— ГЕОХИМИЯ —

УДК 550.4:552.5

РАДИОАКТИВНЫЕ И РЕДКОЗЕМЕЛЬНЫЕ ЭЛЕМЕНТЫ В МЕТАПЕЛИТАХ КАК ИНДИКАТОРЫ СОСТАВА И ЭВОЛЮЦИИ ДОКЕМБРИЙСКОЙ КОНТИНЕНТАЛЬНОЙ КОРЫ ЮГО-ЗАПАДНОЙ ОКРАИНЫ СИБИРСКОГО КРАТОНА

© 2003 г. А. Д. Ножкин, О. М. Туркина, В. А. Бобров

Представлено академиком Н.Л. Добрецовым 22.12.2002 г.

Поступило 20.01.2003 г.

Относительно немобильные редкие элементы, включающие РЗЭ, Th и Sc, не фракционируются в процессах седиментации и диагенеза, и тонкообломочные породы унаследуют их концентрации от исходных пород в области эрозии [1-3]. Гомогенизирующий эффект осадочного процесса приводит к смешению продуктов выветривания при формировании глинистой фракции осадков, что обусловливает почти постоянный спектр распределения РЗЭ и устойчивый уровень концентраций других названных выше компонентов. Таким образом, типичные глинистые сланцы в отношении РЗЭ, а также Th и Sc являются индикаторами состава верхней континентальной коры, а геохимическая летопись осадочных пород позволяет проследить ее эволюцию [1, 3].

Цель настоящей работы – выявление особенностей распределения радиоактивных элементов (РАЭ) – U, Th, K, а также РЗЭ и Sc в метапелитах докембрийского разреза юго-западной окраины Сибирского кратона и на их основе анализ эволюции верхней континентальной коры в докембрии. Для оценки уровня содержания и характера распределения РАЭ в глинистых сланцах (метапелитах) проведено широкомасштабное опробование многочисленных разрезов разных стратифицированных уровней докембрийской верхней континентальной коры юго-западной окраины Сибирского кратона (Енисейский кряж, Присаянье). Исходя из устойчивой корреляции между Th и легкими редкоземельными элементами (ЛРЗЭ), особенно La и Ce, в осадочном процессе [1], использование наиболее представительных по содержанию РАЭ проб для анализа на РЗЭ позволило сделать корректные оценки и редкоземельного состава метапелитов.

Объединенный институт геологии, геофизики и минералогии Сибирского отделения Российской Академии наук, Новосибирск

Строение разреза и геохимичесхарактеристика терригенных кая пород. Наиболее полный и представительный разрез докембрия представлен на Енисейском кряже. Древнейшим здесь является канский гранулито-гнейсовый комплекс, обнажающийся в его южном Ангаро-Канском блоке, с возрастом протолита 2.6-2.7 млрд. лет и испытавший гранулитовый метаморфизм ~1.9 млрд. лет назад [4–5]. Средний состав канского комплекса отвечает гранодиориту [5] и близок к среднему составу верхней континентальной коры [1]. Отличие состоит в том, что в сравнении с верхней корой гранулиты вследствие метаморфизма резко обеднены U и в меньшей степени Rb, а также изначально были обогащены инертными при метаморфизме несовместимыми элементами - Th, РЗЭ, Zr, Hf, а также Ва и Рb [5] (табл. 1). Последнее служит показателем повышенной степени зрелости геохимической дифференцированности вещества верхнеархейской континентальной коры региона. Содержание Th заметно выше, а К близко к оценкам, принятым [6] для "гранитного" слоя коры. Геохимические особенности канского комплекса наиболее отчетливо проявлены в ортогнейсах дацит-риодацитового состава (Th 17.8 ± ± 1.6 г/т; n = 160), преобладающих в верхней половине разреза, а также в высокоглиноземистых гнейсах - метапелитах, существенно обогащенных даже в сравнении со средним составом постархейского сланца (PAAS) Th и ЛРЗЭ, но обедненных U и вследствие этого характеризующихся высокими отношениями Th/U, $(La/Yb)_n$ и более низкими La/Th, Th/Sc и La/Sc (табл. 1). Характерным для них является и наличие отрицательной Еи-аномалии (рис. 1), свидетельствующей о вовлечении в осадочный процесс продуктов эрозии богатых калием кислых пород, обедненных европием [1]. Судя по петрогеохимическим параметрам породных ассоциаций, архейская кора такого типа распространена и в пределах Присаянского краевого выступа. Так, хайламинский гнейсовый

