УДК 548.4

— ГЕОХИМИЯ —

ВЫСОКАЯ КОНЦЕНТРАЦИЯ БОРА В РАСПЛАВЕ, ФОРМИРУЮЩЕМ ЛИТИЙ-ФТОРИСТЫЕ ГРАНИТЫ

© 2003 г. Е. В. Баданина, Р. Томас, Л. Ф. Сырицо, И. В. Векслер, Р. Б. Трамболл

Представлено академиком В.И. Коваленко 10.12.2002 г.

Поступило 10.12.2002 г.

Бор – типичный литофильный элемент, для которого характерно значительное накопление в континентальной коре (15 г/т) относительно примитивной мантии (0.6 г/т) [1]. В магматических системах бор ведет себя как несовместимый элемент, концентрирующийся в расплавах и в еще большей степени в водных флюидах. Наибольшее исходное содержание бора наблюдается в коровых анатектических расплавах, фракционная кристаллизация которых приводит к дальнейшему его накоплению в остаточных магмах. В высокодифференцированных риолитовых обсидианах Маккузани (Перу) содержание бора в породе составляет 0.62 мас. % В₂О₃ [2]. При высоких концентрациях бор так же, как и фтор, модифицирует свойства кислых расплавов в сторону уменьшения ликвидусных и солидусных температур, вязкости расплава и увеличения растворимости в нём воды [3, 4]. В последние годы высокие концентрации бора установлены во флюидных и расплавных включениях в кварце, турмалине и берилле из турмалинсодержащих гранитных пегматитов различных регионов мира [5, 6]. При этом самые высокие содержания бора в расплавных включениях установлены в кварце из пегматитов Малханского поля – в среднем 5.9 ± 1.0 мас. % В₂О₃ (при максимальном содержании 12.5 мас. % В₂О₃) [7]. Во флюидных включениях наиболее высокое содержание Н₃ВО₃ (23-27 мас. %) установлено в кварце из пегматитов Юго-Западного Памира, Эльбы, в турмалинах из пегматитов Мадагаскара и Малханского поля [5]. В этих объектах распространенной дочерней фазой флюидных включений является сассолин.

В расплавных включениях из пегматоидных обособлений в редкометальных гранитах (РГ) Эренфридерсдорфа (центральная часть Рудных Гор) содержание B_2O_3 составляет в среднем 333 ±

 \pm 127 г/т, при этом в ряду дифференциатов этого интрузива (фазы от "А" до "D") сколь-либо заметных вариаций в содержании бора практически не прослеживается (от 13 до 15 г/т) [8]. Значительно более высокая концентрация бора (до 0.3 мас. % B₂O₃) установлена в расплавных включениях из кварца в сподуменовых гранитах Алахинского массива в Горном Алтае [9].

Судя по литературным данным, для литийфтористых гранитов бор не характерен, и главным летучим компонентом является фтор, концентратором которого служат породообразующие минералы – топаз и литиево-железистые слюды. Тем более интересными и неожиданными представляются результаты выполненных нами исследований расплавных включений в кварце из лепидолит-амазонит-альбитовых гранитов известного Орловского месторождения в Восточном Забайкалье [10].

В настоящей работе мы приводим первые данные о чрезвычайно высоких концентрациях бора в расплавных и флюидных включениях из Li–F гранитов, в составе флюидных включений которых впервые для этих гранитов обнаружен сассолин.

Для исследований из гранитов отбирали фенокристаллы кварца диаметром около 3 мм, содержащие раскристаллизованные расплавные включения. Расплавные включения имеют размеры от 20 до 150 мкм и представляют собой агрегаты дочерних фаз (рис. 1). В числе кристаллических фаз, формирующих агрегаты расплавных включений, обнаружены и проанализированы: КПШ, слюды (биотит, мусковит, литиевые слюды), альбит, флюорит. Набор дочерних минералов идентичен минеральным парагенезисам самих литионит-амазонит-альбитовых гранитов, что свидетельствует о кристаллизации их из расплава. В составе расплавных включений обнаружены также циркон, колумбит и монацит, выяснение природы происхождения которых – дочерние фазы или ксеногенные образования - требует дополнительных исследований. Наряду с такими минеральными агрегатами в кварце были проана-

Санкт-Петербургский государственный университет Геоисследовательский центр Потсдама, Германия

