= ФИЗИКА =

УДК 548.736.6

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА НОВОГО МИКРОПОРИСТОГО АЛЮМОФОСФАТА $Na_2{Al_3(OH)_2[PO_4]_3}$

© 2003 г. О. В. Якубович, О. В. Димитрова, член-корреспондент РАН В. С. Урусов

Поступило 05.12.2002 г.

Исследования последнего десятилетия чрезвычайно расширили список цеолитоподобных соединений, основой кристаллических структур которых являются каркасы смешанного типа, образованные разносортными анионными полиэдрами. В дополнение к традиционным природным и синтетическим цеолитам с Al,Si-тетраэдрическими каркасами установлено множество микропористых фаз с трехмерными анионными постройками на базе Zn и P, Be и P, Zn и As, Al и P и других катионных матриц [1-6]. Кислородные комплексы амфотерных металлов в сочетании с кислотными комплексными анионами [РО₄]³⁻ формируют смешанные анионные каркасы, содержащие поры или каналы, в которых размещаются либо щелочные, либо органические катионы. В этой группе соединений, которые часто используются в качестве альтернативных алюмосиликатным молекулярных сит, наиболее изученными являются алюмофосфаты. Еще один представитель в ряду последних синтезирован нами в рамках систематического исследования алюмофосфатных систем.

Бесцветные прозрачные изометричные хорошо ограненные кристаллы размером до 5 мм, которые явились объектом исследования данной работы, получены нами методом мягкого гидротермального синтеза ($T = 250^{\circ}$ С, P = 100 атм) в стандартных автоклавах объемом 4 см³, футурованных фторопластом. Механическая смесь компонентов системы Na₂O-Al₂O₃-P₂O₅-B₂O₃ в равных весовых соотношениях вводилась в автоклав, куда преварительно была залита вода. Продолжительность опыта 18-20 суток. Индивидуальность дифракционной картины, зарегистрированной с порошкового образца на дифрактометре ДРОН УМ, свидетельствовала об оригинальности синтезированного соединения. Рентгеноспектральный анализ (CanScan 4DV) показал наличие в составе данной фазы атомов Na, Al и P.

Параметры ромбической (псевдотетрагональной) элементарной ячейки установлены при исследовании монокристалла на четырехкружном автоматическом дифрактометре SYNTEX $P\bar{1}: a =$

автоматическом дифрактометре з тителятт . a = 8.475(2), b = 8.471(2), c = 14.319(3) Å. Экспериментальный материал, необходимый для расшифровки структуры, получен $2\theta : \theta$ -методом сканирования на том же дифрактометре с использованием Мо K_{α} -излучения. Зарегистрированные интенсивности отражений скорректированы с учетом фактора Лоренца и поляризационного эффекта.

Все вычисления проведены с помощью программного комплекса SHELX [7, 8]. Использованы кривые атомного рассеяния и поправки на аномальную дисперсию из [9]. Попытка поиска структурной модели в рамках тетрагональной симметрии (пр. гр. P4₂2₁2) к успеху не привела. Это заставило нас предположить, что реальная симметрия кристалла ромбическая, а псевдотетрагональность обусловлена мероэдрическим или псевдомероэдрическим микродвойникованием. Структура решена прямыми методами и уточнена в полноматричном анизотропном приближении с учетом поглощения и вторичной изотропной экстинкции. При идентификации атомов в отсутствие данных химического анализа учитывались: состав системы при синтезе кристаллов, величины межатомных расстояний и температурных факторов, характер эллипсоидов тепловых колебаний. Учет двойникования по псевдотетрагональному закону показал наличие в исследованном образце индивидов двух ориентаций в соотношении 0.440(3) : 0.560(3). Величина параметра Флэка [10] свидетельствовала о правильном выборе "абсолютной" ацентричной конфигурации (пр. гр. $P2_12_12_1$). Установленная структура описывается формулой

