= геохимия =

УДК 552.32.6 (470.21)

ВОЗРАСТ МАНТИЙНОГО МЕТАСОМАТОЗА ПРИ ОБРАЗОВАНИИ ПАЛЕОЗОЙСКОЙ КОЛЬСКОЙ ЩЕЛОЧНОЙ ПРОВИНЦИИ

© 2003 г. В. Р. Ветрин, И. Л. Каменский, С. В. Икорский

Представлено академиком Ф.П. Митрофановым 06.08.2002 г.

Поступило 20.08.2002 г.

В период палеозойской тектоно-магматической активизации (410-360 млн. лет назад) на Кольском полуострове были образованы гигантские нефелин-сиенитовые интрузии Хибин и Ловозера, а также большое количество массивов и дайковых тел щелочно-ультраосновных пород, кимберлитов и карбонатитов. Образованию расплавов предшествовали процессы домагматического метасоматоза, приводившие к обогащению деплетированного мантийного субстрата РЗЭ, Ba, K, Sr, Rb, Th, U, Nb, P и другими некогерентными элементами [1, 2]. Предполагается, что интервал между процессами мантийного метасоматоза и образованием расплавов был относительно кратковременным, что препятствовало накоплению радиогенных изотопов в мантийном субстрате, подвергавшемся в последующем процессам парциального плавления. Оценки времени проявления мантийного метасоматоза, сделанные в результате изучения Sm-Nd- и Rb-Sr-изотопных систем, приводятся в интервале от ≤10 до 450-750 млн. лет назад [1, 3].

Данные о минеральном составе пород верхней мантии Кольского региона получены при изучении ксенолитов шпинелевых перидотитов из дайки кимберлитов в районе г. Кандалакши. Размер ксенолитов колеблется в пределах 1–3 см, они имеют эллипсовидную, неправильную форму и местами составляют до 30–50% объема породы. Ксенолиты сложены гаммой пород от гарцбургитов и лерцолитов до пироксенсодержащих оливинитов. Минеральный состав ксенолитов – оливин, 50–95% (Fo^{*} 88–92%), клинопироксен, 0–15% (mg = 91–93%), энстатит, 5–20% (mg = 89–90%), низкотитанистый хромплеонаст, 1–5% (mg = 77–82).

Концентрации породообразующих и второстепенных элементов в шпинелевых перидотитах позволяют отнести их к деплетированным и сильно деплетированным породам, что подтверждается нахождением точек составов в соответствующих полях мантийных пород, из которых удалена легкоплавкая фракция [4].

Подтверждением важной роли амфиболов в образовании щелочных и карбонатитовых расплавов могут быть многочисленные находки обломков кристаллов и поликристаллических агрегатов роговой обманки в меланефелинитах, ультраосновных лампрофирах и карбонатитах из даек и трубок взрыва в северной части Кандалакшского залива Белого моря. Интерстициальные кристаллы амфибола и флогопита установлены в ксенолитах шпинелевых перидотитов, гранатовых гранулитов, глиммеритов и пироксенитов из ультраосновных лампрофиров и карбонатитов в трубке взрыва и дайковых телах, содержащих ксенокристаллы амфибола. Ксеногенный характер кристаллов амфибола подтверждается наличием вокруг них мелкозернистых закалочных ореолов, а также близостью составов кристаллов этого минерала, включенных в петрографически и петрохимически различные породы. Выполненные изотопные исследования Sr в амфиболе и вмещающем ультраосновном лампрофире из трубки взрыва на о.Еловом показали существенное различие в них величин начальных отношений ⁸⁷Sr/⁸⁶Sr (соответственно 0.70768 и 0.70445), что также может интерпретироваться как свидетельство неравновесности кристаллов по отношению к вмещающему лампрофиру.

Ксенокристаллы амфибола достигают в длину 2–3 см, плеохроируют в желтовато-коричневых тонах, и по составу соответствуют калиевым титанистым магнезиогастингситам (табл. 1). При сравнении с "мантийными" амфиболами различных генетических типов [5, 6] изученные амфиболы наиболее близки роговым обманкам из жил в нодулях мантийных лерцолитов (рис. 1), для которых большинством исследователей предполага-

^{*} Fo – форстерит, mg = 100 Mg/(Mg + Fe).

