
High-pressure Partial Melting of Mafic
Lithologies in the Mantle

T. KOGISO1*, M. M. HIRSCHMANN2 AND M. PERTERMANN3,4

1INSTITUTE FOR RESEARCH ON EARTH EVOLUTION (IFREE), JAPAN AGENCY FOR MARINE–EARTH SCIENCE AND

TECHNOLOGY ( JAMSTEC), YOKOSUKA 237-0061, JAPAN

2DEPARTMENT OF GEOLOGY AND GEOPHYSICS, UNIVERSITY OF MINNESOTA, MINNEAPOLIS, MN 55455, USA
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We review experimental phase equilibria associated with partial

melting of mafic lithologies ( pyroxenites) at high pressures to reveal

systematic relationships between bulk compositions of pyroxenite and

their melting relations. An important aspect of pyroxenite phase

equilibria is the existence of the garnet–pyroxene thermal divide,

defined by the enstatite–Ca-Tschermaks pyroxene–diopside plane in

CaO–MgO–Al2O3–SiO2 projections. This divide appears at pres-

sures above �2GPa in the natural system where garnet and

pyroxenes are the principal residual phases in pyroxenites. Bulk

compositions that reside on either side of the divide have distinct

phase assemblages from subsolidus to liquidus and produce distinct

types of partial melt ranging from strongly nepheline-normative to

quartz-normative compositions. Solidus and liquidus locations are

little affected by the location of natural pyroxenite compositions

relative to the thermal divide and are instead controlled chiefly by

bulk alkali contents and Mg-numbers. Changes in phase volumes of

residual minerals also influence partial melt compositions. If olivine

is absent during partial melting, expansion of the phase volume of

garnet relative to clinopyroxene with increasing pressure produces

liquids with high Ca/Al and low MgO compared with garnet

peridotite-derived partial melts.

KEYWORDS: experimental petrology; mantle heterogeneity; partial melting;

phase equilibrium; pyroxenite

INTRODUCTION

Partial melting of mantle material in the Earth’s interior
is one of the essential processes responsible for the
thermal and chemical evolution of the Earth. Partial

melting of peridotite, the predominant lithology in the
upper mantle (e.g. Ringwood, 1975; McDonough & Sun,
1995), is thought to be responsible for the genesis of
various types of mafic magmas, such as mid-ocean ridge
basalts (MORB), ocean island basalts (OIB), and volcanic
arc basalts (e.g. McKenzie & Bickle, 1988). During recent
decades, there have been a number of experimental
studies on partial melting of peridotite (e.g. Jaques &
Green, 1980; Takahashi & Kushiro, 1983; Falloon &
Green, 1988; Hirose & Kushiro, 1993; Baker & Stolper,
1994; Zhang & Herzberg, 1994; Walter, 1998). These
experiments provide the foundation for quantitative
understanding of the melting behavior of a homogeneous
mantle (e.g. Klein & Langmuir, 1987; McKenzie &
Bickle, 1988).
On the other hand, several lines of evidence indicate

that the mantle contains a significant fraction of mafic
lithologies (e.g. Schulze, 1989; Hirschmann & Stolper,
1996), which are olivine-poor relative to typical perido-
tite, and these may play an important role in basalt
generation. Pyroxenite is a minor but ubiquitous lithol-
ogy in virtually all natural mantle samples, including
xenoliths and tectonically exposed mantle sections
(Hirschmann & Stolper, 1996). On a larger scale, huge
volumes of mafic rock produced by the continuing differ-
entiation of the Earth have been returned to the mantle
by subduction and other processes, and some of this
material is believed to contribute to modern oceanic
magmatism (e.g. Chase, 1981; Hofmann & White,
1982; Hofmann, 1997; Helffrich & Wood, 2001). A link
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between recycled components and OIB geochemistry is
well established, and variations in Sr–Nd–Pb–Os isotope
compositions of OIB and their correlations with major
elements suggest that at least in some cases the recycled
geochemical signatures are delivered to basalt source
regions by mafic lithological domains (e.g. Hauri, 1996;
Kogiso et al., 1997). Heterogeneity in major elements may
also be attributed partly to partial melting of pyroxenitic
rocks in the MORB source (le Roux et al., 2002). On the
other hand, the significance of pyroxenitic rocks in basalt
source regions remains controversial and geochemical
evidence has been used to argue both for and against an
essential role for pyroxenite in various localities (Stracke
et al., 1999; Rudnick et al., 2000; Salters & Dick, 2002;
Michael et al., 2003; Niu & O’Hara, 2003).
The study of pyroxenite lithologies in basalt source

regions has two goals: allowing linkages between the
compositions of oceanic basalts and the origin of mantle
heterogeneities, and understanding the influence of pyr-
oxenite on the chemistry and dynamics of melt genera-
tion. Addressing both questions requires experimental
determination of melting relations of pyroxenite of
appropriate compositions. However, as detailed in the
following section, the range of pyroxenite compositions
that could be present in basalt source regions is rather
large. In this study, we review experimental phase equili-
bria associated with pyroxenite partial melting so as to
gain an overview of the relationship between bulk com-
position and melting relations and of the effect of bulk
composition on partial melt compositions.

