— ГЕОХИМИЯ =

УДК 552.32.6(470.21)

ПРОТЕРОЗОЙСКИЕ ПРОЦЕССЫ МАНТИЙНО-КОРОВОГО ВЗАИМОДЕЙСТВИЯ В АРХЕЙСКОМ ФУНДАМЕНТЕ ПЕЧЕНГСКОГО ПАЛЕОРИФТА

© 2003 г. В. Р. Ветрин, А. А. Деленицин

Представлено академиком О.А. Богатиковым 16.01.2003 г.

Поступило 05.11.2002 г.

Формирование континентальных рифтов сопровождалось деструкцией сиалического фундамента и внедрением в верхнюю кору огромных объемов основных–ультраосновных расплавов, разнообразие которых зависело от состава астеносферного источника, глубины генерации магм и мощности земной коры. В небольшом количестве среди магматических пород рифтов присутствуют дациты, риолиты и их интрузивные эквиваленты, образование которых связывается с участием в петрогенезисе вещества верхних частей литосферы.

Благоприятным объектом для исследования процессов мантийно-корового взаимодействия при формировании Печенгского палеорифта, расположенного в северной части Балтийского щита, являются архейские породы его фундамента, вскрытые разрезом Кольской сверхглубокой скважины (КСГС) на глубинах 6842-12261 м. В отличие от приповерхностных ассоциаций породы архейского комплекса КСГС интенсивно изменены процессами протерозойского магматизма и метасоматоза, связанными с формированием Печенгской структуры. К их числу относятся: внедрение многочисленных тел основного состава, регрессивный метаморфизм и гранитизация пород, а также образование интрузивных тел постскладчатых гранитов.

Амфиболиты. Породы основного состава, представленные в настоящее время разнообразными амфиболитами, составляют около 30% объема архейского комплекса КСГС. Их преобладающая часть (≥80%) относится к породам дайковой фации, которыми были образованы, вероятно, подводящие каналы для эффузивов Печенги. Эволюция состава последних определялась сменой андезито-базальтов, трахиандезито-базальтов и трахибазальтов (маярвинская и пирттияр-

Геологический институт Кольского научного центра Российской Академии наук, Апатиты Мурманской обл. винская свиты) толеитовыми базальтами, базальтами и ферропикрит-базальтами заполярнинской и матертской свит [1].

По нормативному составу амфиболиты дайковой фации соответствуют оливиновым или кварцевым толеитам с умеренно фракционированным распределением РЗЭ при повышенном содержании легких лантаноидов ((La/Yb)_n = 4.6-6.9, рис. 1). От обогащенных редкоземельными элементами базальтов TH2 архейских зеленокаменных поясов [2] породы дайковой фации отличаются более высокими содержаниями РЗЭ, Fe₂O₃, TiO₂, V и пониженными концентрациями MgO и Cr. Среди метаэффузивов Печенги по содержанию РЗЭ и других редких элементов наиболее сходный состав с амфиболитами КСГС имеют меланократовые базальты заполярнинской свиты и трахибазальты пирттиярвинской свиты. В то же время последние характеризуются повышенными концентрациями Al₂O₃, Na₂O и пониженными – CaO и MgO при близких с амфиболитами содержаниях SiO_2 , что противоречит предположению о происхождении изученных амфиболитов дайковой фации и базальтов пирттиярвинской свиты при дифференциации единого расплава. Наиболее сходны по составу с амфиболитами КСГС базальты заполярнинской свиты, формировавшиеся из относительно малоглубинного деплетированного мантийного источника с возрастом около 2.1 млрд. лет [1].