лизированы одиночные, в том числе мелкие (до 5 мкм) кристаллические включения, представляющие собой КПШ, альбит, слюды, апатит, монацит, флюорит и несколько высокофтористых не идентифицированных фаз (F от 13 до 34 мас. %). Расплавные включения гомогенизировали при температуре 650-750°С и давлении 2 кбар с последующей закалкой. В результате были получены гомогенные стекла, в которых полностью растворялись как дочерние минералы, так и флюидная фаза. После нагрева включения имеют округлую, иногда удлиненную форму, при правильно подобранных условиях эксперимента они гомогенны и содержат усадочный пузырек. Состав кристаллических включений, дочерних минералов расплавных включений и расплавов (закалочных силикатных стекол) анализировали на микроанализаторе Cameca SX-50 в Геоисследовательском Центре г. Потсдам (Германия). Анализы выполнены с использованием РС2 монокристалла для легких элементов и специальной методики количественного определения бора [11]. Бор анализировали при 10 кВт и 40 нА с дополнительным охлаждением жидким азотом. В качестве внутреннего стандарта использовали LaB₆ и синтетические стекла с содержанием B_2O_3 до 20 мас. % для внешнего стандарта. Предел обнаружения 0.03 мас. % элементного бора. На электронном микрозонде определяли следующие элементы: Si, Ti, Al, Mn, Mg, Ca, Na, K, Rb, P, F, Cl, B. Содержание воды в расплавах установлено при использовании метода спектроскопии комбинационного рассеяния (спектрометр Dilor XY Laser Raman Triple 800 мм) [12].

Содержание бора в изученных гомогенизированных и закаленных расплавных включениях в амазонитовых гранитах составляет в среднем (для 16 образцов) 1.45 ± 0.40 мас. % В₂О₃, фтора 1.34 ± 0.43 мас. % F, т.е. уровни концентрации бора и фтора в расплаве, формировавшем Li-F граниты, практически идентичны, а в ряде случаев бор превалирует над фтором (табл. 1). Максимальное содержание бора составляет 2.09 мас. % B_2O_3 . При этом бор не считается характерным летучим элементом амазонитовых гранитов, и эти граниты практически не содержат минераловконцентраторов бора в отличие от пегматитов с обильными выделениями турмалина. Наиболее высокая концентрация бора здесь наблюдается в литиево-железистых слюдах – протолитионите и циннвальдите (до 0.94 мас. % В₂О₃). Несколько меньшее содержание характерно для КПШ (0.43 мас. % B₂O₃) и альбита (0.20 мас. % B₂O₃), присутствующих в виде минеральных включений в кварце и в виде кристаллических фаз в составе расплавных включений (табл. 1).

В составе пород Орловского массива впервые для литий-фтористых гранитов в качестве кон-

Рис. 1. Раскристаллизованное расплавное включение в кварце из лепидолит-амазонит-альбитовых гранитов Орловского массива.

центратора бора был обнаружен специфический по облику и составу акцессорный турмалин, имеющий насыщенную синевато-зеленую окраску. По составу этот турмалин соответствует литийсодержащей высокожелезистой разновидности эльбаита с содержанием главных компонентов (в мас. %): SiO₂ 35.79, TiO₂ 0.05, Al₂O₃ 34.87, FeO 5.97, ZnO 1.05, MnO 1.35, MgO 0.23, CaO 0.05, Na₂O 2.70, K₂O 0.12, Li₂O 1.18, Rb₂O 0.001, F 1.6. При расчете на 6 атомов кремния кристаллохимическая формула минерала соответствует $(Na_{0.88}K_{0.03})_{0.91}(Al_{0.89}Fe_{0.84}Li_{0.80}Mn_{0.19}Zn_{0.13}Mg_{0.06})_{2.91}$ Al₆(Si₆O₁₈)(BO₃)₃(OH_{2.97}, F_{0.85})_{3.82}. Параметры элементарной ячейки: $a_0 = 15.919 \pm 0.005$ Å, $c_0 =$ $= 7.129 \pm 0.002$ Å. Особенностью состава этого минерала является высокое содержание фтора (1.6 мас. % F) и цинка (1.05 мас. % ZnO). В пределах Орловского массива эльбаит образует тонкокристаллическую рассеянную вкрапленность в лепидолит-амазонит-альбитовой разновидности гранитов. Размер зерен сопоставим с рудной минерализацией (до 0.0 п мм) и лишь в зоне эндоконтакта эльбаит образует довольно крупные сноповидные агрегаты до 3 см в длину [13]. Расчет баланса масс при условии, что концентрация бора в расплаве соответствует наблюдаемой в расплавных включениях, показывает, что доля концентрации его в эльбаите незначительна, и основная масса бора рассеивается в составе главных породообразующих минералов – литиево-железистых слюд, КПШ и альбита.

