— ГЕОХИМИЯ —

УДК 551.21+552.3(571.66)

НОВЫЕ ДАННЫЕ О БОНИНИТОВОМ МАГМАТИЗМЕ ВОСТОЧНОЙ КАМЧАТКИ

© 2003 г. А. Б. Осипенко

Представлено академиком Д.В. Рундквистом 17.03.2003 г.

Поступило 17.03.2003 г.

Бониниты (магнезиальные вулканиты андезитового состава, обладающие специфическим набором минералогических, петрографических и геохимических признаков) являются образованиями надсубдукционных геодинамических обстановок, характеризующими магматизм, связанный с инициальными стадиями субдукции. Предполагают, что они отражают процессы генерации примитивных расплавов в результате частичного плавления сильно деплетированных пород мантийного клина при значительном участии флюида, источником которого является субдуцирующая плита [1, 2]. Проявление бонинитового магматизма связано главным образом с преддуговыми зонами современных интраокеанических островных дуг (Идзу-Бонинская, Марианская, Тонга-Кермадекская) [1-3 и др.], однако известны отдельные находки бонинитов и в иных геодинамических обстановках – прежде всего в фанерозойских офиолитах супрасубдукционного (SSZ) типа [4, 5 и др.]. К проявлениям последнего типа относится впервые выявленная автором ассоциация магматических пород, включающая лавы бонинитового состава и комагматичные им фрагменты офиолитовых кумулятивных серий, в Кротонском мафит-ультрамафитовом массиве.

Кротонский массив (рис. 1), расположенный на Восточной Камчатке в северной части хребта Кумроч, является крупнейшим (его площадь превышает 380 км²) и наименее изученным среди однотипных массивов на Камчатке. Массив представляет собой тектонизированную офиолитовую пластину мощностью около 500–1000 м [6], полого (10–20°) погружающуюся в северо-западном направлении под кайнозойские вулканогенно-осадочные отложения Центрально-Камчатской депрессии. Восточный борт массива надвинут на верхнемеловые и палеоценовые образования хапицкого комплекса по пологому надвигу, опре-

Государственный геологический музей им В.И. Вернадского Российской Академии наук, Москва деляющему аллохтонную тектоническую позицию массива. Доминирующий тип пород, слагающих офиолитовую пластину, - тектонизированультрамафиты. Они представлены ные преимущественно диопсидсодержащими шпинелевыми гарцбургитами (в различной степени серпентинизированными) и в меньшей мере дунитами, пироксенитами и хромититами. Пироксениты образуют жилы и линзы в кровле массива пластины, дуниты - первичные полосы, мощность которых в центре массива обычно не превышает нескольких метров (максимально 10–15 м), на периферии возрастает до 50-80 м. Особенности вещественного состава ультрамафитов указывают на их сходство с составами сильно и умеренно деплетированных мантийных перидотитов типичных офиолитовых комплексов SSZ-типа [7]. Особенностью Кротонского массива является широкое развитие верхнемеловых даек пикритов, габброидов, кварцевых диоритов и трондьемитов, которые группируются в рои или дайковые свиты. Ранние их генерации метаморфизованы в условиях амфиболитовой фации, поздние претерпели зеленокаменное изменение.

Разрозненные фрагменты лавовых потоков и дайковых образований, относящихся к бонинитовой ассоциации, найдены на водоразделах в верхнем течении р. Левая Уколка и по правобережью р. Лотон. Лавы и дайковые образования бонинитовой серии представлены порфировыми (доля вкрапленников, как правило, составляет 30-40%) слабопористыми разностями, в различной степени измененными и катаклазированными. Лишь в нескольких относительно свежих образцах устанавливается первичная минеральная ассоциация: породы сложены порфировыми выделениями идиоморфного зонального ортопироксена, редкими выделениями оливина и клинопироксена, погруженными в мезостазис, состоящий из мелких идиоморфных и скелетных кристаллов ортопироксена, акцессорного хромита и кислого стекла (имеющего характерную перлитовую отдельность). В более измененных породах темноцветные минералы хлоритизированы и амфиболизированы, в основной массе присутствует плагиоклаз.

Рис. 1. Схема тектонического строения северо-востока Камчатки (по [12] с изменениями). *1*–2 – плиоцен-четвертичные образования (*1* – осадочный чехол; *2* – вулканиты Восточно-Камчатского пояса); *3* – эоцен-миоценовые вулканогенно-осадочные образования; *4* – кайнозойские вулканогенные образования п-ова Камчатского мыса; *5*–*6* – верхнемеловые–палеогеновые образования Восточных хребтов (*5* – вулканогенные; *6* – вулканогенно-терригенные); *7* – верхнемеловые–палеогеновые вулканогенные образования п-ова Камчатского мыса; *8* – офиолиты; *9* – метаморфиды и метаофиолиты Хавывенской возвышенности; *10* – главные разломы, надвиги. На схеме: I – Кротонский массив; II – вулкан Шивелуч; III – офиолитовый комплекс п-ова Камчатский мыс.