Архейские амфиболиты обрамления скважины и аналогичные породы в разрезе КСГС по нормативному составу соответствуют главным образом оливиновым толеитам и в меньшем количестве – щелочным базальтам и кварцевым толеитам. Амфиболиты характеризуются пониженными концентрациями легких лантаноидов и пологим распределением РЗЭ ((La/Yb)_n = 0.7–2.0), чем резко отличаются от протерозойских амфиболитов в архейском комплексе КСГС, но сходны с TH1 – наиболее распространенными базальтами архейских зеленокаменных поясов [2] и с толеитовыми базальтами современных зон субдукции

Рис. 1. Нормированные к хондриту (а) и примитивной мантии (б) концентрации РЗЭ и редких элементов в амфиболитах дайковой фации КСГС (обр. 31375, 36582, 44369-2, 42167). ТН2 – толеиты архейских зеленокаменных поясов [2], амфиболиты AR_2 – средний состав амфиболитов окружения скважины. Обр. 3173, 13082, 18761, 21846 – базальты соответственно матертской, заполярнинской, пирттиярвинской и маярвинской свит Печенгской структуры. ПМ – примитивная мантия.

[3]. Исключение составляют амфиболиты обр. 107/99 и 105-2/99, обогащенные легкими РЗЭ, Rb, Ba, Pb и Sr (рис. 2), что является, скорее всего, результатом их интенсивной гранитизации (K_2O 3.2–5.4%, SiO₂ до 51.3%).

Сходство эффузивов палеопротерозойской Печенгской структуры с амфиболитами из архейского комплекса КСГС, выявленное при сравнении составов этих пород, подтверждается и при изучении в них Sm–Nd-изотопной системы. Модельный возраст амфиболитов, вычисленный исходя из предположения о деплетированном составе мантии региона (T_{Nd} (DM), составляет 2.16–2.33 млрд. лет (табл. 1), чем определяется нижний

возрастной предел образования протолитов. Учитывая сходство составов рассматриваемых амфиболитов с метабазальтами заполярнинской свиты Печенги, время образования которых оценивается в 2114 ± 52 млн. лет [4], такой же возраст мы принимаем и для проанализированных амфиболитов. Величина $\varepsilon_{Nd_{(2114)}}$ в амфиболитах составляет 0.77–2.69, что приближается или ниже значения $\varepsilon_{Nd} \sim 3.5$ для деплетированной мантии с возрастом 2.1 млрд. лет [5]. Близкие значения ε_{Nd} (0.70–2.77) установлены и для образцов метапироксенита и метагаббро, аналогичных породам дайковых комплексов из обрамления Печенги с возрастами

ДОКЛАДЫ АКАДЕМИИ НАУК том 390 № 5 2003

Рис. 2. Нормированные к хондриту (а) и примитивной мантии (б) концентрации редких элементов в амфиболитах окружения скважины. TH1 – толеиты архейских зеленокаменных поясов [2]. IAT – толеитовые базальты островной дуги Южных Сандвичевых островов [3].

соответственно 1956 и 2200 млн. лет [4]. Интерпретация пониженных значений ε_{Nd} обычно производится исходя из предположения об обогащенной природе источника, либо вследствие контаминации расплавов веществом верхней коры [6]. Последнему варианту противоречат пониженные концентрации Rb, Ba, Pb в базальтах заполярнинской свиты. Следовательно, вычисленные значения ε_{Nd} отражают, скорее всего, формирование исходных расплавов из деплетированных мантийных источников, в различной степени обогащенных некогерентными элементами.

Амфиболиты окружения скважины имели деплетированный или сильно деплетированный ($\varepsilon_{Nd} = 2.15-3.3$) состав источника для возраста 2.84 млрд. лет (см. табл. 1). Отрицательное значение ε_{Nd} (-0.48) для обр. 105-2/99 обусловлено, вероят-

ДОКЛАДЫ АКАДЕМИИ НАУК том 390 № 5 2003

но, нарушением Sm–Nd-изотопной системы в процессе калиевого метасоматоза пород.

