— ГЕОХИМИЯ =

УДК 552.18:552.4(470.21)

УНИКАЛЬНЫЙ ОРТОПИРОКСЕН-КИАНИТОВЫЙ ПАРАГЕНЕЗИС В ГРАНУЛИТАХ ЦЕНТРАЛЬНО-КОЛЬСКОЙ ОБЛАСТИ (КОЛЬСКИЙ ПОЛУОСТРОВ)

© 2003 г. П. Я. Азимов, Д. В. Доливо-Добровольский, М. В. Морозов

Представлено академиком Ф.П. Митрофановым 08.01.2003 г.

Поступило 06.02.2003 г.

Центрально-Кольская гранулито-гнейсовая область (ЦКГГО) сложена чередующимися пластинами позднеархейских парагнейсов кольского комплекса и гиперстен-биотитовых ортогнейсов, метаморфизованных в условиях гранулитовой фации [1]. К тектоническому контакту между глиноземистыми кольскими гнейсами и крупной Вежетундровской пластиной ортогнейсов приурочены зоны бластомилонитизации, ультраметаморфизма и флюидной переработки, содержащие многочис-

Рис. 1. Схематическая геологическая карта района р. Медвежьей (Центрально-Кольская гранулит-гнейсовая область, Кольский п-ов). Составлена по данным [2]. *1* – четвертичные отложения; 2 – калиевые граниты (*a*) и гранито-гнейсы (*б*); *3* – гранатсодержащие граниты; *4* – кианит-силлиманит-кордиерит-биотит-гранатовые гнейсы; *5* – силлиманит-кордиерит-биотит-гранатовые гнейсы; *6* – гранат-амфибол-пироксеновые кристаллосланцы, гранатовые амфиболиты, гранатовые эндербиты; *7* – мезо- и лейкократовые эндербиты; *8* – двупироксеновые и биотит-двупироксеновые основные сланцы; *9* – ориентировка сланцеватости; *10* – направление минеральной линейности; *11* – разломы; *12* – геологические границы; *13* – детальные участки: 1 – Нелькесьнюн, 2 – Озерный, 3 – Шпинелевый.

Институт геологии и геохронологии докембрия Российской Академии наук, Санкт-Петербург Санкт-Петербургский горный институт (Технический университет)

Рис. 2. Поляризованный рамановский спектр силиката глинозема из срастаний с ортопироксеном в сравнении с эталонными спектрами кианита и силлиманита. Спектры получены в полированных шлифах на спектрометре "Raman DILOR XY", оснащенном Ar⁺ ионным лазером (514.5 нм) и микроскопом "Olympus BH-2" с объективом "Zeiss 50×". Линейное разрешение ≤ 12 мкм, обратное рассеяние, спектральный диапазон 130–2000 см⁻¹, разрешение 1 см⁻¹ [8]. Для каждой точки получены два поляризованных спектра $\bar{z}(xx)z$ и $\bar{z}(yx)z$.

ленные тела основных и кислотных метасоматитов. В одной из таких зон на левом берегу р. Медвежья (рис. 1) в ортогнейсах известны проявления магнезиально-глиноземистых сапфиринсодержащих метасоматитов, представляющих собой меланократовые сапфирин-ортопироксен-биотитовые и сапфирин-шпинель-силлиманит-биотитовые слюдиты, мезократовые биотит-ортопироксен-кордиеритовые и сапфирин-биотит-кордиеритовые и лейкократовые кварц-ортопироксен-кордиеритовые породы. Плагиогнейсы, вмещающие метасоматиты, интенсивно мигматизированы, в них появляются гранат и ортоклаз. Наблюдаемый в мезократовых сапфиринсодержащих метасоматитах парагенезис ортопироксен + силлиманит [1] указывает на их образование при высокобарическом гранулитовом метаморфизме. В наиболее низкотемпературных шпинель-силлиманит-кордиеритбиотитовых метасоматитах встречаются поздние кристаллы кианита, врастающие в биотит.

В магний- и глиноземсодержащих минералах метасоматитов и вмещающих их гнейсов (биотите и кордиерите) часто встречаются тонкие иголочки силиката глинозема. Одни исследователи считали их кианитом [1–3], другие – силлиманитом (фибролитом) [4, 5]. В биотите иголочки образуют гнезда, "облака" и прожилки хаотически спутанного агрегата, а в кордиерите "опушают" трещины и границы зерен. Иголочки в кордиерите часто взаимно параллельны и подчиняются кристаллографическим направлениям в зернах минерала-хозяина. Выполненные нами микрозондовые исследования и рамановская микроспектроскопия показали, что силикат алюминия является кианитом, тесно срастающимся с ортопироксеном (рис. 2 и 3, табл. 1). Иногда кианит образует футляровидные кристаллы в ортопироксене. В кордиерите отмечаются также "почки", сложенные кианитом и ортопироксеном. Величина зерен кианита и ортопироксена невелика (обычно от 1-2 до 30-50 мкм). Иногда отмечаются ортопироксен-кианитовые симплектиты с ветвями толщиной в первые микроны (рис. 3). Взаимоотношения и морфология ортопироксена и кианита в срастаниях свидетельствуют о совместном образовании этих минералов, а форма выделений агрегата (гнезда, прожилки) и его формирование вдоль трещин и границ зерен указывают, что он образовался под воздействием просачивающегося флюида.