$Na_{2}{Al_{3}(OH)_{2}[PO_{4}]_{3}}.$

Позиции атомов водорода были локализованы на разностном синтезе электронной плотности и уточнены в изотропном приближении. Кристаллографические характеристики новой фазы, данные рентгеновского эксперимента и параметры уточнения структуры приведены в табл. 1. Коор-

Московский государственный университет им. М.В. Ломоносова

Кристаллографические характе	еристики
Химическая формула	$Na_2{Al_3(OH)_2[PO_4]_3}$
Поглощение μ , мм ⁻¹	1.014
Пространственная группа	P2 ₁ 2 ₁ 2 ₁
Число формульных единиц Z	4
Параметры элементарной ячейки, Å	
a	8.475(2)
b	8.471(2)
С	14.319(3)
Объем элементарной ячейки V, Å ³	1028.0(4)
Плотность р, г/см ³	2.881
Данные эксперимента	·
Дифрактометр	SYNTEX $P \overline{1}$
Излучение	МоК _α (графитовый монохроматор)
Температура, К	293
Область съемки: θ_{max}	35°00
Данные уточнения структу	/ры
Число отражений: независимых <i>I</i> наблюдаемых с <i>I</i> > 1.96 σ (<i>I</i>)	2404/2251
Способ уточнения	по <i>F</i> ²
Число уточняемых параметров	206
Поправка на поглощение	DIFABS
$T_{\rm max}, T_{\rm min}$	1.000, 0.758
Факторы недостоверности:	
<i>R</i> (для наблюдаемых отражений)	0.046
wR_2 (для всех независимых отражений)	0.099
S	1.099
Коэффициент экстинкции	0.0004(7)
Остаточная электронная плотность, $e/Å^3$	$ ho_{max} = 0.71, ho_{min} = -0.65$

Таблица 1. Кристаллографические характеристики, данные эксперимента и уточнения структуры

динаты базисных атомов с анизотропными и эквивалентными температурными факторами и межатомные расстояния приведены в табл. 2 и 3 соответственно, геометрические характеристики водородных связей – в табл. 4, локальный баланс валентностей с учетом вклада протонов [11, 12] – в табл. 5.

Два типа полиэдров алюминия (в трех неэквивалентных позициях) участвуют в формировании кристаллической структуры – октаэдры и пятивершинники. Октаэдры All довольно правильные и закономерно относительно крупнее пятивершинников Al2 и Al3: межатомные расстояния катион–кислород в Al1 октаэдрах изменяются от 1.869 до 1.909 Å (ср. 1.891 Å), тогда как средние величины расстояний в полиэдрах Al2 и Al3 равны 1.830 и 1.832 Å соответственно. Конформация cis-типа характерна для октаэдров AlO₄(OH)₂, при этом длины связей между атомами Al и двумя OHгруппами в cis-позиции минимальны в полиэдре и равны 1.869 и 1.880 Å. Одна вершина каждого пятивершинника А12 и А13 также занята гидроксильной группой, но межатомные расстояния Al2 – OH = 1.801 Å и Al3 – OH = 1.842 Å не являются минимальными в соответствующих полиэдрах. Хотя средние значения длин связей алюминий-кислород в пятивершинниках в пределах экспериментальной точности (0.005 Å) совпадают, видно (табл. 3), что разброс расстояний в Al2-полиэдрах больше. Так, межатомные расстояния Al2–О лежат в интервале 1.782–1.884 A, тогда как в пятивершинниках Al3 минимальное и максимальное значения расстояний АІЗ-О равны соответственно 1.795 и 1.858 Å.

