—— ГЕОХИМИЯ —

УДК 549.752:552.443(234.851)

НОВЫЕ НАХОДКИ ЧЕРНОВИТА НА ПРИПОЛЯРНОМ УРАЛЕ

© 2003 г. И. В. Козырева, И. В. Швецова, Я. Э. Юдович

Представлено академиком Н.П. Юшкиным 15.12.2002 г.

Поступило 08.01.2003 г.

Арсенат иттрия черновит Y[AsO₄] – редкий минерал, открытый в 1966 г. и названный так в честь выдающегося исследователя геологии и полезных ископаемых Европейского севера А.А. Чернова, который был организатором Института геологии Коми филиала АН СССР и проработал в Сыктывкаре с 1942 по 1961 г. [2].

Черновит обнаружен Б.А. Голдиным. Н.П. Юшкиным и М.В. Фишманом на Тельпосском кряже (Приполярный Урал) в кварц-пьемонтитовых и кварц-альбитовых прожилках в субвулканическом теле липаритовых порфиров рифейского эффузивно-интрузивного дацит-липаритового комплекса в парагенезисе с пьемонтитом, гематитом, ильменитом, пиролюзитом, альбитом и гастингситом. Позднее черновит был встречен в Швейцарии в жилах альпийского типа в ассоциации с дымчатым кварцем, адуляром, сфеном, анатазом, рутилом, магнетитом, монацитом, кафарситом, асбекаситом, флюоритом, турмалином, синхизитом и некоторыми неизвестными до сих пор минералами [5]. Затем последовали находки черновита в Китае [4] и Чехии [6].

С 1992 г. нами начато исследование метаморфических горных пород, развитых в высокогорной части Приполярного Урала и приуроченных к зоне развития рифей-вендского комплекса доуралид и залегающего на нем с угловым и стратиграфическим несогласием каледоно-герцинского комплекса уралид. В породах фундамента (вендско-кембрийские риолиты и базиты) и чехла (терригенная толща ордовика) нашими предшественниками (в частности, воркутинскими геологами А.В. Вознесенским и М.В. Ильиным и геологами Института геологии Б.А. Голдиным, М.В. Фишманом, Н.П. Юшкиным, В.И. Мизиным, А.А. Соболевой, Р.Г. Тимониной, В.В. Букановым, Д.Н. Литошко) и нами выявлен большой список акцессорных минералов. Он включал как распространенные, так и довольно редкие минералы (лейкоксен, циркон, эпидот, алланит, пье-

Институт геологии Коми научного центра Уральского отделения монтит, браунит, монацит, ксенотим, турмалин, касситерит, молибдошеелит, ксенотим, флоренсит, лазулит и др.). Начатые нами геохимические исследования выявили геохимическую специфику метаморфитов – сочетание химических элементов разных парагенезисов, что указывало на сложную, многостадийную историю минералообразования [1, с. 65–67, 281–282]. В частности, все апориолитовые образования, измененные гидротермальными и/или древними гипергенными процессами, оказались "заражены" Mn, As и лантаноидами.

Дальнейшие исследования микро- и наноминералогии зоны межформационного контакта как традиционными минералогическими методами, так и с помощью микрозонда (оператор В.Н. Филиппов) позволили выявить и минералы-концентраторы этих элементов. Некоторые из них оказались известными (например, алланит или флоренсит), другие были обнаружены в виде не встречавшихся ранее морфотипов (например, сланцеподобный микроагрегатный "монацит-1"), а некоторые и до сих пор нами уверенно не идентифицированы (различные минеральные фазы сложного переменного состава) [3]. Все эти находки связаны с ледниковым каром оз. Грубепендиты – своего рода уникальным геохимическим и минералогическим объектом [1, с. 3; 3]. Именно здесь нами впервые были обнаружены гигантские кристаллы хлоритоида, скородит и арсениосидерит [1, с. 242], арденнит [1, с. 190], найдены эвклаз [1, с. 246] и черновит [3, с. 68], а воркутинские геологи нашли здесь конкреционные диаспориты (В.С. Озеров), пьемонтит (Э.Н. Озерова) и уникальные редкоземельные и марганцовистые эпидот-кварцевые стяжения (Л.И. Ефанова, Е.А. Котельникова) [1, с. 239]. Кроме того, именно в каре минералогом нашего института М.Б. Тарбаевым было открыто богатое месторождение рудного золота, названное В.С. Озеровым "Нестеровское" [3].