Метаморфизм И гранитизация. Процесс протерозойской гранитизации по времени был близок с регрессивным метаморфизмом амфиболитовой и эпидот-амфиболитовой фаций. Гранитизация проявлена локально лишь под Печенгским палеорифтом и в его ближайшем окружении и по отношению к вмещающим метаморфическим породам представляла собой резко неравновесный и неизохимический процесс, сопровождавшийся выносом Al₂O₃, CaO, Na₂O и привносом SiO₂, TiO₂, Fe₂O₃, FeO, K₂O и ряда элементов примесей (Rb, Ba, Nb, Zr, P3Э, Pb, Cu, Cr, Ni, Co, V, F, Pb, CO₂), характерных для пород повышенной щелочности. Изучение изотопного состава нерадиогенного свинца в породах и минера-

Таблица 1. Sm-Nd-изотопные данные для амфиболитов КСГС и амфиболитов и гранитов окружения скважины

№ обр.	Объект, породы	[Sm], ppm	[Nd], ppm	¹⁴⁷ Sm/ ¹⁴⁴ Nd	143 Sm/ 144 Nd ± 2 σ	<i>T</i> (DM), млн. лет	$\epsilon_{Nd}(DM)$	<i>Т</i> , млн. лет
44369-2	КСГС, породы	4.7	22.56	0.12605	0.511695 ± 4	2334	0.77	2114
42167	дайковой фации	5.6	26.90	0.12582	0.511790 ± 9	2160	2.69	2114
31375		5.32	25.37	0.12683	0.511775 ± 3	2212	2.12	2114
43745	КСГС, метагаббро	2.67	14.17	0.11407	0.511583 ± 4	2222	2.77	2200
9608	КСГС, метапирок- сенит	6.69	32.92	0.12283	0.511724 ± 4	2200	0.7	1956
55-8	Амфиболиты окру- жения скважины	1.66	4.87	0.20591	0.512922 ± 38		2.15	2840
65-9		2.04	6.10	0.20272	0.512920 ± 6		3.29	2840
105-2		2.35	7.14	0.19883	0.512655 ± 16		-0.48	2825
1/99	Жильный гранит	28.44	227.376	0.075597	0.510822 ± 7	2442	-8.10	1762
2/99	Порфировидный гранит	11.03	87.302	0.076405	0.510849 ± 5	2426	-7.60	1772

Примечание. Измерения выполнены на масс-спектрометре "Finnigan MAT-262". Значение стандартов La Jolla ¹⁴³Nd/¹⁴⁴Nd = $= 0.511833 \pm 6$ (n = 11) и JiNd1 = 0.512078 ± 5 (n = 10). Вычисления T(DM) произведены в соответствии с моделью Де Паоло [5]. Модельный возраст для обр. 55-8 и 65-9 и 105-2 не рассчитан из-за повышенных значений ¹⁴⁷Sm/¹⁴⁴Nd, вследствие чего погрешности оценок T(DM) многократно возрастают. T – значения возраста по данным U–Pb- и Rb–Sr-методов, принятые при вычислении $\epsilon_{Nd}(DM)$.

лах мигматитов указывает на смешение древнего Рь (с возрастом 2.8 млрд. лет), развивавшегося при низких U/Pb- и высоких Th/U-отношениях в области нижней коры, с более молодым Рb (~2.2 млрд. лет) мантийного генезиса, эволюция которого проходила при более высоких U/Pb- и более низких Th/U-отношениях [7]. Образование гранитизированных пород предполагается при воздействии на гнейсы и амфиболиты верхней коры глубинных флюидов, отделявшихся при кристаллизации очагов мантийных расплавов, продуцировавших субщелочные вулканиты пирттиярвинской свиты с возрастом 2.3-2.2 млрд. лет. Потоки флюидов, направленные из кристаллизующейся магмы в кровлю очага, вызывали процессы гранитизации пород верхней коры, обусловленные осаждением из флюидов главных и второстепенных компонентов в результате падения их растворимости при уменьшении температуры и давления. Возраст гранитизированных пород оценивается в 2225-2150 млн. лет, и продолжительность процесса гранитизации – в 50–70 млн. лет [7].