Атом	x/a	v/b	z/c	Uarp	U_{11}	U_{22}	U ₃₃	U_{23}	U_{13}	U_{12}
A11	0.6540(2)	0.6181(2)	0.0418(2)	экв 0.0072(3)	0.0000(8)	0.0053(7)	0.0073(6)	0.0001(7)	0.0000(7)	0.0002(6)
A11 A12	0.0340(2)	0.0101(2)	0.0410(2) 0.1004(1)	0.0072(3)	0.0090(8)	0.0033(7)	0.0075(0)	-0.0001(7)	0.0009(7)	0.0002(0)
AIZ	0.8051(2)	0.5852(5)	0.1994(1)	0.0078(3)	0.0089(9)	0.0077(8)	0.0070(7)	0.0005(7)	0.0001(0)	0.0010(0)
AI3	0.3923(2)	0.1099(2)	0.1134(1)	0.0080(3)	0.0075(7)	0.0083(8)	-0.0006(7)	0.0006(7)	0.0005(6)	-0.0003(6)
P1	0.5369(2)	0.2837(2)	0.2924(1)	0.0070(2)	0.0084(7)	0.0067(7)	0.0058(4)	0.0002(5)	0.0009(5)	0.0005(5)
P2	0.9712(2)	0.7247(2)	0.1280(1)	0.0067(2)	0.0060(7)	0.0067(7)	0.0075(5)	0.0001(5)	-0.0005(5)	-0.0003(4)
P3	0.0508(2)	0.2021(2)	0.0459(1)	0.0073(2)	0.0079(6)	0.0061(7)	0.0079(5)	-0.0018(6)	-0.0006(5)	0.0008(5)
Na1	0.7603(4)	0.9798(4)	-0.0365(3)	0.0374(9)	0.019(1)	0.021(2)	0.073(2)	0.002(2)	-0.011(2)	-0.005(1)
Na2	0.2205(4)	0.5008(4)	0.2890(3)	0.0402(10)	0.017(2)	0.024(2)	0.080(3)	0.023(2)	-0.009(2)	-0.006(1)
01	0.5150(6)	0.1813(6)	0.3796(3)	0.0109(9)	0.012(2)	0.010(2)	0.011(2)	0.003(2)	0.001(2)	-0.003(2)
O2	0.0167(6)	0.0359(5)	0.0097(3)	0.0086(8)	0.011(2)	0.007(2)	0.008(2)	-0.002(2)	0.003(2)	-0.003(2)
O3	0.7035(5)	0.4725(5)	0.1353(3)	0.0141(9)	0.010(2)	0.013(2)	0.019(2)	0.010(2)	-0.006(2)	-0.003(2)
O4	0.3131(5)	0.9488(5)	0.0408(4)	0.0099(7)	0.012(2)	0.008(2)	0.010(1)	0.001(2)	-0.005(2)	0.001(2)
05	0.8023(6)	0.7628(6)	0.0940(3)	0.0107(8)	0.009(2)	0.009(2)	0.014(2)	0.001(2)	-0.001(2)	0.002(2)
06	0.9233(6)	0.2333(6)	0.1197(3)	0.0102(9)	0.013(2)	0.012(2)	0.006(2)	-0.004(2)	0.001(2)	-0.003(2)
O7	0.0081(6)	0.8526(6)	0.2014(3)	0.0109(9)	0.011(2)	0.007(2)	0.014(2)	0.000(2)	-0.003(2)	-0.000(2)
08	0.5868(5)	0.7713(6)	-0.0460(3)	0.0087(8)	0.009(2)	0.012(2)	0.005(2)	0.003(2)	-0.002(2)	-0.001(2)
09	0.9869(6)	0.5599(6)	0.1716(3)	0.0103(9)	0.012(2)	0.007(2)	0.012(2)	0.003(1)	-0.003(2)	-0.001(2)
O10	0.2917(6)	0.7613(6)	0.2395(3)	0.0108(9)	0.007(2)	0.010(2)	0.015(2)	-0.002(2)	0.003(2)	0.003(2)
011	0.4231(6)	0.2479(6)	0.2125(3)	0.0114(9)	0.013(2)	0.010(2)	0.011(2)	-0.005(2)	-0.003(2)	-0.001(2)
O12	0.5032(6)	0.4589(5)	0.3176(3)	0.0101(8)	0.009(2)	0.007(2)	0.014(2)	-0.000(2)	-0.002(2)	0.003(2)
013	0.2143(6)	0.2233(6)	0.0892(4)	0.0128(9)	0.006(2)	0.013(2)	0.019(2)	-0.003(2)	-0.002(2)	0.003(2)
O14	0.0423(6)	0.3243(6)	-0.0339(3)	0.0120(9)	0.009(2)	0.011(2)	0.016(2)	0.008(2)	-0.000(2)	-0.003(2)
H1	0.63(1)	0.44(1)	0.137(8)	0.05(3)						
H2	0.36(1)	0.88(1)	0.043(8)	0.04(3)						