Несмотря на давно нами установленную мышьяково-редкоземельную геохимическую специализацию апориолитовых сланцев, черновит долго не удавалось найти, поскольку наше внимание было сосредоточено только на поиске кристалло-

Российской Академии наук, Сыктывкар

Рис. 1. Формы выделения черновита. а – короткопризматический кристалл с дипирамидальными головками; б – призматический кристалл с пинакоидом (001) и дополнительной призмой (110); в – ксеноморфное скрытокристаллическое выделение; г – идиоморфный кристалл.

морфного черновита, который должен был быть схож с ксенотимом или цирконом. И лишь в 1998 г. с помощью микрозонда удалось достоверно определить черновит в виде изометричных выделений поперечником до 60 мкм [3, с. 69–70]. Немного позднее воркутинский минералог Н.В. Повонская нашла в протолочках из измененных малдинских риолитов на соседнем золото-палладиевом месторождении "Чудное" и различимый под бинокуляром кристаллический черновит, переданный нам для исследования.

Первые находки черновита были сделаны в двух разновидностях эпидот-кварцевых стяжений, обогащенных Мп и РЗЭ: существенно эпидот-кварцевое и пьемонтит-спессартин-кварцевое с браунитом. Стяжения залегают в апоаркозовых гематит-пирофиллит-серицит-кварцевых сланцах, имеют типовой размер 3–5 см, изредка больше – до 30×10 см [1, с. 239]. Это плотные мелкокристаллические тела сургучно-красного цвета, очень похожие на известные в этом районе конкреционные диаспориты. Однако под микроскопом выясняется, что диаспора они не содержат, а состоят в основном из кварца, серицита и нескольких разновидностей эпидота с примесями

спессартина, хлорита, редкоземельных фосфатов и арсенатов весьма экзотического состава. В общем минеральный состав их тот же, что и вмещающих сланцев, но в них существенно больше эпидота (в том числе марганцовистого), спессартина и монацита. Важной особенностью стяжений является также присутствие в них "мышьякового эпидота" – арденнита [1, с. 190].

Известно, что кристаллы черновита представляют собой комбинацию тетрагональной призмы (010), тетрагональной дипирамиды (011) и пинакоида (001) [4]. Наиболее часто встречаемые в публикациях идеализированные кристаллы черновита представлены двумя разновидностями: короткопризматическими кристаллами с дипирамидальными головками (рис. 1а) и призматическими кристаллами с пинакоидом (001) и дополнительной призмой (110) (рис. 1б). Для черновита характерна совершенная спайность по (010) и желтая до оранжевой окраска; кристаллы обычно полупрозрачные, реже встречаются непрозрачные.

Изученный нами черновит представлен двумя разновидностями: ксеноморфными скрытокристаллическими выделениями (рис. 1в) и идиоморфными кристаллами (рис. 1г). Визуально чер-

ДОКЛАДЫ АКАДЕМИИ НАУК том 390 № 4 2003

YAsO ₄ (ASTM, №13-429)		Черновит (Голдин и др., 1967)		Чер (Chen De	новит qian, 1979)	Черновит (данные Н.В. По вонской и Л.И. Ефановой)		
Ι	d	Ι	d	Ι	d	Ι	d	
						2	4.90	
						2	4.26	
		5	3.879			3	3.89	
100	3.52	10	3.519		3.56	10	3.57	
		4	2.921			4	2.94	
75	2.661	10	2.644		2.67	10	2.69	
18	2.49	7	2.479		2.50	5	2.51	
6	2.347	2	2.337			2	2.35	
6	2.199	3	2.198		2.21	4	2.21	
4	2.010	8	1.997			7	2.02	
65	1.817	10	1.811		1.830	10	1.836	
16	1.760	6	1.756		1.776	2	1.762	
14	1.574	8	1.571		1.586	6	1.586	
16	1.468	9	1.464		1.477	6	1.474	
12	1.435	6	1.431			4	1.435	
14	1.329	7	1.326			6	1.329	
14	1.264	10	1.261		1.272	7	1.269	
4	1.244	4	1.243			3	1.248	
		3	1.224			2	1.238	
12	1.173	10	1.177			7	1.179	

