольку зерен в фенокристах флогопита и карбонатных апооливиновых псевдоморфозах. Кристаллы хромшпинелида однородны и лишь с краев обрастают тонкой магнетитовой каймой. По химическому составу они соответствуют алюмохроммагнетиту и хроммагнетиту со значительной примесью ZnO (до 6.5 мас. %) и TiO₂ (до 4.6 мас. %) (табл. 2). Хромшпинелиды такого состава являются редкими и описаны в лампроитоподобных породах трубки Кошмансай (Тянь-

Рис. 4. Распределение редких элементов в ультрамафических лампрофирах и лампроитах. *1* – лампроиты Западной Австралии [2]; *2* – лампроиты колымбаевского комплекса, Южный Урал [6]; *3* – ультрамафические лампрофиры комплекса Дамаралленд, Намибия [9]; *4* – ультрамафические лампрофиры, Средний Урал.

Шань) и слюдяных кимберлитах Кировоградского блока на Украине [1, 7].

Ультрамафические лампрофиры из Шарташского массива характеризуются следующими изотопными характеристиками: ⁸⁷Sr/⁸⁶Sr = 0.70644, ¹⁴³Nd/¹⁴⁴Nd = 0.512088, ε_{Nd} = -10.7. Начальное ⁸⁷Sr/⁸⁶Sr-отношение, рассчитанное на 274 млн. лет, равно 0.70581. Подобные изотопные характеристики имеют платформенные лампроиты

Компо- нент	1	2	3ц	3к	4ц	4к	5	6	7	8	9
SiO ₂	55.15	55.25	38.20	37.90	38.27	38.00	38.55	37.53	Не опр.	Не опр.	Не опр.
TiO ₂	0.30	0.00	5.46	4.78	5.79	4.16	5.15	5.25	4.57	3.78	3.15
Al_2O_3	0.59	0.00	15.12	13.84	15.21	13.47	14.74	13.18	6.11	10.93	6.90
Cr_2O_3	Не опр.	Не опр.	1.10	0.45	0.75	0.30	0.36	0.35	28.33	26.53	20.97
FeO*	19.92	23.79	6.96	14.53	7.04	13.79	13.67	15.53	51.61	50.89	59.44
MnO	0.16	0.00	0.10	0.18	0.08	0.16	0.16	0.08	0.59	0.65	0.52
MgO	10.29	11.16	20.01	15.06	19.72	15.64	14.10	14.27	2.65	0.45	3.20
ZnO	Не опр.	6.48	6.54	6.52							
CaO	5.40	0.57	0.04	0.07	0.04	0.07	0.07	0.00	Не опр.	Не опр.	Не опр.
BaO	Не опр.	Не опр.	1.20	1.00	1.10	0.95	1.00	0.83	Не опр.	Не опр.	Не опр.
Na ₂ O	6.38	6.55	0.31	0.20	0.35	0.20	0.34	0.00	Не опр.	Не опр.	Не опр.
K ₂ O	0.16	0.48	9.28	9.26	9.30	9.59	9.41	10.13	Не опр.	Не опр.	Не опр.
Сумма	98.35	97.80	97.78	97.27	97.65	96.33	97.55	97.15	100.34	99.77	100.7

Таблица 2. Состав породообразующих и акцессорных минералов ультрамафических лампрофиров, мас. %

Примечание. 1, 2 – амфибол; 3–6 – флогопит (ц – центр фенокристов, к – край); 7–9 – хромшпинелид. FeO* – все железо в виде FeO. Анализы выполнены на рентгеновском микроанализаторе JXA-5 (ИГГ УрО РАН, аналитик В.А. Вилисов).

6 ДОКЛАДЫ АКАДЕМИИ НАУК том 393 № 1 2003

Северо-Американской плиты: Лейцит-Хиллс, Смоки-Бьютт, отчасти лампроиты штата Канзас. Среди лампрофиров аналогичные значения ε_{Nd} авторам не известны. Такие значения могут свидетельствовать о происхождении шарташских ультрамафических лампрофиров из древнего мантийного источника, метасоматически обогащенного легкими РЗЭ.

Заключение. На основании проведенного исследования химического состава пород, породообразующих и акцессорных минералов можно утверждать, что изученные жильные породы принадлежат к группе ультрамафических лампрофиров. Геохимические и изотопные особенности пород ($\varepsilon_{Nd} = -10.7$ и ${}^{87}Sr/{}^{86}Sr_i = 0.70581$) свидетельствуют о формировании щелочной магмы из мантийного источника, метасоматически обогащенного нижнекоровым материалом. Таким образом, находку ультрамафических лампрофиров в Шарташском гранитном массиве надо рассматривать как проявление мантийного щелочного магматизма позднепалеозойского времени на Восточном склоне Среднего Урала.

Авторы благодарны своему научному руководителю проф. Г.Б.Ферштатеру и проф. В.С. Попову (Москва) за содействие в проведении изотопных исследований и полезные советы при обсуждении материала и профессору Ф. Беа (Гранада, Испания) за предоставленную возможность провести геохимическое изучение пород.

Работа выполнена по целевой программе междисциплинарных проектов УрО РАН, СО РАН и ДВО РАН 2003 г. и при финансовой поддержке РФФИ (гранты 01–05–65184, 03–05–06034).

СПИСОК ЛИТЕРАТУРЫ

- 1. Богатиков О.А., Рябчиков И.Д., Кононова В.А. и др. Лампроиты. М.: Наука, 1991. 302 с.
- Джейкс А., Луис Дж., Смит К. Кимберлиты и лампроиты Западной Австралии. М.: Мир, 1989. 430 с.
- 3. Лукъянова Л.И., Деревянко И.В., Мареичев А.М. и др. // ДАН. 1993. Т. 330. № 5. С. 617–619.
- Ферштатер Г.Б., Бородина Н.С., Рапопорт М.С. и др. Орогенный гранитоидный магматизм Урала. Миасс, 1994. 247 с.
- 5. *Прибавкин С.В.* Ежегодник-1996. Екатеринбург: ИГГ УрО РАН, 1997. С. 76–81.
- Сурин Т.Н. Триасовые лампроитоиды и лампрофиры (колымбаевский комплекс) Восточно-Магнитогорской зоны Южного Урала: минералогия, геохимия и петрогенезис. Уфа, 1999. 126 с.
- Цимбал С.Н., Кривдик С.Г., Кирьянов Н.Н., Макивчук О.Ф. // Минерал. журн. 1999. Т. 21. № 2/3. С. 22–38.
- Штейнберг Д.С., Ронкин Ю.Л., Куруленко Р.С. и др. // Ежегодник-1988. Свердловск: ИГГ УрО АН СССР, 1989. С. 110–112.
- 9. Le Roex A.P., Lanyon R. // J. Petrol. 1998. V. 39. № 6. P. 1117–1146.
- 10. *Mitchell R.H., Bergman S.C.* Petrology of Lamproites. N.Y.: Plenum, 1991. 447 p.
- 11. Rock N.M.S. // J. Petrol. 1986. V. 27. P. 155-196.
- 12. Winchester J.A., Floyd P.A. // Chem. Geol. 1977. V. 20. P. 325–345.