Таблица 2. Координаты базисных атомов, эквивалентные и анизотропные тепловые параметры $(Å^2)$

Примечание. Для атомов Н приведены значения изотропных тепловых факторов.

Al1-октаэдр		А12-пятивершинник		А13-пятивершинник		Р1-тетраэдр	
Al1–O3	1.869(5)	A12-06	1.782(5)	Al3-014	1.795(5)	P1O11	1.527(5)
O4	1.880(5)	O3	1.801(5)	O13	1.821(5)	O1	1.531(5)
O 8	1.895(5)	O7	1.810(5)	O4	1.842(5)	O10	1.535(5)
O2	1.896(5)	O9	1.871(5)	O12	1.844(5)	O12	1.553(5)
O1	1.899(5)	O10	1.884(5)	O11	1.858(5)		
O5	1.909(5)						
Среднее	1.891	Среднее	1.830	Среднее	1.832	Среднее	1.537
Р2-тетраэдр		Р3-тетраэдр		Na1-октаэдр		Na2-октаэдр	
P208	1.529(5)	P3O2	1.529(5)	Na1–O8	2.303(6)	Na207	2.313(6)
O9	1.535(5)	O13	1.529(5)	O2	2.326(6)	O10	2.394(6)
07	1.542(5)	O6	1.534(5)	O1	2.634(6)	O12	2.456(6)
O5	1.546(5)	O14	1.544(5)	O5	2.645(7)	O5	2.629(6)
				O13	2.654(7)	O9	2.645(6)
				O14	2.680(6)	O6	2.660(7)
Среднее	1.538	Среднее	1.534	Среднее	2.539	Среднее	2.516

Таблица 3. Межатомные расстояния, Å

D–H···A	<i>D</i> –Н, Å	H…A, Å	<i>D…A</i> , Å	Угол Д–Н…А
O3–H1…O11	0.66(9)	2.63(9)	3.238(6)	155(11)°
04–H2 [.] .01	0.69(9)	2.29(9)	2.925(7)	154(12)°
·08	0.69(9)	2.50(9)	3.031(6)	136(11)°

Таблица 4. Геометрические характеристики водородных связей

Примечание. *D* – донор и *A* – акцептор водородной связи.

Σ Атом A11 A12 A13 **P1** P2 **P**3 Na1 Na₂ H1 H2 $|\delta|$ **O**1 0.51 0.07 1.95 0.05 1.26 0.11 O2 0.52 0.25 2.04 0.04 1.27 2.14 O3(OH) 0.55 0.67 0.92 0.14 O4(OH) 2.03 0.54 0.60 0.89 0.03 0.50 1.92 O5 1.21 0.10 0.11 0.08 0.70 1.25 0.10 2.05 0.05 06 2.12 **O**7 0.65 1.22 0.25 0.12 08 0.52 1.27 0.26 0.04 2.09 0.09 0.55 1.25 1.90 09 0.10 0.10 **O10** 0.53 1.25 0.20 1.98 0.02 O11 0.57 1.28 0.04 0.08 1.97 0.03 0.59 O12 1.19 0.17 1.95 0.05 O13 0.63 1.27 0.10 2.000.00 014 1.22 2.000.00 0.68 0.10 0.92 Σ 3.14 3.10 3.07 4.95 5.01 0.97 4.98

Таблица 5. Локальный баланс валентностей

Примечание. Баланс рассчитан с использованием соотношения $s_{ij} = \exp\left(\frac{R_I - R_{ij}}{b}\right)$, где s_{ij} – валентное усилие *i*-го катиона, пе-

редаваемое *j*-му аниону; R_I – длина связи единичной валентности для конкретной пары "катион–анион" (табулированная величина – эмпирическая константа); R_{ij} – экспериментальное межатомное расстояние катион–анион в конкретной кристаллической структуре; b = 0.37.