VARIATIONS OF PYROXENITE

COMPOSITION

In this study we focus on lithologies that we term ‘pyrox-
enite’, by which we mean rocks that are dominated by
pyroxene under upper-mantle conditions. Unfortunately,
the nomenclature for such rocks is not well established,
and consequently, ‘pyroxenite’ serves as a catch-all for
pyroxene-rich lithologies ranging from eclogites to
olivine- and orthopyroxene-bearing rocks (websterites
and olivine websterites) that lack sufficient olivine (40%)
to be considered peridotitic. If considered as liquids,
many of the bulk compositions of pyroxenite are broadly
basaltic, with more MgO-rich varieties similar to picrites
or basaltic komatiites. Some pyroxenites, such as olivine
websterites and clinopyroxenites, may have no analogous
naturally occurring lava types. These may originate as
cumulates, as residues of partial melting, or by solid–solid
or solid–melt hybridization processes.
The potential diversity of compositions of putative pyr-

oxenites in basalt source regions is a significant hurdle to
understanding their partial melting behaviors. Three
approaches, which we term ‘analogue’, ‘forward’ and

‘inverse’, may yield some useful constraints for character-
izing the diversity of pyroxenite in basalt source regions,
each with its own advantages and disadvantages. In the
analogue approach, compositions of mantle pyroxenites
are surveyed from natural mantle samples, such as xeno-
liths and layers or pods in tectonically exhumed alpine-
type massifs, ophiolites, and abyssal peridotites. The
forward method considers likely compositions of pyrox-
enites based on models of mantle pyroxenite formation
and modification. In the inverse approach, major ele-
ment compositions of pyroxenite partial melts are
extracted from correlations with a component thought
to be indicative of a pyroxenitic source on the basis of
isotopic or trace element signatures. Information about
the composition of the pyroxenites themselves can then
be inferred, provided sufficient information is available
about the relationship between source rock and partial
melt compositions.
The analogue approach is based on sampling of natural

pyroxenite lithologies. Figure 1 shows oxide contents of
pyroxenites from xenoliths and alpine-type massifs
(Hirschmann & Stolper, 1996). They span compositions
from near-peridotitic to basaltic (Fig. 1), with SiO2 ran-
ging from 40 to 55 wt %, MgO from 4 to 35 wt %, and
Mg-number [¼ 100 � molar MgO/(MgO þ FeO*)]
from nearly 40 to over 90. This survey demonstrates
that there could be many different compositions of pyr-
oxenite residing in basalt source regions. However, it
remains to be established whether such compositions
are representative of those in principal basalt source
regions. Importantly, most of the samples compiled in
Fig. 1 come from the lithosphere rather than the convect-
ing mantle, which is the predominant source of basaltic
magmas. Samples from the lithosphere may not be
representative of those from the convecting mantle. For
example, certain types of pyroxenite, such as the clino-
pyroxenites common in ophiolite sections, may originate
as veins in the lithosphere (e.g. Kelemen et al., 1997) and
consequently may not be appropriate analogues to mafic
domains possibly present in mantle experiencing partial
melting by decompression. However, such compositions
can be introduced into the deeper mantle when regions
of lithosphere are subducted or delaminated. Other
pyroxenites may be modified by lithospheric processes
such as metasomatism or partial melting at low pressures
and therefore may not retain compositions indicative of
the convecting mantle. Finally, transport to the surface,
either by tectonic or volcanic processes, may result in
compositional changes. We note that analogue
approaches to defining compositions of mantle peridotite
may be biased for similar reasons—most samples have
experienced melting, metasomatic, and/or contamina-
tion in the lithosphere.
The forward approach to estimating compositions of

pyroxenite in basalt source regions entails modeling
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processes that may introduce pyroxene-rich lithologies
into the convecting mantle and considering the composi-
tional changes that may occur prior to entering basalt
source regions. Subduction may produce the largest

volume of such lithologies but other processes, such as
delamination of lower crust (e.g. Arndt & Goldstein,
1989; Jull & Kelemen, 2001) may be important. Various
other possible sources of pyroxenite have been reviewed

peridotite

MORB

42

46

50

54

58

 S
iO

2 (
w

t.%
)

1

2

3

T
iO

2 (
w

t.%
)

5

10

15

20

C
aO

 (
w

t.%
)

1

2

3

N
a 2

O
 (

w
t.%

)

5

10

15

A
l 2O

3 (
w

t.%
)

0

5

10

15

0 10 20 30 40 50

MgO

Fe
O

* 
(w

t.%
)

0.0

0.5

1.0

0 10 20 30 40 50
MgO (wt.%)

K
2O

 (
w

t.%
)