Bo3pacr	Серия, свита	п	$\begin{array}{c} \mathbf{U}\\ (\bar{x} \pm \Delta x) \end{array}$	$ \begin{array}{c} \text{Th} \\ (\bar{x} \pm \Delta x) \end{array} $	$\mathbf{K} \\ (\bar{x} \pm \Delta x)$	Th/U	n	La	Ce	Eu	Yb	Sc	$(La/Yb)_n$	Eu/Eu*	La/Th	Th/Sc	La/Sc
PR ₂	Тасеевская	15	5.4 ± 0.2	14.5 ± 1.5	3.5 ± 0.2	3	-	-	-	-	_	_		-	-	-	-
	Чингасанская	58	4.0 ± 0.4	18 ± 2.0	3.3 ± 0.2	4.8	5	63.4	121	1.9	3.2	17	13	0.6	3.5	1.1	3.7
	Тунгусикская	288	3.6 ± 0.3	16.2 ± 0.9	3.1 ± 0.2	4.4	4	46	88	1.7	4.2	20	7.4	0.72	2.8	0.8	2.3
	Сухопитская	815	3.1 ± 0.2	15.6 ± 0.8	3.1 ± 0.2	5.3	7	31	63	1.2	3.5	19	6	0.65	2.0	0.9	1.6
PR ₁	Тейская	382	3.3 ± 0.3	16.9 ± 0.7	3.1 ± 0.2	5.4	5	58	108	1.5	3.1	17	12	0.55	3.4	1.0	3.4
	Пенченгинская свита	160	3.2 ± 0.3	15.6 ± 0.7	2.9 ± 0.2	5.1	3	42	83	1.5	2.9	17	9.4	0.66	2.7	0.9	2.5
	Хребта Карпин- ского свита	216	3.4 ± 0.2	18.1 ± 0.8	3.3 ± 0.2	5.6	2	81	145	1.5	3.2	16	17	0.43	4.5	1.1	5.0
	Гаревская	65	2.8 ± 0.3	17.6 ± 0.7	3.3 ± 0.2	6.5	-	-	_	-	-	_	-	_	-	_	-
	Енисейская	146	2.6 ± 0.3	17.9 ± 0.9	3.0 ± 0.2	7.0	4	47	99	1.2	3.1	18	11	0.47	2.7	1.0	2.7
AR ₂	Канская (метапелиты)	107	1.7 ± 0.15	21.3 ± 1.7	3.0 ± 0.2	14	5	55	102	1.8	2.6	26	14	0.66	2.6	0.8	2.1
	Канский комплекс (средний состав)	725	1.2 ± 0.3	15.0 ± 1.3	2.6 ± 0.2	14	50	45	78	1.6	3.0	21	11	0.8	3.0	0.7	2.1
	Сланец постар- хейский (PAAS)		3.1	14.6	3.1			38	80	1.1	2.8	16	9.2	0.66	2.8	0.9	2.4
		-		-		-		-					-		-		

Таблица 1. Содержание (г/т) радиоактивных, редкоземельных элементов и скандия в докембрийских метапелитах окраинно-континентальных толщ Енисейского кряжа

комплекс Бирюсинской глыбы по содержанию РАЭ (U 1.7 г/т; Th 16.5 г/т; K 2.6%, n = 72) соответствует таковым канского комплекса (см. табл. 1).

Раннепротерозойские стратифицированные отложения перекрывают архейское гранулитовое (Южно-Енисейский кряж) или гранулитогнейсовое (Присаянье) основания. К наиболее ранним существенно метаосадочным комплексам в Енисейском кряже авторы относят отложения енисейской и гаревской, а в Присаянье нижние горизонты неройской (алхадырская свита) и сублукской серий, к более поздним - соответственно породы тейской серии и туманшетской свиты [7]. Раннепротерозойский возраст (1880 ± 20 млн. лет) енисейской серии подтвержден U-Pb цирконометрией [4], по составу и радиогеохимическим признакам метапелитов с ней коррелируется гаревская серия Заангарья [7]. Верхний возрастной рубеж неройской и сублукской серий определяется секущими интрузиями редкометальных гранитов с U-Pb- и Pb-Pb-возрастом 1.77-1.75 млрд. лет [8]. Терригенные метаосадки и особенно метапелиты всех толщ характеризуются обогащенностью РАЭ и РЗЭ [7], сопоставимой с канским комплексом (табл.1), что свидетельствует о геохимической зрелости эродируемых блоков коры, представленных породами архейского гранито-гнейсового основания. Раннепротерозойским терригенным толщам присущи все признаки окраинно-континентальных отложений, формирование которых происходило в энсиалических бассейнах рифтового типа. Они являются составным элементом Ангарского складчатого пояса, вулканогенные комплексы которого по петролого-геохимическим параметрам сопоставимы с вулканогенными поясами андского типа [7]. Маркирующие окраинно-континентальную позицию пояса гранитоидные интрузии с возрастом 1870–1840 и ~1750 млн. лет отвечают постколлизионному и анорогенному этапам его развития [9]. Сформированные в пределах блоков зрелой континентальной коры гранитоиды характеризуются повышенной концентрацией РАЭ, легких лантаноидов (табл. 2) и ряда других некогерентных редких элементов.