Длины связей Р–О в трех независимых тетраэдрических комплексах РО₄ изменяются от 1.527 до 1.553 Å (ср. 1.536 Å) и вполне обычны для ортофосфатных групп. Октаэдры натрия характеризуются межатомными расстояниями катион– кислород в интервале от 2.303 до 2.680 Å (ср. 2.539 Å) – Na1 и в интервале от 2.313 до 2.660 Å (ср. 2.516 Å) – Na2. Дополнительный атом кислорода на расстоянии 2.955 Å достраивает анионный полиэдр вокруг Na2 до семивершинника.

Действующие в структуре водородные связи достаточно слабые и, как обычно для неорганических соединений, асимметричны и существенно нелинейны (табл. 4). Система водородных связей осложнена наличием так называемых "вилочных" связей между донором О4 и двумя акцепторами О1 и О8.

Каждый октаэдр Al1 делит две OH-вершины с соседними пятивершинниками Al2 и Al3 с образованием ленточных конструкций, параллельных оси c элементарной ячейки (рис. 1). Полиэдры Al2 и Al3 не имеют общих вершин, взаимодействуя внутри лент состава Al₃(OH)₂O₁₂ через октаэдры Al1. Ортофосфатные тетраэдры делят все кислородные вершины с полиэдрами Al, объединяя описанные выше ленты в каркасную постройку (рис. 2). Каждый из тетраэдров P1 и P3 делит две вершины с Al3-пятивершинниками и по одной вершине с полиэдрами Al1 и Al2. Тетраэдр P2 не имеет общих атомов кислорода с Al3-пятивер-

Рис. 1. Кристаллическая структура Na₂{Al₃(OH)₂[PO₄]₃} в проекции вдоль диагонали плоскости *ab*. Хорошо видны параллельные оси *с* ленты из объединенных вершинами полиэдров Al. Шарами показаны атомы Na.

шинниками, а делит две вершины с октаэдров Al1 и две с пятивершинником Al2. Образовавшийся каркас смешанного типа {Al₃(OH)₄[PO₄]₃}_{∞∞∞} содержит параллельные [001] каналы треугольного и восьмиугольного сечения, в последних размещаются катионы Na⁺ (рис. 3а).

В природе в рамках системы Na–Al–P–O–H известны два минерала: вардит

$$Na{Al_3(OH)_4(H_2O)_2[PO_4]_2}$$
 [13]

и бразилианит

$$Na{Al_3(OH)_4[PO_4]_2}$$
 [14]

Основа обеих структур – смешанные анионные каркасы из Аl-октаэдров и P-тетраэдров, однако топология каркасов существенно различна, как отлична она и от таковой в структуре описанной выше новой синтетической фазы. Так, в структуре вардита выделяются слои из вершинносвязанных Al-октаэдров, объединенные в каркас ортофосфатными тетраэдрами и водородными связями. Цепочки из реберно-связанных октаэдров Al сцементированы в каркас тетраэдрическими ортофосфатными комплексами в кристалли-

Рис. 2. Анионный каркас смешанного типа из полиэдров Al и P в структуре Na₂{Al₃(OH)₂[PO₄]₃} в проекции *уг.* Катионная "натриевая" начинка каркаса показана шарами.