Таблица 1. Межплоскостные расстояния черновита

новит трудно отличим от ксенотима. Два обломанных кристалла черновита с "Чудного" имеют тетрагонально-призматический габитус с тетрагональными головками. Кристаллы неравномерно окрашены в желто-оранжевый цвет: более густую окраску имеют ребра и грани. В табл. 1 приводятся рентгенограммы этих кристаллов, а также для сравнения – данные по черновитам из публикаций первооткрывателей минерала и китайского коллеги [2, 4].

10

10

1.125

1.109

1.127

1.112

16

16

Уже при первой находке мы отметили высокую степень изменчивости химического состава минерала: "Можно заключить, что проанализированное зерно, в составе которого доминируют У и As, принадлежит черновиту. Очевидно, это несовершенная кристаллическая фаза, если в пределах одного зерна состав минерала довольно существенно колеблется и, по-видимому, дает переходы к арсенатам цериевого состава" [3, с. 69]. Последовавшие в 2000 и 2001 гг. находки черновита (обр. 9403, 9404, 9937, 9937а, 9228) подтвердили этот вывод. В табл. 2 представлены результаты микрозондового анализа черновита и ассоциирующих с ним гаспарита и ксенотима. Данные табл. 2 позволяют утверждать, что существуют два изомофных ряда: 1) достоверно установленный ряд черновит Y[AsO₄]-ксенотим Y[PO₄] [2]; 2) вполне вероятный ряд черновит Y[AsO₄]-гаспарит (Ce, La, Nd)[AsO₄].

8

10

1.120

Черновит, гаспарит и ксенотим имеют одинаковый тип химической формулы – ABX₄. Содержание элементарной ячейки кристаллических структур одинаково: Z = 4. Параметры элементарной ячейки близки, отклонения не превышают 15 %: черновит – $a_0 = 7.04$ Å, $c_0 = 6.29$ Å; гаспарит – $a_0 = 6.94$ Å, $c_0 = 6.74$ Å; ксенотим – $a_0 = 6.90$ Å, $c_0 = 6.05$ Å. Таким образом, выполняются необходимые кристаллохимические условия для изо-

ДОКЛАДЫ АКАДЕМИИ НАУК том 390 № 4 2003

1.129

1.113

Компо-	Черновит								Гаспарит					Ксенотим	
	Китай (1)	Чехия (1)	9403 (1)	9404 (1)	9937 (1)	310017 (1)	310616 (2)	9937a (1)	9403 (1)	9403 (3)	9404 (5)	9228 (1)	9404 (1)	I (2)	II (2)
SiO ₂				3.18	5.11						1.90	2.18	5.46		3.15
Fe ₂ O ₃				4.60							2.62				3.01
MnO				2.99	1.14			3.03							
CaO			0.02	0.21				3.02	0.88	1.78	1.98				
P_2O_5	8.63					1.46	1.09	2.70				18.76	19.38		
As ₂ O ₅	37.03	47.25	44.01	42.96	42.98	49.40	52.15	41.68	42.15	45.28	35.08	14.82	15.28	37.08	35.16
Y_2O_3	37.70	39.60	41.01	38.45	33.37	32.92	29.07	22.24	21.80	11.03	7.72	44.16	10.51	2.47	
La ₂ O ₃			0.29					1.41	1.52	3.36	1.16		12.10	39.46	34.28
Ce ₂ O ₃	$Ln_2O_3=$		0.07				0.97	6.46	1.23	1.80	4.08		12.59		
Pr ₂ O ₃	15.47							1.78	1.49	3.14	2.83		2.59		
Nd_2O_3			9.42	4.28	0.60	2.53	7.65	7.43	22.96	25.23	19.09	0.87	13.37		
Sm ₂ O ₃				1.30	1.30	2.95	4.21	2.11			6.65	1.34	1.86		1.66
$\mathrm{Gd}_2\mathrm{O}_3$		1.37	4.41		5.77	6.13	6.05	3.84	4.86		4.97	2.16	2.47	8.07	3.15
Dy_2O_3		4.37			5.96	4.57		1.83			2.26	3.09	1.41	7.63	5.35
Ho ₂ O ₃		1.06												1.17	1.59
Er ₂ O ₃		2.16			2.23							2.30		3.48	2.79
Yb ₂ O ₃		3.23			1.46							1.87		2.21	3.08
MoO ₃			0.54						2.15	3.05	4.38				
WO ₃			0.18						0.78	4.60	3.84				
ThO ₂												1.30			
Сумма	98.83	99.04	100.00	99.94	99.92	99.96	100.60	97.53	99.98	99.27	98.56	92.85	97.02	101.57	93.22