Позднепротерозойскому этапу развития Енисейского кряжа предшествовала эпоха континентального режима с пенепленизацией и формированием кор выветривания. Рубеж раннего-позднего докембрия соответствовал субплатформенной стадии, когда в мелководных бассейнах накапливались высокоглиноземистые терригенные и глинисто-карбонатные отложения тейской и туманшетской серий.

Разрез позднепротерозойских толщ мощностью не менее 15 км наиболее широко и полно представлен в Енисейском кряже. Характерная его черта – это отчетливо выраженная цикличность, которая проявляется в закономерном чередовании отдельных литологических комплексов. Крупные циклы – формационные комплексы по существу соответствуют сериям – тейской, сухопитской, тунгусикской, чингасанской, тасеевской.

ДОКЛАДЫ АКАДЕМИИ НАУК том 390 № 6 2003

Циклы второго порядка соответствуют одномудвум литологическим комплексам – ассоциациям пород определенной фациальной обстановки осадконакопления. Цикличность отчетливо подчеркивается распределением РАЭ, концентрация которых, как правило, закономерно возрастает от нижнего алевроглинисто-псаммитового или карбонатно-алевроглинисто-псаммитового комплекса к глинистому, а затем падает к верхнему глинисто-карбонатному [10, 11]. РАЭ обычно имеют строго упорядоченное распределение в отложениях всех фациальных обстановок: их содержание увеличивается от грубообломочных пород к алевролитам и аргиллитам – глинистым сланцам [12].

В позднепротерозойском разрезе метапелитам также присущи повышенные концентрации РАЭ, особенно Th и K, в сравнении с PAAS (табл. 1). Ураном (до 10 г/т) предпочтительно обогащены углеродистые, а торием (до 19–22 г/т) – высокоглиноземистые метапелиты [10–13]. Наряду с U углеродистые сланцы в сравнении с ассоциирующими метапелитами концентрируют Li, Rb, Cu, Zn и V, а глиноземистые – элементы гидролизаты – Zr, Hf, PЗЭ, а также Li, Ba, Sr, Mn и Cr.

Обсуждение результатов. Главной особенностью метапелитов всего докембрийского разреза юго-западной части Сибирского кратона является их высокая ториеносность, превышающая среднее значение в PAAS. Это свидетельствует, во-первых, о размыве зрелого кристаллического основания, подобного Ангаро-Канскому и Бирюсинскому архейским выступам фундамента кратона, а во-вторых, последующем рециклировании терригенных осадков. Характерная черта эволюции состава метапелитов – рост концентраций U вверх по разрезу и относительное снижение Th и Th/U-отношения от архея и до конца позднего докембрия (табл. 1). Общее

Рис. 1. Редкоземельные спектры метапелитов. *1* – канская, *2* – енисейская, *3* – тейская (свита хр. Карпинского), *4* – сухопитская, *5* – тунгусикская, *6* – чингасанская серии. Построено по среднему составу.

снижение Th в разрезе противоположно тенденции, проявленной при доминирующем рециклировании осадков [3], следовательно, оно отражает некоторое изменение состава эродируемых блоков верхней коры во времени и все большее вовлечение в осадочный процесс фемического вещества. Рост концентраций U обусловлен пони-