Рис. 2. Мультиэлементные (а) и редкоземельные (б) спектры бонинитов Кротонского массива, нормированные к составам примитивной мантии [13] и углистого хондрита С1 [14] соответственно. Серым показано поле составов бонинитов Идзу-Бонинской островной дуги [1, 2],штриховыми линиями – бонинитов из офиолитов Беттс Коув, Ньюфаундленд [4].

Валовые составы пород (табл. 1) обнаруживают типичные для бонинитов геохимические особенности: 1) низкое содержание TiO_2 и высокое MgO, Ni, Cr при высоком (для островодужных вулканитов андезитового состава) Al_2O_3/TiO_2 -отношении; 2) U-образную форму редкоземельных спектров; 3) значительную деплетированность высокозарядных литофилов (HFSE) относительно P3Э (особенно легких) на мультиэлементных спайдерспектрах пород (рис. 2). Составы бонинитов Кротонского массива, а также слагающих их основных породообразующих минералов обнару-

ДОКЛАДЫ АКАДЕМИИ НАУК том 391 № 5 2003

живают значительное сходство с аналогами из бонинитовых серий островных дуг Идзу-Бонин, Марианской, Новогвинейской, Тонга, а также офиолитов Троодоса, Ньюфаундленда и Омана [1–5] и согласно классификации бонинитов [1] относятся к высоко и умеренно кальциевым типам.

Следует отметить, что собственно бонинитовые породы описаны для Восточной Камчатки впервые, хотя упоминание о "бонинитовой" специфике пород в исследуемом регионе существовало уже раньше. Так, составы породообразующих минералов и стекол, близкие к составам ана-

Таблица 1. Химический состав бонинитов Кротонского м	ассива
--	--------

Компонент	OKP-13/4	OKP-13/2	CE-163	CE-149	CE-148
SiO ₂ , мас. %	53.94	52.26	55.14	51.64	51.90
TiO ₂	0.17	0.11	0.13	0.14	0.23
Al_2O_3	11.24	13.10	13.24	14.95	15.84
Fe ₂ O ₃	3.66	4.24	3.54	1.14	3.58
FeO	5.31	5.14	4.11	3.59	4.01
MnO	0.11	0.09	0.12	0.15	0.11
MgO	10.84	9.87	8.76	10.47	9.21
CaO	7.91	10.24	9.54	11.25	10.05
Na ₂ O	1.22	1.56	2.53	2.64	3.01
K ₂ O	0.10	0.21	0.15	0.26	0.10
P_2O_5	0.05	0.14	0.09	0.15	0.15
п. п. п.	4.61	3.24	2.78	3.11	2.67
Сумма	99.16	100.20	100.13	99.49	100.86
Sc, г/т	33	48	38	36	31
V	157	193	177	124	139
Cr	337	228	510	496	714
Ni	59	115	179	110	160
Cu	22	14	19	19	28
Rb	2.8	4.1	0.9	1.3	1.6
Sr	104.5	136.9	95.4	92.0	71.8
Y	8.1	6.0	3.5	6.1	5.5
Zr	13.8	14.0	6.1	6.9	9.0
Nb	0.85	0.90	1.24	1.06	0.94
Ba	61	114	51	50	81
La	0.945	1.110	1.317	1.085	1.428
Ce	1.376	1.810	3.269	2.064	3.229
Pr	0.170	0.206	0.446	0.423	0.531
Nd	0.709	1.022	1.638	1.359	1.592
Sm	0.305	0.287	0.383	0.351	0.384
Eu	0.104	0.113	0.064	0.109	0.076
Gd	0.417	0.392	0.392	0.412	0.392
Tb	0.085	0.092	0.057	0.067	0.067
Dy	0.585	0.602	0.443	0.393	0.411
Но	0.146	0.159	0.084	0.088	0.089
Er	0.535	0.728	0.261	0.265	0.316
Tm	0.098	0.121	0.048	0.048	0.048
Yb	0.783	0.896	0.325	0.357	0.326
Lu	0.121	0.137	0.048	0.065	0.045
Pb	1.02	0.81	0.34	0.46	0.65
Th	0.06	0.06	0.08	0.06	0.05

Примечание. Породообразующие оксиды определены химическим методом в ЦХЛ ИВ ДВО РАН (г. Петропавловск-Камчатский, аналитик – Т. Г. Осетрова), содержание элементов-примесей – методом масс-спектрометрии с индукционно связанной плазмой (ICP–MS) в Институте геохимии СО РАН (г. Иркутск, аналитик Г.П. Сандимирова). Обр. OKP-13/2 и OKP-13/4 – лавы, р. Лотон, обр. CE-148, CE-149, CE-163 – дайки, р. Л. Уколка.