0

2

4

6

40 60 80 100
Mg#

N
a 2

O
+

K
2O

 (
w

t.%
)

natural 
used in experiments

pyroxenite

Fig. 1. Oxide contents of pyroxenite from xenoliths and alpine-type massifs (*) (Hirschmann & Stolper, 1996) and from experimental studies
(�) (Table 1). Also shown are fields of mantle peridotite (Herzberg et al., 1988) and MORB matrix glasses (Melson et al., 1999).
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previously by Hirschmann & Stolper (1996). We note that
a popular paradigm for introducing heterogeneities into
the mantle—metasomatism of oceanic lithosphere
by near-axis melts from the MORB source region (e.g.
Halliday et al., 1995; Class & Goldstein, 1997; Niu &
O’Hara, 2003)—probably results in veining, which
means that such heterogeneous domains probably
include some form of pyroxenite.
The composition of subducted oceanic crust is usually

considered to be that of modern MORB that has been
modified by alteration on the sea floor and by mass
transport processes in subduction zones. However, it is
important to note that most of the �7 km section of
modern oceanic crust consists of gabbro rather than
basalt and that oceanic gabbro compositions are more
varied than those of MORB (e.g. Dick et al., 1991;
Hekinian et al., 1993). Also, significant sea-floor alteration
and hydration may be restricted to the upper few kilo-
meters of oceanic crust and reduced hydration of the
lower portions of subducted crust may also mean less
profound mass transport during sea-floor metamorphism
and subduction. Finally, recycled lithologies present in
the sources of modern basalts may have been subducted
several billion years ago, when compositions of oceanic
crust and subduction zone processes may have differed
from those prevailing today (Komiya et al., 2002a, 2002b).
The inverse approach is the least-developed method for

determining the compositions of pyroxenite in basalt
source regions. In a well-known example, Hauri (1996)
considered the origin of silica enrichments associated
with isotopic anomalies in the so-called Koolau compo-
nent in Hawaii, which he inferred to originate from a
dacitic partial melt. This in turn implies the presence of a
quartz eclogite component in the source. Interestingly,
the melt composition inferred by Hauri (1996) is not
similar to any experimentally derived partial melt of
eclogite (Pertermann & Hirschmann, 2003a). One possi-
ble reason for this is that pyroxenite partial melts may be
modified by interactions with peridotite ( Yaxley &Green,
1998; Takahashi & Nakajima, 2002) prior to contributing
their components to aggregating basalts. This may be a
significant pitfall of the inverse approach, but in tandem
with appropriate experimental studies it could also lead to
improved understanding of melt–rock interactions during
melting and melt transport of a heterogeneous mantle.
Despite wide variations in pyroxenite composition, sig-

nificant generalization can be made about bulk composi-
tion effects on partial melting behavior. Pyroxenites can
be divided into two broad classes, silica-excess and silica-
deficient, that produce distinctive compositions of partial
melts. The chief differences between silica-excess and
silica-deficient compositions are illustrated in Fig. 2,
which shows normative compositions of pyroxenite
plotted in the pseudoternary system forsterite (Fo)–Ca-
Tschermaks pyroxene (CaTs)–quartz (Qz) projected

from diopside [Di] (O’Hara, 1968). It should be noted
that pyroxenite compositions are scattered over both
sides of the enstatite (En)–CaTs join (Fig. 2). This join is
a thermal divide (O’Hara & Yoder, 1967; O’Hara, 1968),
which is stable when garnet and pyroxenes are principal
minerals in the residue, as all stoichiometric garnet and
pyroxene project along the En–CaTs join. Silica-deficient
and silica-excess pyroxenites plot on the left and right side
of the thermal divide, respectively. When garnet and
pyroxenes are the chief minerals present, as is the case
for most pyroxenite compositions above �2GPa
(Table 1, see below), silica-deficient pyroxenites generate
silica-poor melts that also plot on the left side of the
divide, and silica-excess pyroxenites generate silica-rich
melts that plot on the right side of the divide. The Fo–
CaTs–Qz projection also indicates that pyroxenites of
each type have characteristic accessory minerals: quartz
(or its high-pressure equivalent), feldspar and/or kyanite
for silica-excess pyroxenites and olivine and/or spinel for
silica-deficient varieties (see inset of Fig. 2).
The garnet–pyroxene thermal divide is applicable to

partial melting of pyroxenite in basalt source regions
because garnet is stable in pyroxenite compositions over
much of the pressure range relevant to present-day basalt
genesis in the upwelling mantle (�1–4GPa for MORB
and OIB, McKenzie & Bickle, 1988; McKenzie &
O’Nions, 1991; Iwamori et al., 1995). Therefore, we
mainly focus on melting relationships of pyroxenite at
conditions under which garnet is stable. Details of phase
equilibria and compositions of partial melts will be
discussed in the following sections.
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Fig. 2. Normative compositions of pyroxenite in the pseudoternary
system forsterite (Fo)–Ca-Tschermaks pyroxene (CaTs)–quartz (Qz)
projected from diopside [Di] using the method of O’Hara (1968).
Symbols and fields are as in Fig. 1. Compositions of minerals are
also shown in the inset. co, corundum; en-fs, enstatite–ferrosilite; fls,
feldspar; grt, garnet; il, ilmenite; ky, kyanite; jd, jadeite; ol, olivine; rut,
rutile; sp, spinel.
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MELTING PHASE RELATIONS OF