В мире известна лишь одна находка парагенезиса ортопироксен + кианит [6] в гранулитах и од-

ДОКЛАДЫ АКАДЕМИИ НАУК том 391 № 3 2003

br Ky + Opx Opx Opx Crd (a) 27 MKM (5)

Рис. 3. Кианит-ортопироксеновые срастания. Изображения в отраженных электронах (BSE) получены на растровом электронном микроскопе ABT-55 (Япония). а – прожилки кианит-ортопироксенового агрегата в биотите и кордиерите: обр. Kts2-14 (обозначения минералов согласно Р. Кретцу); б – ортопироксен-кианитовые симплектиты, замещающие кордиерит: обр. Kts2-13 (темное – кианит, светло-серое – ортопироксен).

на – в виде включений в пиропе из ультравысокобарических пород [7]. Описанная ранее в породах ЦКГГО гиперстен-кианитовая ассоциация [2] не является равновесной, что отметила и сама Л.П. Бондаренко. Анализ области устойчивости ортопироксен-кианитового парагенезиса (рис. 4) показывает, что в магнезиально-глиноземистых породах его существование возможно при высоких давлениях (более 8–9 кбар), температуре около 700°С и низкой активности воды. При большей

Компонент	Обр. Б848-27,	Обр. Б848-27,	Обр. Б854-20,	Обр. Kts2-13, т. 3-21	Обр. Кts2-13, т. 3-22	Обр. Kts2-13b,	Обр. Kts2-14, т. 3-25
	104Ka 0- 4 5	1.0-++	1.10	1. 5-21	1. 5-22	1.1-5	1. 5-25
SiO_2	51.87	50.46	51.79	50.65	50.02	52.93	50.39
TiO_2	0.02	0.02	0.09	0.05	0.05	0.04	0.01
$Al_2\bar{O}_3$	6.53	9.61	4.26	9.00	6.51	4.81	3.93
FeO	17.86	16.35	17.32	21.71	21.99	21.91	22.91
MnO	0.30	0.30	0.23	0.49	0.47	0.36	0.40
MgO	23.36	23.21	25.97	21.83	22.46	24.17	22.23
CaO	0.00	0.00	0.02	0.00	0.07	0.041	0.12
Cr_2O_3	0.00	0.00	0.00	0.03	0.02	0.00	0.00
Сумма	99.94	99.95	99.67	103.77	101.57	104.25	100.00
Формульные единицы							
Si	1.89	1.83	1.87	1.80	1.82	1.87	1.87
Ti	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Al	0.28	0.41	0.18	0.38	0.28	0.20	0.17
Fe ³⁺	0.00	0.00	0.10	0.02	0.08	0.06	0.09
Fe ²⁺	0.55	0.50	0.42	0.63	0.58	0.59	0.62
Mn	0.01	0.01	0.01	0.02	0.02	0.01	0.01
Mg	1.27	1.25	1.40	1.16	1.22	1.27	1.23
Ca	0.00	0.00	0.00	0.00	0.00	0.00	0.01
Cr	0.00	0.00	0.00	0.00	0.00	0.00	0.00
X _{Ma}	0.70	0.72	0.73	0.64	0.65	0.66	0.64

Таблица 1. Состав ортопироксенов из срастаний с кианитом в сапфиринсодержащих породах р. Медвежьей (ЦКГГО)

Примечание. Анализы выполнены в ИГГД РАН на микроанализаторе Link AN10000/85S. Формульные количества элементов рассчитаны на 4 катиона с использованием программы MINAL (автор Д.В. Доливо-Добровольский), содержания Fe³⁺ определены по соответствию числу зарядов.

ДОКЛАДЫ АКАДЕМИИ НАУК том 391 № 3 2003

Рис. 4. Парагенетические взаимоотношения минералов и метаморфическая эволюция сапфиринсодержащих метасоматитов ЦКГГО. Петрогенетическая сетка для биотитсодержащих высокомагнезиальных пород, недосыщенных SiO₂, построена с помощью программы ThermoCalc v. 2.75 [9] на основе термодинамической базы данных Т. Дж.Б. Холланда и Р. Пауэлла [10]. *РТ*-тренды рассчитаны по анализам минералов метасоматитов и вмещающих их гнейсов [11] с использованием программы TWQ v. 2.02b [12] и термодинамической базы данных Р. Бермана и Л. Арановича [13].

температуре устойчивым становится парагенезис ортопироксен + силлиманит, а при меньшей температуре или большей активности воды – парагенезис жедрит + кианит, характерный для магнезиально-глиноземистых метасоматитов амфиболитовой фации повышенных давлений. Редкость возникновения необходимых условий (высокие давления при низкой для гранулитов температуре, специфический состав породы и низкая активность воды) определяет уникальность находок сосуществующих ортопироксена и кианита.