Геологический институт Кольского научного центра Российской Академии наук, Апатиты Мурманской области

ВОЗРАСТ МАНТИЙНОГО МЕТАСОМАТОЗА

Компонент	1	2	3	4	5	6	7	8	9
SiO ₂	40.16	40.76	40.02	44.5	43.02	41.6	37.08	41.57	39.32
TiO ₂	2.88	3.66	2.51	2.39	2.19	1.79	2.58	2.57	3.03
Al ₂ O ₃	11.94	11.57	11.72	9.04	9.92	9.42	12.99	12.28	11.44
Fe ₂ O ₃	4.25	3.1	3.36	2.22	2.78	6.58	2.10	4.21	5.8
FeO	6.35	6.65	7.02	5.9	5.63	10.88	7.85	7.27	6.81
MnO	0.09	0.1	0.1	0.1	0.09	0.29	0.1	0.11	0.12
MgO	14.74	14.9	15.14	16.78	16.51	10.38	14.05	14.39	13.72
CaO	12.45	10.92	11.82	11.45	12.64	9.94	12.09	10.79	12.33
Na ₂ O	2.59	2.88	3.19	3.33	3.35	4.32	2.41	3.11	2.84
K ₂ O	2.07	1.5	1.6	1.29	1.18	1.34	2.88	1.53	1.44
H_2O^-	0.05	0.31	0.3	0.3	0.17	0.29	0.41	0.47	0.13
H_2O^+	1.2	3.47	1.65	1.68	1.79	1.81	1.43	1.37	2.57
F	0.25	0.09	0.21	0.26	0.26	0.19	0.76	0.27	0.24
CO ₂	0.68	-	1.64	0.42	0.67	1.44	2.97	0.32	_
F~O	0.12	0.04	0.09	0.12	0.12	0.08	0.34	0.12	0.11
Сумма	99.58	99.89	100.19	99.54	100.08	100.12	99.36	100.14	99.68
U	<1	<1	0.24	0.35	0.29	0.41	1.5	0.63	<1
Th	8	5	6	5	5	6	13	7	13
Li	7	9	9	4	40	12	78	73	3
Nb	_	14	20	50	50	90	50	50	16
Zr	_	150	170	310	320	800	490	340	440
Sr	590	560	690	410	390	430	1100	400	530
Ba	_	1140	1040	230	170	570	800	310	_

Таблица 1. Концентрации главных (мас. %) и второстепенных (г/т) элементов в амфиболах

Примечание. 1 – монокристалл из меланефелинита; 2, 4 – монокристаллы из ультраосновных лампрофиров; 3, 5 – поликристаллические агрегаты зерен из у. о. лампрофиров; 6–9 – монокристаллы из карбонатитов. Прочерк – элемент не определялся.

ется метасоматический генезис. Точки интерстициальных амфиболов располагаются в полях составов соответствующих "мантийных" амфиболов и амфиболов из альпийских перидотитов.

Величина отношения ³Не/⁴Не в ксенокристаллах амфибола колеблется от $0.3 \cdot 10^{-6}$ до 2.66 \cdot $\cdot 10^{-6}$ (табл. 2). Последнее значение более чем на 2 порядка выше этого отношения в породах континентальной коры (~1 · 10⁻⁸) и свидетельствует о вкладе мантийной компоненты в состав захваченного флюида. Принимая оценку величины отношения ³He/⁴He в верхней мантии с возрастом 370 млн. лет как (1.0-1.3) · 10⁻⁵ [3], для амфибола с максимальным отношением ${}^{3}\text{He}/{}^{4}\text{He}$ содержание мантийного компонента в захваченном флюиде может быть оценено не менее чем в 20-27%. Вывод о присутствии мантийной составляющей в захваченном флюиде следует и из превышения измеренных (изм) над вычисленными (выч) концен-³He в большинстве изученных трациями образцов. Как следует из табл. 1 и 2, минимальными значениями отношения ³He_{изм}/³He_{выч} харак-

ДОКЛАДЫ АКАДЕМИИ НАУК том 388 № 6 2003

теризуются лишь образцы амфибола с повышенными концентрациями лития, за счет которого в результате ядерных реакций с тепловыми нейтронами происходит образование радиогенного ³He* [8].