PYROXENITE

Following the pioneering experiments of Yoder & Tilley
(1962), there have been numerous high-pressure studies
on partial melting of mafic lithologies. Fundamental
melting relations of mafic to ultramafic compositions for
pressures ranging from 0�1MPa to 3GPa were documen-
ted in the 1960 s (e.g. Yoder & Tilley, 1962; Green &
Ringwood, 1967; O’Hara, 1968). Later studies were con-
ducted with a range of goals, such as determination of
subsolidus phase relationships (e.g. Irving, 1974; Adam
et al., 1992), solidus and liquidus locations (e.g. Kornprobst,
1970; Yasuda et al., 1994), or location ofmultiple saturation
points of peridotite phases (e.g. Thompson, 1974, 1975;
Eggins, 1992a; Kinzler &Grove, 1992). Newer experimen-
tal studies documented phase equilibria at pressures greater
than 20GPa (e.g. Yasuda et al., 1994; Zhang & Herzberg,
1994; Hirose et al., 1999). A number of recent studies have
extended our knowledge of pyroxenite partial melt
compositions (e.g. Kogiso & Hirschmann, 2001;
Hirschmann et al., 2003; Kogiso et al., 2003; Pertermann
& Hirschmann, 2003a). Nevertheless, individual studies
generally focus on a restricted number of bulk composi-
tions. In this paper, we survey these data to gain an over-
view of the role of source variation on the melting relations
and partial melt compositions from pyroxenite source
rocks. The experimental data considered in this paper are
summarized in Table 1.

Phase assemblages from subsolidus to
liquidus

Throughout this paper, we emphasize the primary influ-
ence of the garnet–pyroxene thermal divide, defined by
the En–CaTs–Di plane in CMAS projections, on melting
relations of pyroxenites. When projected into the

Fo–CaTs–Qz–Di pseudoquaternary, the majority of pyr-
oxenites project near this divide (Fig. 2), indicating that
pyroxenes and garnet are commonly the predominant
minerals under subsolidus conditions. Figure 3 shows
subsolidus phase assemblages of various pyroxenites at
different pressures. Clinopyroxene is stable in all, but
orthopyroxene appears at relatively low pressures
(<2GPa) only in pyroxenites that project to compositions
rich in En and poor in CaTs. Garnet appears as a sub-
solidus phase in pyroxenites of basaltic composition (poor
in Fo component) at 1�5GPa, and in nearly all composi-
tions at 3�0GPa. Accessory phases are quartz (or its high-
pressure equivalent), feldspars and rutile in silica-excess
pyroxenite, and olivine and spinels in silica-deficient pyr-
oxenites (Fig. 3). Kyanite and sanidine are also observed
in some silica-excess pyroxenites (grospydites, Smyth &
Hatton, 1977), but such compositions have not been
investigated experimentally. Silica-deficient pyroxenites
have plagioclase only at pressures below the stability of
garnet (Irving, 1974; Adam et al., 1992). Corundum and
ilmenite project on the thermal divide, and so in theory
may occur in either silica-excess or silica-deficient pyrox-
enites. However, both phases imply low silica activity and
are therefore more likely to be accessory minerals in
silica-deficient varieties.
Based on experimental data of simple system (CMAS)

and simple mixtures of natural minerals, O’Hara (1968)
suggested that the garnet–pyroxene divide is stabilized at
pressures above �2�7GPa, but later experiments on
more complex compositions (Table 1) showed that the
divide exists at lower pressures for natural rocks. The
minimum pressures at which the assemblage liquid þ
garnet þ clinopyroxene � orthopyroxene appears are
listed in Table 1. In many pyroxenite compositions, gar-
net and clinopyroxene (þ orthopyroxene) are the sole
minerals in solid residues at pressures between �1�5
and �2�5GPa. These pressures are lower than that

CaTs

QzEnFo

An[Di]

CaTs

QzEnFo

An[Di]
spinel plagioclase

opxcpx

garnet

quartz

olivine

(b) 3 GPa(a) 1.5 GPa

rutile*

*

Fig. 3. Subsolidus phase assemblages of pyroxenites used for experimental studies (Table 1) in the pseudoternery Fo–CaTs–Qz diagram projected
from [Di] at (a) 1�5GPa and (b) 3�0GPa. Phases present are indicated by filled split circles for spinel, plagioclase, orthopyroxene (opx) and
clinopyroxene (cpx). Symbols for other phases are as in the inset. Small grey circles are compositions of pyroxenites for which subsolidus phases
were not determined.
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suggested by O’Hara (1968), primarily owing to the sta-
bilizing effect of FeO on garnet (O’Neill, 1981). Thus, the
silica-excess and silica-deficient classification of pyroxe-
nites is applicable at pressure higher than �2GPa.
Compositions of partial melts from silica-excess and
silica-deficient compositions may be similar to one
another at lower pressures, but may be controlled by
thermal divides created on other mineral joins. For exam-
ple, the Fo–An–Di plane (olivine–gabbro divide, O’Hara,
1968) is a divide that separates hypersthene- and quartz-
normative liquids from nepheline-normative ones (Yoder
& Tilley, 1962) at pressures between 0�1MPa and
0�8GPa (O’Hara, 1968).
The basic framework for understanding partial melting