Результаты изучения закономерностей распределения бора и фтора в составе расплавных включений в ряду дифференциатов Орловского массива свидетельствуют о сложном характере их соотношения, и это является предметом специального обсуждения. Определенно можно сказать,

БАДАНИНА и др.

Компо- нент	Орловский массив								Этыкинский массив	
	гранит		пегматоид						гранит	
		распла	вные включения			кристаллические включения			расплавные включения	
мас. %	Гомоген- ные стекла	±1σ	Гомоген- ные стекла	±1σ	кпш	кпш	Протолит ионит	Цинн- вальдит	Гомоген- ные стекла	±1σ
	(9) ^a		(16)		(2)	(4)	(2)	(2)	(12)	
SiO ₂	66.99	0.78	65.26	2.05	65.85	62.10	39.53	41.73	66.03	0.12
TiO ₂	0.03	0.01	0.01	0.01	н.о.б	н.о.	0.07	0.03	0.03	0.01
Al_2O_3	12.23	0.73	12.88	1.40	18.58	18.33	24.72	24.33	14.42	0.12
FeO	0.67	0.15	0.71	0.27	0.07	1.87	17.69	11.79	0.15	0.03
MnO	0.54	0.18	0.38	0.25	0.02	0.01	1.50	1.38	0.12	0.07
MgO	0.05	0.05	0.01	0.01	н.о.	0.01	0.06	0.02	0.07	0.03
CaO	0.42	0.46	0.10	0.06	н.о.	н.о.	0.02	н.о.	0.03	0.02
Na ₂ O	3.70	0.17	1.15	0.24	0.43	0.62	0.24	0.16	5.04	0.09
K ₂ O	2.02	0.34	5.57	0.41	15.54	15.32	9.01	9.86	3.10	0.09
F	1.65	0.07	1.34	0.43	н.о.	н.о.	3.39	5.50	0.41	0.09
Cl	0.01	0.01	0.01	0.01	н.о.	н.о.	н.о.	н.о.	0.01	0.01
B_2O_3	0.89	0.11	1.45	0.40	0.43	0.33	0.94	0.81	0.43	0.16
Li ₂ O	_ ^B		-		-	_	1.99 ^r	3.77 ^г	-	
Rb ₂ O	0.20	0.02	0.36	0.01	0.36	0.61	0.59	0.45	0.25	0.01
P_2O_5	0.01		0.02	0.02	0.03	<0.01	0.01	0.03	н.о.	
$H_2 O^{\tt M}$	7.0	1.5	8.4	0.5	-	-	-	-	-	
Сумма	96.41		97.29		100.95	98.59	99.17	99.41	89.81	

Таблица 1. Химический состав гомогенных стекол расплавных включений, дочернего КПШ в них и кристаллических включений в кварцах из лепидолит-амазонит-альбитовых гранитов

^а В скобках – количество изученных включений;

^б н. о. – ниже предела обнаружения;

^в прочерк – не определялось;

^г содержание Li_2O в слюдах определено расчетным путем по формуле: $Li_2O(mac. \%) = 0.3935F^{1.326}$ [15];

^д стандартные отклонения в содержаниях H₂O в расплавных включениях из гранитов и пегматитов определены из 145 и 24 замеров соответственно.

что максимальные концентрации обоих элементов устанавливаются в наиболее дифференцированных – амазонитовых гранитах с лепидолитом, в том числе в локальных пегматоидных обособлениях в составе этих пород.