Оценка возраста мантийного метасоматоза проводилась нами по результатам K-Ar- и ⁴⁰Ar-³⁹Аг-датирования амфибола из ультраосновных лампрофиров трубки взрыва на о. Еловом, имеющих возраст 368 ± 15 млн. лет (К-Аг-метод [2]), и из дайки феррокарбонатита на о. Телячьем с возрастом 380 ± 7 млн. лет (U-Pb-метод [9]). Возраст ксенокристаллов амфибола из ультраосновных лампрофиров определен К-Аг-методом как 395 ± \pm 15 и 412 \pm 16 млн. лет, и возраст интерстициального амфибола (Аг-Аг-метод) – в 393.1 ± 0.8 млн. лет. Для ксенокристалла амфибола из феррокарбонатитовой дайки К-Аг-методом установлен возраст 411 ± 17 млн. лет, и Ar-Ar-методом возраст интерстициальных амфиболов определен в 392.1 ± 1 и 395.6 ± 4.4 млн. лет (рис. 2).

Рис. 1. Диаграмма состава амфиболов в координатах Na(Na + Ca)–Fe²⁺/(Fe²⁺ + Mg). 1-3 – ксенокристаллы амфибола: 1 – из ультраосновных лампрофиров, 2 – из карбонатитов, 3 – из меланефелинита; 4, 5 – интерстициальные амфиболы: 4 – в ксенолитах амфибол-рутил-флогопит-гранатовых пород, 5 – в ксенолитах иппиелевых перидотитов и гранатовых гранулитов. Пунктиром обозначены поля составов "мантийных" амфиболов (поле V): 1 – мегакристаллы, 2 – из жил, 3 – пойкилитовые, 4 – интерстициальные, 5 – из амьленийских перидотитов [5, 6]. Поле VI – составы амфиболов из щелочно-ультраосновных пород.

На диаграмме в координатах ⁴⁰Ar/³⁶Ar-K/³⁶Ar точки всех изученных ксенокристаллов амфибола располагаются вдоль эволюционной линии для возраста в 370 млн. лет (рис. 3). Это может свидетельствовать об отсутствии как существенных потерь ⁴⁰Ar, так и захваченного избыточного радиогенного изотопа этого элемента. Не установлено существенной перестройки изотопных систем и при ⁴⁰Ar-³⁹Ar-датировании интерстициальных амфиболов, что следует из однотипных возрастных спектров этого минерала, конфигурация которых определялась удалением из амфибола преобладающего количества ³⁹Ar (80–90%) в узком температурном интервале ~400°С [2]. Приведенные данные показывают, что изученные амфиболы сохранили свои первичные изотопные характеристики в процессе транспортировки ксенокристов к поверхности расплавами ультраосновного и карбонатитового состава.

Сходство составов изученных амфиболов с мантийными амфиболами, образующими интерстициальные кристаллы и жилы в породах мантии [5, 6], позволяет предполагать метасоматическую переработку мантийного субстрата флюидами или расплавами малых степеней плавления.

Рис. 2. Диаграмма возрастов амфиболов и вмещающих ксенокристаллы лампрофира и карбонатита. 2, 3, 6 – номера образцов соответствуют номерам в табл. 1, 2; обр. КР11, КР15, КР17 – из [2]. *а* – карбонатит; *б* – лампрофир; *в*, *г* – амфибол из карбонатита (*в*) и из лампрофира (*г*). Вертикальными линиями показаны погрешности определения возраста.

Рис. 3. Диаграмма в координатах 40 Ar/ 36 Ar-K/ 36 Ar. Эволюционная линия является изохроной для возраста 370 млн. лет при атмосферном начальном отношении 40 Ar/ 36 Ar (296). Измерения изотопного состава выполнены на масс-спектрометре МИ-1201 по методике [3]. 1-9 – номера образцов (см. табл. 1).