relations of pyroxenitic systems was established early in
the history of high-pressure experimentation (e.g. Yoder
& Tilley, 1962; Cohen et al., 1967; Green & Ringwood,
1967; O’Hara, 1968). In particular, experiments in the
CMAS system (e.g. O’Hara & Yoder, 1967; Kushiro,
1969; Presnall et al., 1978; Milholland & Presnall, 1998;
Liu & Presnall, 2000) have helped define mineral–
melt phase relationships relevant to pyroxenitic (and
peridotitic) systems for a wide range of pressure up to
�3GPa. With increasing pressure, the chief features of

this system in the Fo–CaTs–Qz–Di quaternary are: (1)
the primary phase volume of olivine contracts; (2) the
clinopyroxene phase volume expands towards the plagi-
oclase and olivine phase volumes up to �2�0GPa; (3) the
orthopyroxene phase volume expands toward the plagi-
oclase and olivine phase volumes but shrinks back from
the direction of the CaTs apex above �2�0GPa; (4) the
primary phase volume of plagioclase is replaced by the
phase volumes of spinel, sapphirine and corundum by
�2�0GPa, above which the garnet phase volume
appears and expands. Melting relations documented in
experiments on natural materials largely follow these
principles. Figure 4 shows liquidus phase boundaries
projected into the Fo–CaTs–Qz–Di system estimated
using experimental data from natural and near-natural
compositions (Table 1). At 1�5GPa, olivine is the liquidus
phase for most silica-deficient pyroxenites, and clinopyr-
oxene or plagioclase is the liquidus phase in silica-excess
pyroxenites. At 3�0GPa, garnet is the liquidus phase for a
substantial range of pyroxenite compositions, including
both silica-excess and silica-deficient varieties, and olivine
appears on the liquidus only for near-peridotitic compo-
sitions. Orthopyroxene appears on the liquidus of pyrox-
enites that plot near the En apex mainly at <�2GPa.

CaTs

QzEnFo

An
[Di]

CaTs En

Di

plagioclase

opx

garnet

olivine

cpx

(a) 1.5 GPa

[Fo]

(d) 3 GPa

ol

opx

pl

grt
opx

cpx

cpx

ol

CaTs

QzEnFo

An

(c) 3 GPa

[Di]

ol

opx

grt

cpx

pl
CaTs

opx

cpx

En

Di

[Fo]
ol

(b) 1.5 GPa

Fig. 4. Liquidus phases of pyroxenites determined in experiments at (a, b) 1�5GPa and (c, d) 3�0GPa. (a, c) Projection from [Di] onto the Fo–
CaTs–Qz plane. (b, d) Projection from [Fo] onto the CaTs–Di–En plane, in which only silica-deficient compositions are shown. Bold dashed lines
are estimated liquidus phase boundaries. Abbreviations are as in Fig. 2. Small grey circles are compositions of pyroxenites for which liquidus
phases were not determined.
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Quartz may appear on the liquidus in silica-excess pyr-
oxenites that plot close to the Qz apex (Yaxley & Green,
1998), although such compositions are not within the
range of natural pyroxenite.
Thus, when melting proceeds, residual phase assem-

blages change in accordance with bulk composition. For
example, in silica-excess pyroxenite with MORB-like
composition, the order of phase disappearance is quartz
(or plagioclase)–garnet–clinopyroxene at 2–3GPa
(Pertermann & Hirschmann, 2003a) and coesite–
clinopyroxene–garnet at 5GPa (Yasuda et al., 1994). In
silica-deficient compositions at 2–3GPa, olivine or spinel
disappears first in pyroxenite with picritic (�16 wt %
MgO) composition (Hirschmann et al., 2003; Kogiso et al.,
2003), but olivine persists up to the liquidus in near-
peridotitic compositions (Yaxley, 2000).

Solidus and liquidus temperatures

Pyroxenite solidus locations are also influenced signifi-
cantly by bulk composition effects. In peridotitic composi-
tions, alkali contents exert a strong influence on solidus
temperatures, with Mg-number also playing a role (Walter
& Presnall, 1994; Herzberg et al., 2000; Hirschmann,
2000). These two variables also influence solidus tem-
peratures of pyroxenite. Figure 5 shows variations in
solidus temperatures at 3�0GPa plotted against bulk
composition. Although the data are rather scattered,
solidus temperatures correlate negatively with bulk alkali
content and positively with bulk Mg-number. It is impos-
sible to separate the effect of these two variables on
solidus temperatures because there is a strong negative
correlation between bulk alkali content and Mg-number
(Fig. 1). It should be noted that silica-excess and silica-
deficient pyroxenites form similar trends, indicating that
subsolidus phase assemblages do not have obvious influ-
ence on solidus temperatures.