В отличие от фтора, имеющего низкую растворимость в водных флюидах и концентрирующегося в силикатных расплавах, бор имеет высокий коэффициент распределения в пользу флюидной фазы [14]. Учитывая высокое содержание бора в расплаве, формировавшем Li–F граниты, представляло интерес оценить максимально возможную концентрацию бора во флюиде, находящемся в равновесии с вышеописанным расплавом. При этом исследовании в составе флюидных включений в морионоподобном кварце из кварцциннвальдит-топазового парагенезиса эндоконтакта изучаемого массива были обнаружены бесцветные кристаллы размером порядка 20 мкм, удлиненной формы, с яркими цветами интерференции (рис. 2), что характерно для кристаллов ортоборной кислоты. Однозначная диагностика сассолина оказалась возможной при использовании спектроскопии комбинационного рассеяния. Приведенный на рис. 3 КР-спектр обнаруженного сассолина характеризуется сильной линией 880 см⁻¹ и слабой около 500 см-1, что соответствует эталонному спектру кристаллов ортоборной кислоты. Максимальная концентрация Н₃ВО₃, рассчитанная для растворов этих включений, достигает 15.1 мас. % при среднем содержании 11.6 ± ± 0.8 мас. %. Открытие сассолина в редкометальных гранитах показало, что экстремальное накопление борной кислоты во флюидах возможно

ДОКЛАДЫ АКАДЕМИИ НАУК том 390 № 1 2003

Рис. 2. Флюидное включение с сассолином в кварце из кварц-циннвальдит-топазового парагенезиса эндо-контакта Орловского массива.

Интенсивность, у. е.

Рис. 3. КР-спектр дочернего сассолина во флюидном включении в кварце.

не только в случае процессов кристаллизации турмалинсодержащих минеральных ассоциаций в миароловых пегматитах [5]. Такой процесс возможен и при отсутствии борной минерализации, образованию которой в редкометальных гранитах может препятствовать повышенная щелочность при высокой концентрации фтора [14].

Для сопоставления с Орловским массивом аналогичные исследования были выполнены на материале амазонитовых гранитов Этыкинского массива, расположенного в 280 км к востоку от Орловского массива в Газимуро-Аргунской структурно-формационной зоне Восточного Забайкалья. Этыкинский массив сложен танталоносными лепидолит-амазонит-альбитовыми гранитами, сходными по внешнему облику и петрогеохимическому составу с породами Орловского массива. Объектом исследования служили характерные гороховидные кварцы эндоконтактовой фации Этыкинского массива. Как видно из табл. 1, прослеживается определенное сходство полученных результатов как по составу расплава, так и по концентрации бора. Это позволяет сделать вывод о том, что бор является характерным летучим компонентом литий-фтористых гранитов. Однако роль этого элемента в процессах минералообразования и концентрирования рудного вещества еще предстоит определить.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант 01–05–64985), Минобразования России (грант PD02–1.5–289), Немецкой службы Академических обменов (DAAD) и Немецкого исследовательского общества (DFG).

СПИСОК ЛИТЕРАТУРЫ

- 1. Anovitz L.M., Grew E.S. // Rev. Miner. 1996. V. 33. P. 1–40.
- London D., Hervig R.L., Morgan G.B. et al. // Contribs Mineral. and Petrol. 1989. V. 102. P. 1–17.
- Pichavant M., Manning D. // Phys. Earth and Planet. Inter. 1973. V. 35. P. 31–50.
- 4. London D. // J. Petrol. 1997. V. 38. P. 1691-1706.
- 5. Перетяжко И.С., Прокофьев В.Ю., Загорский В.Е. и др. // Петрология. 2000. Т. 8. № 3. С. 241–266.
- 6. Thomas R. // Amer. Miner. 2002. V. 87. P. 56-68.
- 7. *Thomas R., Badanina E.V., Veksler I.V.* PACROFI 2002. Halifax, Nova Scotia. 2002. P. 106–107.
- 8. Webster J.D., Thomas R., Rhede D. et al. // Geochem. et cosmochem. acta. 1997. V. 61. № 13. P. 2589–2604.
- 9. Коваленко В.И., Царева Г.М., Кононкова Н.Н. и др. // ДАН. 1998. Т. 362. С. 816–820.
- 10. Сырицо Л.Ф., Табунс Э.В., Волкова Е.В. и др. // Петрология. 2001. Т. 9. № 3. С. 313–336.
- 11. Veksler I.V., Thomas R. // Contribs Mineral. and Petrol. 2002. V. 143. P. 673–683.
- 12. Thomas R. // Amer. Miner. 2000. V. 85. P. 868-872.
- Баданина Е.В., Сырицо Л.Ф., Михайлов В.В. Материалы междунар. симп. Минералогические музеи в XXI веке. СПб., 2000. С. 12.
- 14. London D. // Eur. J. Mineral. 1999. V. 11. № 2. P. 253–262.
- 15. Tischendorf G. // Miner. Mag. 1997. V. 61. P. 809-834.