Рис. 3. Кристаллические структуры синтетической фазы $Na_{2}{Al_{3}(OH)_{2}[PO_{4}]_{3}}$ (а) и минерала миньюлита $K{Al_{2}F(H_{2}O)_{4}[PO_{4}]_{2}}$ (б). Вид вдоль осей *с* элементарных ячеек.

ческой структуре бразилианита. В пустотах микропористых каркасов – катионы Na⁺.

Синтезированный нами алюмофосфат

$$Na_2{Al_3(OH)_2[PO_4]_3}$$

описывается новым структурным типом, однако топология Al,P-каркаса в проекции *ab* с точностью до "абсолютной" конфигурации оказывается чрезвычайно близкой топологии Al,P-слоев в кристаллической структуре также псевдотетрагонального минерала миньюлита (minyulite)

$K{Al_2F(H_2O)_4[PO_4]_2}$ [15].

Пустоты восьмиугольного сечения в слоях, параллельных плоскости {001}, содержат более крупные, чем Na⁺, катионы K⁺. "Элементарным звеном" анионных слоев смешанного типа в структуре миньюлита являются квазикластеры состава {Al₂F(H₂O)₄[PO₄]₂} (рис. 3б) из двух Al-октаэдров и двух Р-тетраэдров. В направлении оси с слои объединены водородными связями. Аналогичные квазикластеры могут быть выделены в структуре $Na_{2}{Al_{3}(OH)_{2}[PO_{4}]_{3}}$, однако в данном случае вместо одного октаэдра в их формировании участвует пятивершинник Al. В каркасной структуре алюмофосфата натрия эти кластеры объединены общими кислородными вершинами с аналогичными не только в плоскости ab (как в структуре миньюлита), но и в направлении третьей кристаллографической оси. Синтез алюмофосфата натрия в мягких гидротермальных условиях и топологическое сходство его структуры с

Рис. 3. Окончание.

таковой минерала миньюлита предполагают высокую вероятность существования в природе минерального аналога новой фазы.

Благодарим Е.В. Гусеву за рентгеноспектральный анализ образцов.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований.

СПИСОК ЛИТЕРАТУРЫ

- Якубович О.В., Дадашов М.С. // Кристаллография. 1988. Т. 33. С. 848–853.
- Якубович О.В., Мельников О.К. // Кристаллография. 1989. Т. 34. С. 62–66.
- 3. Якубович О.В., Тарасов В.И. // ДАН. 1988. Т. 303. № 6. С. 1382–1386.
- Bu X.H., Feng P.Y., Gier T.E., Stucky G.D. // Zeolites. 1997. V. 19. P. 200–208.

- Harrison W.T.A., Phillips M.L.F., Bu X.H. // Microporous and Mesoporous Mater. 2000. V. 39. P. 359– 365.
- Koneshaug K.O., Fjellvag H., Lillerud K.F. // Microporous and Mesoporous Mater. 2000. V. 39. P. 341– 350.
- 7. Sheldrick G.M. SHELXS-97. Program for the Solution of Crystal Structures. Göttingen: Univ. Göttingen, 1997.
- 8. *Sheldrick G.M.* SHELXL-97. Program for the Refinement of Crystal Structures from Diffraction Data. Göttingen: Univ. Göttingen, 1997.
- 9. *Hahn T*. International Tables of Crystallography / T. Hahn Ed. Dordrecht: Kluwer, 1995. V. A.
- 10. Flack H.D. // Acta cryst. 1983. V. A39. P. 876-881.
- 11. Урусов В.С., Орлов И.П. // Кристаллография. 1999. Т. 44. С. 736–760.
- 12. Brown I.D. // Acta cryst. 1976. V. A32. P. 24-31.
- Fanfani L., Nunzi A., Zanazzi P.F. // Miner. Mag. 1970.
 V. 37. P. 598–605.
- 14. Gatehouse B.M., Miskin B.K. // Acta cryst. 1974. V. B30. P. 1311–1317.
- 15. Kampf A.R. // Amer. Miner. 1977. V. 62. P. 256-262.