Hirschmann (2000) argued that the alkali content of
near-solidus liquids is the chief variable influencing peri-
dotite solidus temperatures. This means that the effect of
alkali content on solidus temperatures increases with
bulk concentration but decreases with bulk partition coef-
ficient; i.e. it is diminished with increased clinopyroxene
mode or with increasing pressure, both of which render
Na more compatible in the residue. An analogous rela-
tionship may apply to variations in solidus temperatures
of pyroxenite, although data for near-solidus liquid com-
positions of pyroxenite are scarce. However, the effect of
pressure may be distinct for pyroxenite. As in the case of
peridotite, alkalis in pyroxenite become more compatible
in clinopyroxene with increasing pressure, but clinopyr-
oxene mode decreases in response to the expansion of
garnet stability.
The slopes of the solidus temperature vs composition

(alkali content or Mg-number) trends are similar for
pyroxenite and peridotite lithologies (Fig. 5). Relative to
those for peridotite, pyroxenite solidi are displaced to
higher temperature at a given bulk alkali content or
Mg-number. This difference may be related to the
lower variance of peridotite, as originally suggested by
O’Hara (1968). It may also partly be owing to differences
in bulk partition coefficients for alkalis: at a given bulk
alkali content, near-solidus liquid compositions will be
more alkali-rich for peridotites. However, even though
pyroxenites have a higher solidus temperature than peri-
dotite at a given alkali content, most pyroxenites are
much more alkali-rich than typical peridotites with 0�2–
0�35 wt % Na2O þ K2O. Thus, most pyroxenites have
lower solidus temperatures than typical peridotite.
As is true for solidi, two broad compositional effects

may influence liquidus temperatures of pyroxenite: the
position in simple-system projections, and the combined
effects of alkalis and Mg-number. The projected position

peridotite

1500

1400

1300

1200

so
lid

us
 (

C
)

1 2 3 4 5 40 50 60 70 80 90

Mg#Na2O + K2O (wt.%)

3 GPa

0

Si-deficient 

Si-excess

Fig. 5. Solidus temperatures of pyroxenite determined in experiments at 3�0GPa as a function of bulk Na2O þ K2O and Mg-number content.
Open and hatched rectangles are for silica-excess and silica-deficient pyroxenites, respectively. Rectangles with arrow indicate experiments in
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relative to the garnet–pyroxene thermal divide in the Fo–
CaTs–Qz–Di system could influence the liquidus tem-
perature because there is a thermal maximum along the
CaTs–En join (Fig. 6a) in the true quaternary system Fo–
CaTs–Qz projected from Di. Natural compositions pro-
jecting close to the thermal divide might be expected to
have higher liquidus temperatures than those plotting far
from it. However, as illustrated by Fig. 6b, such a rela-
tionship is not easily discerned from experiments on
natural pyroxenites. Instead, there are clear correlations
between liquidus temperature and bulk composition
(Fig. 6c and d). The relative effects of the two variables
are not distinguishable because of the strong correlation
between bulk Mg-number and alkali content in pyroxe-
nites (Fig. 1).
Comparison of the liquidus temperature of pyroxenites

with geotherms applicable to basalt source regions indi-
cates that many pyroxenites are completely molten at
conditions expected where hot mantle plumes
[�1500�C mantle potential temperature (MPT)]
impinge on the oceanic lithosphere (�100 km). Thus,

pyroxenites, if present in vigorous mantle plumes such
as that inferred beneath Hawaii, should undergo nearly
complete fusion. In contrast, many compositions
will undergo only partial fusion for weaker plumes
(<�1450�C MPT) or beneath mid-ocean ridges. It is
these environments in which unusual compositions
(such as highly alkalic partial melts of garnet pyroxenite
or silicic partial melts of silica-saturated eclogite) may
plausibly be of importance.

COMPOSITIONS OF PYROXENITE

PARTIAL MELTS

Recent experimental studies on pyroxenite partial melting
have reported compositions of partial melts produced
from a range of bulk compositions under various pres-
sure–temperature conditions (e.g. Kogiso et al., 1998,
2003; Takahashi et al., 1998; Tsuruta & Takahashi,
1998; Yaxley & Green, 1998; Hirschmann et al., 2003;
Pertermann & Hirschmann, 2003a). Compositions of
experimental partial melts are variable, ranging from
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1300�C and 1400–1500�C mantle potential temperature (MPT) at 3GPa (Ita & Stixrude, 1992).
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basanitic to dacitic. In this section, we discuss systematic
relationships between compositions of pyroxenite and
their partial melts.

Role of the garnet–pyroxene thermal
divide

The garnet–pyroxene thermal divide (Figs 2 and 6) has a
critical influence on compositions of partial melts of pyr-
oxenite. As described above, the significance of the
thermal divide is that pyroxenites that reside on either
side of the divide produce distinct types of partial melt
when garnet and pyroxenes are the principal stable
phases in the residue (O’Hara, 1968). This relationship
is shown schematically in Fig. 6a for the quaternary Fo–
CaTs–Qz–Di system. Silica-rich initial melts from silica-
excess pyroxenites plot at the invariant point E on the
silica-rich side of the thermal divide (Fig. 6). For silica-
deficient pyroxenites, initial silica-poor melts form near
an invariant point P, which may be a peritectic in which
orthopyroxene reacts with liquid around 3GPa (Longhi,
1995; Walter, 1998). Therefore, partial melts produced at
low degrees of melting may migrate along the garnet–
olivine–clinopyroxene cotectic until they reach point P
(Fig. 6). Importantly, with progressive degrees of melting
for both silica-excess and silica-deficient compositions, par-
tial melts will not cross the boundary defined by the divide.
The garnet–pyroxene thermal divide is relevant to

partial melting in natural pyroxenites. Figure 7 shows
compositions of partial melts produced experimentally
from different bulk compositions under conditions
where clinopyroxene and garnet are the principal sub-
solidus phases. As in the case of simple systems, partial
melts from silica-excess pyroxenites are silica-rich and
those from silica-deficient pyroxenites are silica-poor
at >�2GPa. Bimineralic pyroxenite (B-ECL1: Kogiso