Таблица 2. Химический состав черновита, гаспарита и ксенотима, мас. %

Примечание. Обр. 9228 – серицит-пирофиллитовый сланец; обр. 9403, 9404, 310616 – марганцовистое эпидот-кварцевое стяжение; обр. 9937, 9937а, 310017 – пьемонтит-спессартин-кварцевое стяжение с браунитом. Ксенотим: І – состав с Y – среднее по обр. 215423 (серицит-пирофиллитовый сланец, коллекция Л.И.Ефановой) и обр. 310510 (серицит-пирофиллитовый сланец с хлоритоидом и гематитом), II – состав без Y – среднее по обр. 310041 (тельпосский конгломерат) и обр. 310606 (серицит-кварцевый сланец). В скобках – число анализов.

морфных замещений в указанных рядах. Можно предположить существование еще одного изоморфного ряда: гаспарит–ксенотим. Хотя реальных аналитических подтверждений этого пока нет, мы полагаем, что будущие исследования позволят обнаружить указанный ряд.

В некоторых составах гаспарита обращают на себя внимание малые примеси Мо и W. Видимо, в гаспарите может присутствовать изоморфная примесь молибдошеелита. Следовательно, вполне вероятен еще один изоморфный ряд, который мы предполагали ранее [3, с. 72]:

 $(Ca,Mn,Sr)[(Mo,W)O_4] \Leftrightarrow (TR)_{Ce}[AsO_4].$

Итак, исследование черновита показало, что в метаморфических породах в зоне межформационного контакта на Приполярном Урале имеется широкий спектр редкоземельных минералов, среди которых существуют четыре изоморфных ряда с участием мышьяка (три последних предположительно): 1) черновит–ксенотим, 2) черновит–гаспарит, 3) гаспарит–ксенотим, 4) гаспарит– молибдошеелит.

По-видимому, парагенезис черновита с гаспаритом, ксенотимом, монацитом, пьемонтитом, скородитом, арсениосидеритом, арденнитом, спессартином, обнаруженный в уникальных марганцовисто-мышьяковисто-редкоземельных стя-

ДОКЛАДЫ АКАДЕМИИ НАУК том 390 № 4 2003

жениях, сложился в результате процессов аутигенного минералообразования, которые протекали в период формирования древней коры выветривания (средний–поздний кембрий). Образовавшиеся аутигенные редкоземельные минералы в дальнейшем подвергались трансформациям в периоды каледонской и герцинской активизации, когда все породы региона претерпели зеленосланцевый метаморфизм [3].

Авторы признательны Н.В. Чуканову (Черноголовка) за консультации, Л.И. Ефановой и Н.В. Повонской (Воркута) за предоставление кристаллов черновита.

СПИСОК ЛИТЕРАТУРЫ

- Геохимия древних толщ Севера Урала / Под ред. Н.П. Юшкина. Сыктывкар: Геопринт, 2002. 333 с.
- 2. Голдин Б.А., Юшкин Н.П., Фишман М.В. // ДАН. 1968. Т. 179. № 1. С.187–189.
- Юдович Я.Э., Ефанова Л.И., Швецова И.В. и др. Зона межформационного контакта в каре оз. Грубепендиты. Сыктывкар: Геопринт, 1998. 97 с.
- 4. Chen Deqian // Acta geol. sin. 1979. V. 2. P.125-136.
- 5. *Graeser S.*, *Roggiani A.* // Rend. Soc. Stal. Miner. Petrol. 1976. V. 32. № 1. P. 279–288.
- Scharmova M. // Véstn. ústred. ústavu geol. 1990. V. 65. № 4. P. 243–248.