Постскладчатые граниты. На глубине 9100–11 200 м в породах архейского комплекса КСГС располагаются многочисленные дайковые тела мелкозернистых гранитов мощностью от первых сантиметров до 10–15 м, по составу аналогичные порфировидным гранитам 4-й фазы лицко-арагубского комплекса, образующим цепь посторогенных интрузивных тел в восточном обрамлении Печенги. Конкордантный U–Pb-возраст цирконов из мелкозернистых гранитов с глубин 9100–9700 м установлен в 1765 ± 2 млн. лет [1], и

 $\epsilon_{Nd_{(1765)}}$ для этого образца составляет –11.0 [8]. Повышенные отрицательные значения ε_{Nd} (-7.6– 8.1) определены и для образцов гранитов с поверхности (см. табл. 1), что может свидетельствовать о существенном вкладе вещества коры в процесс образования расплавов. В то же время при изучении изотопного состава гелия установлено присутствие мантийной составляющей во флюидной фазе гранитоидов. Величина первичного отношения ⁴He/²He в составе гелия, захваченного при кристаллизации пород, оценивается в ~ $(3-5) \cdot 10^5$. Генетическая интерпретация первичного отношения ⁴He/³He проведена в рамках смешения гелия континентальной коры и мантийного гелия, за источник которого на основании результатов изучения глубинных ксенолитов принята обогащенная мантия региона. Так как величина отношения ⁴He/³He в обогащенной мантии и континентальной коре принята соответственно как $6.7 \cdot 10^4$ и 1 · 10⁸, величина ⁴He/³He = (3–5) · 10⁵ в гранитах могла быть получена при смешивании мантийного и корового компонентов в пропорции ~1: (4–7). Эти данные определяют мантийно-коровую природу захваченного флюида, в составе которого мантийный компонент составляет ~13-22% [9]. Мантийно-коровая модель происхождения флюида в рассматриваемых гранитоидах хорошо соотносится с петрологической моделью происхождения этих пород, основу которой составляет процесс анатектического плавления коры под воздействием расплавов мантийного генезиса [10].

Таким образом, для большинства протерозойских процессов, проявленных в породах фундамента Печенгского палеорифта, установлена связь с мантийными источниками. Количество протерозойского вещества в архейских породах основания скважины вместе с ремобилизованным материалом архейской коры оценивается как ≥30% (амфиболиты ≥12–15%, жильные граниты ~3%, гранитизированные породы ~15%).

Исследования проводились при финансовой поддержке РФФИ (гранты 99-05-65158, 00-05-73032, 01-05-64671, 02-05-64394) и INTAS 01-0314.

СПИСОК ЛИТЕРАТУРЫ

 Кольская сверхглубокая. Научные результаты и опыт исследования / Под ред. В.П. Орлова, Н.П. Лаверова. М.: МФ "Технонефтегаз", 1998.

- 2. *Condie K.C.* Archean Greenstone Belts. Amsterdam: Elsevier, 1981.
- Pearce J.A., Peate D.W. // Ann. Rev. Earth and Planet. Sci. 1995. V. 23. P. 251–285.
- Смолькин В.Ф., Митрофанов Ф.П., Аведисян А.А. и др. Магматизм, седиментогенез и геодинамика Печенгской палеорифтогенной структуры. Апатиты: Изд-во КНЦ РАН, 1995.
- 5. De Paolo D.J. // Nature. 1981. V. 291. P. 193-196.
- 6. *Faure G.* Principles of Isotope Geology. N. Y.: Wiley, 1986.
- 7. Ветрин В.Р., Гороховский Б.В. // Петрология. 2002. № 2. С. 210–224.
- Timmerman M.J., Daly J.S. // Precambr. Res. 1995. V. 72. P. 97–107.
- 9. Ветрин В.Р., Каменский И.Л., Икорский С.В. // Петрология. 2002. № 3. С. 270–282.
- Ветрин В.Р., Виноградов А.Н., Виноградова Г.В. В кн.: Интрузивные чарнокиты и порфировидные граниты Кольского полуострова. Апатиты: Издво КФАН СССР, 1975. С. 149–316.