& Hirschmann, 2002) resides on the boundary between
silica-excess and silica-deficient compositions, and its par-
tial melts are also on the boundary (Fig. 7), consistent with
this join acting as a thermal crest. It should be noted that
the key influence of this thermal crest for each individual
bulk composition is not in conflict with the observation
that the thermal divide does not correspond to a max-
imum in liquidus temperatures of a range of pyroxenite
bulk compositions (Fig. 6). Variations in Mg-number and
alkali content affect the liquidus temperatures of different
compositions (Fig. 6), but these compositional variables
are not represented by the CMAS projection. For a bulk
composition with any given Mg-number and alkali con-
tent, the chemography of melting is chiefly determined by
its position relative to the thermal divide.

Major element compositions of partial
melts

Figure 8 illustrates oxide contents of pyroxenite partial
melts experimentally produced at pressures under which
garnet is stable. Partial melts from silica-excess pyroxenites
have >50 wt % SiO2, and those from silica-deficient
pyroxenites have <48 wt % (Fig. 8a). Partial melts of
silica-excess pyroxenites are characterized by low MgO
contents and Mg-numbers and are therefore very unlike
partial melts of peridotite. In contrast, partial melts of
silica-deficient pyroxenites can be rather primitive, with
MgO of 12–16 wt % and Mg-number between 60 and 75,
and thus have broad similarities to partial melts of perido-
tite. In fact, partial melts of the two lithologies can overlap
for many oxides, but those of silica-deficient pyroxenite
tend to have higher FeO, TiO2 and Na2O, and lower SiO2

(at a givenMgO concentration). CaO and Al2O3 are more
variable, being either higher or lower than for partial melts
of peridotite.

Silica-excess 
G-2 
SSS1.4 
JB-1 
Silica-deficient 
MIX1G 
Perid.-basalt mix. 
Kogiso et al. (1998) 
Yaxley & Green (1998) 
Bimineralic 
B-ECL1 

2.4 
-2.7

3.0 
-3.5 5.0 <

Pressure (GPa)

CaTs

QzEnFo

An[Di]

1.0-2.0 GPa

Fig. 7. Projection from [Di] onto the Fo–CaTs–Qz plane for compositions of pyroxenite partial melts produced in experiments at pressures at
which garnet is stable. Hatched field is for partial melts from a silica-deficient pyroxenite (Kilauea tholeiite) produced under garnet-absent
conditions at 1�0–2�0GPa (Wagner & Grove, 1998).
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An important difference between themelting relations of
silica-deficient pyroxenite and those of peridotite is evident
in their respective MgO–Al2O3 systematics (Fig. 9). With
increasing pressure or degree of melting, partial melts of
peridotite become less aluminous and richer in MgO.
Partial melts of silica-deficient pyroxenite also become less
aluminous with increasing pressure, but may have negligi-
ble changes in MgO. These differences are owing to the
distinct roles of olivine and garnet in the respective lithol-
ogies (Kogiso et al., 2003). With increasing pressure, garnet
becomes increasingly stable whereas olivine becomes less
so. For a pyroxenite with little or no residual olivine, such as
in MIX1G (Hirschmann et al., 2003; Kogiso et al., 2003),
partial melts have less Al2O3 at higher pressures but show
little variation in MgO (Fig. 9). In contrast, olivine contri-
butes more to partial melts of garnet peridotite with
increasing pressure (or increasing degree ofmelting), result-
ing in Al2O3-poor, MgO-rich liquids (Fig. 9). Partial melts

of olivine-rich pyroxenite such as KG1 (peridotite þ
MORB 1:1 mixture, Kogiso et al., 1998) follow the same
MgO–Al2O3 trend as garnet peridotite melt (Fig. 8c), as
they are also controlled by garnet and olivine.
Another consequence of enhanced garnet stability to

the phase relations is relative contraction of clinopyrox-
ene stability, which results in higher CaO/Al2O3 ratios of
partial melts of garnet pyroxenite and garnet peridotite
with increasing pressure (Fig. 9). However, just as for
MgO–Al2O3 trends, increased CaO/Al2O3 can be
accompanied by negligible MgO increases for olivine-
poor lithologies, but not for peridotite.

