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Abstract—The solubility behavior of H2O in melts in the system Na2O-SiO2-H2O was determined by locating
the univariant phase boundary, melt � melt � vapor in the 0.8–2 GPa and 1000°–1300°C pressure and
temperature range, respectively. The NBO/Si-range of the melts (0.25–1) was chosen to cover that of most
natural magmatic liquids. The H2O solubility in melts in the system Na2O-SiO2-H2O (XH2O) ranges between
18 and 45 mol% (O � 1) with (�XH2O/�P)T�14–18 mol% H2O/GPa. The (�XH2O/�P)T is negatively
correlated with NBO/Si ( � Na/Si) of the melt. The (�XH2O/�T)P is in the �0.03 to �0.05 mol% H2O/°C
range, and is negatively correlated with NBO/Si. The [�XH2O/�(NBO/Si)]P,T is in the �3 to �8 mol%
H2O/(NBO/Si) range. Melts with NBO/Si similar to basaltic liquids (�0.6-�1.0) show (�XH2O/�T)P�0,
whereas more polymerized melts exhibit (�XH2O/�T)P�0. Complete miscibility between hydrous melt and
aqueous fluid occurs in the 0.8–2 GPa pressure range for melts with NBO/Si �0.5 at T �1100°C. Miscibility
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occurs at lower pressure the more polymerized the melt. Copyright © 2004 Elsevier Ltd
1. INTRODUCTION

The dynamics of magma aggregation at depth, magma as-
cent, emplacement, and eruption depend on the water content
of the magmatic liquid because most magma properties gov-
erning these processes are affected by H2O dissolved in the
magmatic liquids (silicate melts). For example, dissolution of
H2O in melts at high pressure causes reduction of silica activ-
ity, which is reflected in the compositional trends during melt-
ing and crystallization of hydrous systems (e.g., Kushiro, 1972,
1990; Mysen and Boettcher, 1975; Gaetani et al., 1993). Fur-
thermore, viscosity and values of other transport properties of
hydrous melts are significantly different from those of the
anhydrous equivalents (Kushiro, 1978; Watson, 1994; Schulze
et al., 1996; Dingwell et al., 1998; Holtz et al., 1999; Romano
et al., 2001). The density of hydrous magma is lower than that
of anhydrous melts (e.g., Kushiro, 1978; Lange, 1994; Richet
and Polian, 1998; Mysen and Wheeler, 2000a).

There is a substantial amount of data on H2O-solubility and
H2O-solubility mechanisms in magmatic liquids in the pressure
regime of the Earth’s crust (see, for example, Goranson, 1936;
Hamilton et al., 1964; Hamilton and Oxtoby, 1986; McMillan
et al., 1986; Dixon and Stolper, 1995; Holtz et al., 1995, 1996;
Nowak and Behrens, 1995; Shen and Keppler, 1995; Carroll
and Blank, 1997; Dingwell et al., 1997; Behrens et al., 2001).
Many igneous processes do, however, occur at higher pressures
corresponding to those of the upper mantle. Data on water
solubility and solubility mechanisms in silicate melts in that
pressure and temperature regime are less common.

Available data on solubility mechanisms of water in silicate
melts for the most part are limited to relationships between
temperature, pressure and melt composition on the OH/
H2O(molecular) ratio, and most of these data have been ob-
tained in the pressure and temperature regime of the Earth’s
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crust (Stolper, 1982; Kohn et al., 1989, 1992; Silver and Stol-
per, 1985, 1989; Mysen and Virgo, 1986; Mysen, 1992; Nowak
and Behrens, 1995; Shen and Keppler, 1995; Zhang et al.,
1995; Sowerby and Keppler, 1999; Withers et al., 1999; Zhang,
1999; Schmidt et al., 2000, 2001a,b; Oglesby and Stebbins,
2000). An understanding of how the OH-groups are bonded to
the silicate network is, however, important for characterization
of the influence of dissolved water on melt structure and,
therefore, on properties of silicate melts. Several models have
been suggested based in part on liquidus phase relations (e.g.,
Wasserburg, 1957; Burnham, 1975; Nekvasil and Burnham,
1987), in part via theoretical modeling (e. g., Zheng and Nekva-
sil, 1996; Sykes and Kubicki, 1993, 1994), and in part from
spectroscopic studies of quenched melts (glasses) (e.g., Mysen
and Virgo, 1986; Kohn et al., 1989, 1992; Holtz et al., 1996;
Zotov et al., 1996; Zotov and Keppler, 1998; Oglesby and
Stebbins, 2000; Schmidt et al., 2001a,b; Padro et al., 2003).
Most of these studies have been restricted to highly polymer-
ized aluminosilicate systems. Even in this restricted composi-
tion range, however, considerable disagreement exists as to
how H2O interacts with the aluminosilicate network.