ДОКЛАДЫ АКАДЕМИИ НАУК том 391 № 5 2003

логов в кротонских бонинитах, установлены А.В. Колосковым и др. для "бонинитового" парагенезиса в ультраосновных ксенолитах из лав вулкана Шивелуч, расположенного юго-западнее массива [8]. С.Г. Сколотнев с соавторами [9] показал геохимическое сходство габброидов из верхнемелового офиолитового комплекса п-ова Камчатский Мыс (расположен к юго-востоку от Кротонского массива) с основными дифференциатами бонинитовой серии пород Филиппинского моря. Наконец, образец дацита, обладающего бонинитовыми геохимическими характеристиками, описан в хребте Тумрок авторами монографии [10]. Все это позволяет говорить о региональном характере бонинитового магматизма на северо-востоке Камчатки.

Значение находок бонинитов определяется, в первую очередь, их ролью индикаторов специфического режима петрогенезиса, проявляющегося лишь в определенной геодинамической обстановке. Экспериментальными исследованиями установлено, что условиями для генерации первичных расплавов высоко-Са бонинитов является относительно низкобарическое и высокотемпературное $(P = 1.5 \Gamma \Pi a \mu T = 1430 - 1480^{\circ} C)$ частичное плавление деплетированных мантийных перидотитов в присутствии 1-2 мас.% Н₂О [11]. Эти условия предполагают существование относительно неглубокого (<40 км), сильно разогретого и водонасыщенного источника бонинитовых расплавов в мантийном клине, подстилающем прото-кротонские офиолиты до их выведения на поверхность (предположительно в эоценовое время). В соответствии с моделью Дж. Пирса и др. [2] подобные условия могут быть реализованы в процессе субдукции относительно молодой разогретой океанической литосферы или даже активного спредингового центра в верхнюю мантию ниже клина. Однако в случае офиолитов Восточной Камчатки, генезис которых, в свою очередь, связывается с процессами растяжения в зонах преддужья (forearc) при субдукции древней и относительно холодной Тихоокеанской плиты [12], эта модель некорректна. В качестве возможных сценариев возникновения бонинитовых расплавов в надсубдукционной зоне Восточной Камчатки могут быть рассмотрены: 1) "плюмовая" модель [11], объясняющая специфические условия петрогенезиса бонинитов воздействием мантийного плюма;2) обдукция фрагментов литосферы, связанных с иной геодинамической обстановкой (в частности, со спредингом в Командорском бассейне окраинного Берингова моря); 3) локальной субдукцией относительно разогретой микроплиты.

Исследования поддержаны РФФИ (грант 01-05-64951).

СПИСОК ЛИТЕРАТУРЫ

- 1. Crawford A.J., Faloon T.J., Green D.H. Boninite and Related Rocks. L: Unwin Hyman, 1989. P. 1–49.
- 2. Pearce J.A., Van der Laan S.R., Arculus R.J. et al. // Proc. ODP. 1992. V. 125. P. 623-659.
- 3. Sobolev A.V., Danyushevsky L.V. // J. Petrol. 1994. V. 35. P. 1183–1211.
- 4. Bedard J. // J. Petrol. 1999. V. 40. № 12. P. 1853–1889.
- 5. Ishikawa T., Nagaishi K., Umino S. // Geology. 2002. V. 30. № 10. P. 899–902.
- 6. Селиверстов В.А. Петрологические исследования базитов островных дуг. М.: ИФЗ, 1978. С. 177-239.
- 7. Осипенко А.Б., Успенский В.С. Петрология и металлогения базит-гипербазитовых комплексов Камчатки. Петропавловск-Камчатский, 2000. С. 22-23.
- 8. Колосков А.В., Пузанков М.Ю., Пирожкова Е.С. Геодинамика и вулканизм Курило-Камчатской островодужной системы. Петропавловск-Камчатский: ИВГиГ ДВО РАН, 2001. С. 123-152.
- 9. Сколотнев С.Г., Крамер В., Цуканов Н.В. и др. // ДАН. 2001. Т. 380. № 5. С. 652–655.
- 10. Зинкевич В.А., Константиновская Е.А., Цуканов Н.В. и др. Аккреционная тектоника Восточной Камчатки. М.: Наука, 1993. 272 с.
- 11. Faloon T.J., Danyushevsky L.V. // J. Petrol. 2000. V. 41. № 2. P. 257–283.
- 12. Осипенко А.Б., Крылов К.А. Петрология и металлогения базит-гипербазитовых комплексов Камчатки. М.: Науч. мир, 2001. С. 138-158.
- 13. Sun S.-S., McDonough W.F. // Geol. Soc. Spec. Publ. 1989. V. 42. P. 313-345.
- 14. Anders E., Grevesse N. // Geochim. ef cosmochim. acta. 1989. V. 53. P. 197–214.