Гранитоиды, комплекс, возраст	n	$\begin{array}{c} U\\ (\bar{x} \pm \Delta x) \end{array}$	$ \begin{array}{c} \text{Th} \\ (\bar{x} \pm \Delta x) \end{array} $	$\begin{array}{c} K \\ (\bar{x} \pm \Delta x) \end{array}$	Th/U	п	La	Ce	Eu	Yb	(La/Yb) _n	Eu/Eu*
Позднепротерозойские (тейский комплекс, T _{U-Pb} = 866 ± 16 млн. лет)												
Среднее по породам комплекса	680	4.3 ± 0.3	30 ± 1.1	4.2 ± 0.2	7.4	9	43	84	0.76	5.3	5.5	0.31
Микроклиновые порфи- робластические гранитои- ды и гнейсограниты	182	5.4 ± 0.4	40.6 ± 1.2	4.5 ± 0.1	8.0	4	45	91	0.55	6	5.2	0.23
Раннепроте	роз	ойские	(тарак	ский ко	омпл	екс,	T _{U-Pb}	= 183	7 ± 3	млн. л	іет)	I
Среднее по породам комплекса	210	3.4 ± 0.3	40.4 ± 2.5	3.9 ± 0.3	12	9	65	131	0.73	3.2	14	0.21
Субщелочные микроклино- вые (радиогеохимически аномальные) граниты	40	6.2 ± 0.9	91 ± 5	5.1 ± 0.3	15	5	86	173	0.67	3.2	18	0.14
		1										

Таблица 2. Содержание (г/т) радиоактивных и редкоземельных элементов в протерозойских гранитоидах Енисейского кряжа

ДОКЛАДЫ АКАДЕМИИ НАУК том 390 № 6 2003

жением метаморфизма алеврито-глинистых толщ и возрастающей долей в них миграционноспособных (легкоподвижных) и сорбционных форм U, связанных с глинистым и органическим веществом.

Для метапелитов всех стратиграфических уровней региона характерен однотипный, подобный таковому для PAAS, спектр распределения РЗЭ с обогащением легкими РЗЭ и отчетливой Еи-аномалией (рис. 1). Последняя, как известно [1-3], наиболее характерна для постархейских глинистых сланцев и обусловлена присутствием в детритовом материале продуктов эрозии натрийкалиевых гранитоидов, образование которых сопровождалось деплетированием Eu²⁺ за счет реститового плагиоклаза. Содержание РЗЭ в окраинно-континентальных метапелитах докембрийского разреза Енисейского кряжа заметно выше, чем в РААЅ (табл. 1, рис. 1), что в целом, как и в случае Th, может быть унаследовано от зрелого гранулито-гнейсового кристаллического основания.

Выше уже указывалось на возможность использования данных о содержании Th, РЗЭ и Sc в тонкообломочных осадочных породах в качестве индикаторов химического состава и характера эволюции верхней континентальной коры. В рассматриваемом случае вполне обоснованно можно считать, что средний химический состав канского гранулито-гнейсового комплекса соответствует среднему составу позднеархейской верхней коры рассматриваемого континентального блока [5]. Различия в содержании Th, РЗЭ и Sc и величинах $(La/Yb)_n$ - и La/Th-отношений между канским комплексом и вышезалегающими раннепротерозойскими метапелитами енисейской серии составляют около 5-20%. Они свидетельствуют о представительности оценок состава верхней коры по среднему составу метапелитов [1]. Прямая корреляция в метапелитах изученного разреза несовместимых элементов – La и Th и их обратная связь с совместимым Sc предопределяет некоторые вариации La/Th-, Th/Sc- и La/Sc-отношений (табл. 1), но они весьма незначительны и близки к таковым в PAAS. Это служит показателем долговременного относительного постоянства состава и степени химической дифференцированности верхнекорового вещества.

Судя по статистически обоснованным оценкам среднего содержания U, Th и K в метапелитах, а также концентрациям РЗЭ и Sc в представительных их пробах (табл. 1) на фоне долговременной устойчивости редкоэлементных характеристик, фиксируются ряд рубежей резкого изменения состава. Существенным фактором эволюции состава метапелитов является увеличение вклада гранитоидного материала в области эрозии. Формирование ранне- и позднепротерозойских натрийкалиевых гранитоидов (таракский, тейский комплексы), отличающихся максимальной концентрацией РАЭ, особенно Th, легких лантаноидов, высоким Th/U-отношением (7-15) и резко выраженной европиевой аномалией (Eu/Eu* = 0.14-0.21 и 0.23-0.31) (табл. 2), предшествовало накоплению окраинно-континентальных терригенных толщ тейской (свита хр. Карпинского) и чингасанской серий. Их базальные горизонты содержат явные продукты разрушения гранитов, а в глиноземистых метапелитах (свиты хр. Карпинского, лопатинская) происходит заметный рост содержания РАЭ. Метапелиты вышележащих толщ отчетливо обогащены в сравнении с метапелитами других уровней U, Th, K, легкими РЗЭ, обеднены Sc и отличаются большей величиной Еи-минимума и максимальными отношениями $(La/Yb)_n$ (13–17), La/Th (3.5–4.5), La/Sc (3.7–5.0) (табл. 1, рис. 1). Однако, судя по тому, что в метапелитах позднепротерозойских серий (пенченгинская свита, сухопитская, тунгусикская серии), залегающих выше свиты хр. Карпинского, произошло заметное снижение содержания РАЭ и легких лантаноидов, изменения в химическом составе верхней континентальной коры носили относительно кратковременный характер.