Метасоматическое преобразование мантийных пород, приводящее к образованию новых минеральных фаз (модальный метасоматоз) или вызывающее увеличение содержаний некогерентных элементов (криптовый метасоматоз), выявлено при изучении глубинных ксенолитов целого ряда районов Земли [10–12]. В ксенолитах метасоматизированных, и в том числе амфиболизированных, пород установлены стекла щелочного состава [13, 14], что показывает возможность генерации обогащенных щелочами расплавов в

ДОКЛАДЫ АКАДЕМИИ НАУК том 388 № 6 2003

ВОЗРАСТ МАНТИЙНОГО МЕТАСОМАТОЗА

№ п. п.	№ обр.	⁴ Не, 10 ⁻⁶ см ³ /г	⁴⁰ Аг, 10 ⁻⁶ см ³ /г	³ He/ ⁴ He, ×10 ⁻⁶	⁴⁰ Ar/ ³⁶ Ar	$\frac{{}^{3}\text{He}_{_{\text{H3M}}}}{{}^{3}\text{He}_{_{\text{BbIY}}}}$	К–Аг-воз- раст, млн. лет
1	1	60	31	0.72	9240	64.5	
	1–1	26.3	5	0.82	1548		
2	2	41	25	0.81	2800	37.3	412 ± 16
	2–1	4	1.5	1.15	760		
3	3	44	25	0.75	3400	36.6	395 ± 15
4	4	36	15	0.95	4780	343	
5	5	42	18	0.95	4900	41	
6	6	12	23	0.3	2230	11.1	411 ± 17
7	7	34	38	0.5	6990	1.4	
8	8	17	18	0.33	3400	0.4	
9	9	18	26	1.68	2924	307	
	9–1	4.3	1.7	2.66	924		

Таблица 2. Результаты изотопного анализа Не и Аг в амфиболах

Примечание. Экстракция газов из амфиболов произведена методами дробления (курсив) и плавления по методикам [6]. Номера образцов соответствуют образцам в табл. 1.

результате плавления метасоматизированных мантийных пород. На Кольском полуострове эти процессы были вызваны подъемом девонского плюма, обусловившего интенсивную переработку мантийных пород флюидами мантийного генезиса [3].

Изученные амфиболы являются концентраторами целого ряда породообразующих и редких элементов, характерных для щелочных пород (Ti, Th, U, Nb, Zr, Sr, Ba, см. табл.1), что свидетельствует о процессах модального и криптового метасоматоза в деплетированных породах верхней мантии региона, происходивших 392–412 млн. лет назад. Эти данные определяют на 20–40 млн. лет более раннее время проявления мантийного метасоматоза по отношению к времени кристаллизации (380–360 млн. лет назад) ультраосновных и карбонатитовых расплавов, транспортировавших ксенокристаллы амфибола к поверхности.

Исследования проводились при финансовой поддержке РФФИ (гранты 99–05–65158 и 02–05–64394).

СПИСОК ЛИТЕРАТУРЫ

1. Kramm U., Kogarko L.N. // Lithos. 1994. V. 32. P. 225– 242.

- Beard A.D., Downes H., Vetrin V. et al. // Lithos. 1996.
 V. 39. P. 93–119.
- 3. *Tolstikhin I.N., Kamensky I.L., Marty B. et al.* // Geochim. et cosmochim. acta. 2002. V. 66. № 5. P. 881– 901.
- Morgan J. // J. Geophys. Res. 1986. V. 91. № B12. P. 12375–12378.
- 5. Best M.G. // J. Geophys. Res. 1974. V. 79. № 14. P. 2107–2113.
- Dawson J.B., Smith T.V. // Miner. Mag. 1982. V. 45. P. 35–46.
- 7. Икорский С.В., Каменский И.Л. XV симп. по геохимии изотопов. Тез. докл. М., 1998. С.115.
- Morrison P., Pine J. // Ann. N.Y. Acad. Sci. 1955. V. 62. P. 69–92.
- 9. Claesson S., Vetrin V., Bayanova T., Downes H. // Lithos. 2000. V. 51. P. 95–108.
- 10. *Ionov D.A., Dupuy C., O'Reilly Y.O. et al.* // Earth and Planet. Sci. Lett. 1993. V. 119. P. 283–297.
- 11. *Stolz A.J., Davies G.R.* // Geochim. et cosmochim. acta. 1989. V. 53. № 3. P. 649–660.
- 12. Konzett J., Sweeney R.J., Thompson A.B., Ulmer P. // J. Petrol. 1995. V. 38. № 5. P. 537–568.
- Francis D. // Contribs Mineral. and Petrol. 1991. V. 108. P. 175–180.
- 14. Edgar A.D., Lloid F.E., Forsyth D.M., Barnett R.L. // Contribs Mineral. and Petrol. 1989. V. 103. P. 277–286.