PYROXENITE IN BASALT GENESIS

Here we discuss some potential ramifications of pyroxe-
nite partial melting to the genesis of OIB magmas.
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Detailed consideration of the link between pyroxenite
partial melts and MORB genesis has been addressed
elsewhere (Hirschmann & Stolper, 1996; Pertermann &
Hirschmann, 2003a, 2003b).
OIB lavas from many hotspots have nepheline-

normative (alkali basaltic) compositions (Hirschmann
et al., 2003; Kogiso et al., 2003), whereas those from
some hotspots, such as Hawaii, are dominated by
hypersthene-normative (tholeiitic) compositions (Fig. 10).
The conventional view for the origin of these two types of
OIB is that they are generated by partial melting of
peridotite at different degrees of melting (e.g. Chen &
Frey, 1985; Wyllie, 1988; McKenzie & O’Nions, 1991).
However, both alkali basaltic and tholeiitic OIB lavas are
characterized by lower Al2O3 contents compared with
experimentally derived partial melts of peridotite (Fig. 9),
suggesting that OIB lavas are not produced simply from
peridotite partial melting (Hirschmann et al., 2003;
Kogiso et al., 2003). Parameterization of experimental

data of peridotite partial melting (Herzberg & O’Hara,
2002) demonstrates that near-solidus partial melts of
peridotite produced around 4GPa have low Al2O3 con-
tents comparable with plausible parental liquids for OIB.
The correspondence between such liquids and alkalic
OIB merits further investigation. However, tholeiitic
OIB are generally thought to derive from high-degree
partial melts of peridotite, which do not have low Al2O3.
For example, the parameterization of Herzberg &
O’Hara (2002, appendix 6) posits that parental liquids
for tholeiitic OIB equilibrate with harzburgite residue,
which requires relatively high degrees of partial melting.
Also, near-solidus melts from peridotite may have rela-
tively low SiO2 contents (Herzberg & O’Hara, 2002), but
they are not as low in SiO2 as alkalic OIB lavas are
(Kogiso et al., 2003). Partial melting of peridotite þ
CO2 can produce liquids with extremely low SiO2 con-
tents (Hirose, 1997), but it cannot explain relatively high
FeO contents of OIB (Kogiso et al., 1998, 2003). Pro-
blems in generation of alkalic OIB lavas with regard to
peridotite melting have been addressed in detail by
Kogiso et al. (2003).
Alternatively, OIB lavas may be generated by partial

melting of pyroxenite, or may incorporate a pyroxenite-
derived component. As mentioned above, nepheline-
normative compositions are dominant in manyOIB suites.
Many partial melts of silica-deficient pyroxenite plot on
the left side of the Fo–An join, and consequently are
nepheline-normative (Figs 7 and 10). Also, as described
above, if olivine is absent in partially melting pyroxenite,
high-pressure partial melts from silica-deficient pyroxe-
nite have systematically lower Al2O3 contents than peri-
dotite melts at a givenMgO content (Fig. 9). In fact, melts
produced from a silica-deficient pyroxenite MIX1G at
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Fig. 10. Comparison of pyroxenite partial melts, peridotite partial
melts, and OIB in the Fo–CaTs–Qz diagram projected from [Di].
Symbols are as in Fig. 7
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and absence (black) of olivine. Symbols are experimental partial melts
from pyroxenites as in Fig. 7.
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5GPa (Kogiso et al., 2003) are sufficiently low in Al2O3 to
be plausible parents to primitive OIB lavas (Fig. 9). Thus,
it is possible that magmas similar to parental liquids for
alkalic OIB are produced by partial melting of silica-
deficient pyroxenite if the residue contains significant
garnet and lacks olivine.
Tholeiitic OIB magmas might incorporate a compo-

nent of partial melts from silica-excess pyroxenite. Such
partial melts are generally hypersthene-normative to
quartz-normative (Figs 7 and 10), and their Al2O3 con-
tents are as low as OIB (Fig. 9). Silica-excess pyroxenite
melts are too low in MgO and Fo components to be
parental to hypersthene-normative OIB, and therefore
Niu & O’Hara (2003) argued that partial melting of
recycled MORB crust is not suitable to be a source for
tholeiitic OIB. However, mixing of silica-excess pyroxe-
nite melts with MgO-rich melts produced from peridotite
may plausibly account for the compositions of tholeiitic
OIB (Figs 9 and 10).
It is still possible that the low-Al2O3 signature of tho-

leiitic OIB results from partial melting of Al-depleted
peridotite compositions, such as harzburgite, because
the Al2O3 content of partial melt may depend on that
of source peridotite (Herzberg & O’Hara, 2002). Some
experimental data also demonstrate that parental liquids
for tholeiitic OIB can be in equilibrium with harzburgite
residue (Eggins, 1992a; Wagner & Grove, 1998). How-
ever, natural harzburgite generally has a refractory char-
acter and is strongly depleted in incompatible elements,
so it is not a plausible lithology as a source for OIB lavas
that are enriched in incompatible elements much more
than MORB. This discrepancy might be explained by
rather complex scenarios, such as dynamic melting pro-
cesses (Eggins, 1992b) in which the bulk composition of
the parental melt is determined by phase equilibrium
with harzburgite at the shallowest level of melting, with
enrichment in incompatible elements produced by smal-
ler-degree melt fractions from deeper level. Similar
results might be obtained by low-pressure melt–rock
reaction of a melt generated at high pressure (Wagner
& Grove, 1998).
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