Отмеченная выше общая тенденция к снижению содержания Th во времени, очевидно, отражает вовлечение в область эрозии ювенильной мафической коры. Показательными в этом отношении являются тонкообломочные отложения сухопитской серии, представленные гемипелагитами и дистальными турбидитами, сформированными в более крупном глубоководном бассейне – в перикратонных прогибах и на континентальном склоне. В них содержание легких РЗЭ заметно ниже в сравнении с метапелитами других серий и PAAS, а тяжелых РЗЭ и Sc – выше (табл. 1, рис. 1). Некоторый рост содержания тяжелых РЗЭ и Sc отмечается также в метапелитах тунгусикской серии. Формирование осадков в том и другом случаях сопровождалось проявлением основного вулканизма, соответственно метапелитам этих двух серий присущи пониженные (6-7.4) (La/Yb)_nотношения в сравнении с породами других серий (11–17). Это может быть следствием как более глубоководных условий седиментации, где глинистое вещество обычно более обогащено тяжелыми РЗЭ [2], так и увеличением примеси базитового вещества в осадках. Последняя интерпретация подтверждается данными по изотопии Sr в карбонатах Туруханского района, коррелируемых с разрезами Енисейского кряжа. В них фиксируется уменьшение ⁸⁷Sr/⁸⁶Sr в начале среднего и в первой половине позднего рифея, что свидетельствует об эксгумации в области эрозии преимущественно ювенильных коровых пород [14] и увеличении гидротермального потока Sr при возрастании активности срединно-океанических хребтов. Указанный период соответствует эпо-

ДОКЛАДЫ АКАДЕМИИ НАУК том 390 № 6 2003

хам существования Гренвильского и пост-Гренвильского океанов и суперконтинента Родиния. Установленное изменение состава метапелитов может являться следствием окраинного положения Енисейского кряжа в структуре суперконтинента.

Работа выполнена при финансовой поддержке РФФИ (проект 01–05–65160).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Тейлор С.Р., Мак-Леннан С.М.* Континентальная кора: ее состав и эволюция. М.: Мир, 1988. 379 с.
- 2. Балашов Ю.А. Геохимия редкоземельных элементов. М.: Недра, 1976. 266 с.
- 3. Cox R., Lowe D.R. // J. Sedimen. Res. 1995. V. A65. № 1. P. 1–12.
- Бибикова Е.В., Грачева Т.В., Макаров В.А., Ножкин А.Д. // Стратиграфия. Геол. корреляция. 1993. Т. 1. № 1. С. 35–40.
- 5. *Ножкин А.Д., Туркина О.М.* Геохимия гранулитов // Тр. ОИГГМ СО РАН. 1993. В. 817. 223 с.
- Ронов А.Б., Ярошевский А.А. В кн.: Тектоносфера Земли. М.: Наука, 1978. С. 379–402.

- Ножкин А.Д. // Геология и геофизика. 1999. Т. 40. № 11. С. 1524–1544.
- Брынцев В.В. Докембрийские гранитоиды Северо-Западного Присаянья. Новосибирск: Наука, 1994. 184 с.
- 9. *Ножкин А.Д., Туркина О.М.* В кн.: Геология, геохимия и геофизика на рубеже XX и XXI веков. Материалы конф. Иркутск, 2002. С. 362–364.
- Ножкин А.Д., Кренделев Ф.П., Миронов А.Г. В кн.: Радиоактивные элементы в горных породах. Новосибирск: Наука, 1975. С. 183–189.
- Злобин В.А., Куликов А.А., Бобров В.А. В кн.: Радиоактивные элементы в горных породах. Новосибирск: Наука, 1975. С. 198–203.
- Ножкин А.Д., Гавриленко В.А. Золото и радиоактивные элементы в полифациальных отложениях верхнего докембрия. Новосибирск: Наука, 1976. 198 с.
- Nozhkin A.D. In: Intern. symp. Black Shale Basins and Related Mineral Deposits. Novosibirsk, 1991. V. 2. P. 233–234.
- Семихатов М.А., Кузнецов А.Б., Горохов И.М. и др. // Стратиграфия. Геолог. корреляция. 2002. Т. 10. № 1. С. 3–46.