Наши предыдущие исследования [11] показали, что породы ЦКГГО имеют сложную метаморфическую историю, включающую несколько метаморфических событий (рис. 4). Ранний региональный метаморфизм М1, проявившийся по всей ЦКГГО, отвечал условиям гранулитового метаморфизма умеренных температур и давлений. Более поздний метаморфизм М2, достигавший температур 850-920°С и давлений 9.0-9.6 кбар, проявился в сдвиговых зонах и привел к мигматизации и образованию сапфиринсодержащих метасоматитов. Пиковые значения РТ-параметров этого метаморфического события проявлены в метасоматитах, содержащих ортопироксен-силлиманитовый парагенезис. Формирование магнезиально-глиноземистых метасоматитов проходило на регрессивной стадии второго метаморфического события. Наиболее поздние метасоматиты (парагенезис биотит + силлиманит + кордиерит +

+ зеленая шпинель) наименее магнезиальны и отвечают условиям высокотемпературной амфиболитовой фации (650–700°С и 6.5–7 кбар).

Ортопироксен-кианитовый агрегат в породах ЦКГГО развивается по минералам метасоматитов, сформировавшихся в различных РТ-условиях: по биотиту и кордиериту из шпинель-сапфирин-силлиманит-кордиеритовых слюдитов, биотиту из биотит-гранатовых пород, кордиериту из силлиманит-биотит-ортопироксен-кварц-кордиеритовых и сапфирин-биотит-кордиеритовых пород. Замещение водосодержащих минералов ортопироксен-кианитовым агрегатом указывает на прогрессивный характер его развития, а появление его в породах, сформировавшихся вне поля устойчивости ортопироксена, указывает, что в ЦКГГО происходило еще одно, третье по счету, метаморфическое событие (МЗ), протекавшее в условиях гранулитовой фации. Пиковая температура этого метаморфического события существенно ниже, чем у второго гранулитового метаморфизма, а давления сравнимы. Незначительная степень развития и тонкозернистость ортопироксен-кианитовых агрегатов при их широком распространении в породах ЦКГГО указывает на кратковременность метаморфического эпизода МЗ. Как и событие М2, он проявлен лишь в тектонических зонах, а морфология и характер ортопироксен-кианитовых агрегатов свидетельствуют о их образовании при флюидной переработке

ДОКЛАДЫ АКАДЕМИИ НАУК том 391 № 3 2003

породы. Возможно, что оба высокобарических гранулитовых события в породах ЦКГГО связаны с созданием высокого давления за счет сжатия в зонах коллизии.

Авторы приносят благодарность М.Р. Павлову (ИГГД РАН) за помощь в электронно-микроскопических и микрозондовых исследованиях, М. Муссо и А. Азенбауму (Институт физики и биофизики Зальцбургского университета, Австрия) и Г. Амтауэру (Институт минералогии Зальцбургского университета, Австрия) за помощь в выполнении микрорамановских спектроскопических исследований.

Работа поддержана РФФИ (гранты 01–05– 65174 и 00–15–98475) Минобразования РФ и администрацией Санкт-Петербурга (грант РD02– 1.5–361 для молодых кандидатов наук, 2002 г.), CRDF (грант SI–015–0: "Научно-образовательный центр фундаментальных исследований минералов-индикаторов петро- и рудогенеза") и Австрийской службой академических обменов (ÖAD).

СПИСОК ЛИТЕРАТУРЫ

1. Авакян К.Х. Геология и петрология Центрально-Кольской гранулито-гнейсовой области архея. М.: Наука, 1992. 168 с.

- 2. Бондаренко Л.П. // Изв. АН СССР. Сер. геол. 1971. № 10. С. 48–55.
- Другова Г.М., Талдыкина К.С. Региональный метаморфизм и метаморфогенное рудообразование. Л., 1970. С. 124–136.
- 4. Евдокимов Б.Н. Метаморфизм докембрийских комплексов. Апатиты, 1976. С. 74–84.
- Fonarev V.I., Konilov A.N., Graphchikov A.A. // Intern. Geol. Rev. 1993. V. 35. № 5. P. 401–435.
- 6. *Baba S.* // Contribs Mineral. and Petrol. 1999. V. 136. № 1/2. P. 33–47.
- Simon G., Chopin C. // Contribs Mineral. and Petrol. 2001. V. 140. № 4. P. 422–440.
- 8. Morozov M., Dolivo-Dobrovolsky D.V., Azimov P. et al. // Europ. J. Miner. 2001. V. 13. № 1. P. 127.
- 9. Powell R., Holland T.J.B., Worley B. // J. Metamorph. Geol. 1998. V. 16. № 4. P. 475–590.
- 10. *Holland T.J.B., Powell R. //* J. Metamorph. Geol. 1998. V. 16. № 3. P. 309–343.
- 11. Доливо-Добровольский Д.В. Тезисы XII конф. памяти К.О. Кратца. СПб. 2001. С. 66–68.
- 12. Berman R.G. // Can. Miner. 1991. V. 29. № 4. P. 833– 855.
- 13. *Berman R.G., Aranovich L.Y.* // Contribs Mineral. and Petrol. 1996. V. 126. № 1/2. P. 1–24.