To help resolve the problems associated with solution and
solution mechanisms of H2O in silicate melts, it is necessary to
simplify the chemical complexity of the silicate melt. For
example, experimental studies in binary metal oxide silicate
melts may illuminate how alkali metals and alkaline earths
interact with dissolved H2O and the extent to which H2O may
react with bridging oxygen to form Si-OH groups in the melts
and glasses (e.g., Mysen and Virgo, 1986; Kummerlen et al.,
1992; Zotov et al., 1996; Zotov and Keppler, 1998). Existing
data demonstrate that OH bonding involving alkalis and alka-
line earths is possible, but there exist, to the knowledge of the
authors, no systematic data on relationships between H2O sol-
ubility and solubility mechanisms, H2O content and the alkali/
silicon ratio of the melts (degree of melt polymerization).
Examination of these matters is the objective of the present

study.
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2. EXPERIMENTAL METHODS

Starting compositions were on the join Na2O-SiO2-H2O. Four com-
positions were used with nominal NBO/Si of the anhydrous glasses and
melts of 0.25, 0.5, 0.75, and 1.0. The samples are denoted NSx, where
x represents the number of moles of SiO2 relative to 1 Na2O. Anhy-
drous glasses were made by mixing spectroscopically pure Na2CO3,
Al2O3, and SiO2, ground under alcohol for �1 h, decarbonated during
slow heating (�1.5°C/min), and then heated at �100°C above their
liquidus temperatures at 0.1 MPa (liquidus data from Osborn and
Muan, 1960) for 60 min. The samples were then quenched to glass.

The anhydrous glass starting materials were crushed to �20 �m
grains size and stored at 250°C when not in use. To ascertain whether
or not H2O from ambient was absorbed in these glasses stored at
250°C, the glasses were subjected to �1000°C for 60 s to evaluated
possible loss on ignition. For glasses more sodic than Na/Si �0.5, this
process resulted in �1 wt% weight loss, which is ascribed to H2O
dissolved in or adsorbed on these glasses. For less sodic glasses, the
loss-on-ignition was smaller. In all cases, however, it was assumed that
this loss was H2O. This proportion of H2O was, therefore, considered
part of the total H2O content of the glasses examined.

High-pressure (0.8–2.0 GPa) and high-temperature (1000°–1300°C)
experiments were conducted in the solid-media, high-pressure appara-
tus (Boyd and England, 1960). The samples were contained in sealed Pt
capsules and subjected to experimental pressure and temperature con-
ditions in 0.75-diameter furnace assemblies based on the design of
Kushiro (1976). Temperatures were measured with Pt-Pt90Rh10 ther-
mocouples with no correction for pressure on their emf, which may be
as much as � 10°C (Mao et al., 1971). Pressure was calibrated against
the melting point of NaCl and the calcite-aragonite transformation
(Bohlen, 1984). Estimated uncertainties are � 10°C and � 0.1 GPa,
respectively.

The starting glasses were loaded together with double-distilled,
deionized H2O (1.0–2.5 �L depending on desired H2O content) into 3
mm outer diameter (OD) by 7 mm long or 5 mm OD by 10 mm long
Pt containers and welded shut. Water was injected using a microsyringe
with 0.1 �L divisions. The exact amount of H2O added was, however,
determined by weighing. The weighing accuracy is � 0.02 mg. Re-
ported H2O contents of the experimental charges are accurate � 2% or
better [2% for the lowest H2O contents used (�5 wt% of the total
sample)].

Run durations ranged from 300 min at 1300°C to 1440 min at
1000°C. Whether these run durations were sufficient to attain equilib-
rium can be evaluated by considering the diffusivity of H2O in the

Fig. 1. Electron micrograph of glass chip from run product in the
stability field of melt � aqueous fluid with quenched aqueous fluid
bubbles and submicron bubbles formed by exsolution during quenching
shown. Sample: NS2 � 23 wt% H2O at 2 GPa and quenched from
1000°C
melts. The diffusion constant, D, for H2O in silicate melts such as those
examined here (nominal NBO/Si of anhydrous melts between 0.25 and
1) are likely to be somewhere between those of basaltic and rhyolitic
melts at the same temperature and with the same H2O contents. For
those melts, the D-values range between �10�8 and �10�6 cm2/s at
temperatures near 1000°C (e.g., Zhang and Stolper, 1991; Nowak and
Behrens, 1997). From the simple relationship x � �4Dt (x � diffusion
distance, D � diffusion constant, and t � time), even a value for D as
low as 10�8 cm2/s would yield a transport distance for H2O of � 270
�m after 300 min. Furthermore, results from time studies of element
partitioning between aqueous fluids and hydrous melts using similar
sample geometry indicate that �800 min are sufficient to reach equi-
librium in those experiments (Mysen and Armstrong, 2002). With the
� 20 �m grain size of the starting material, the �1440 min run
durations are, therefore, more than adequate to ensure equilibrium
during the experiments, provided that melt and aqueous fluid remain
well mixed during experimentation. This is probably accomplished by
convection within the 10 mm long by 3 mm diameter sample containers
owing to the �10°C vertical temperature gradient in the furnaces used
(Kushiro, 1976).

Analysis of the quenched glasses for H2O content by instrumental
techniques is difficult because the quenched glasses (quenching rate:
�100°C/s) in many of these samples contained clouds of finely dis-
tributed bubbles (typically �1 �m across) exsolved during quenching
(Fig. 1). Similar bubbles were observed in other alkali, and alkaline
earth aluminosilicate glasses quenched from similar pressures and
temperatures (Mysen and Acton, 1999; Mysen and Wheeler, 2000a;
Mysen, 2002) Analysis of the H2O contents of the glasses by instru-
mental techniques was unreliable, therefore, because it is not possible
to account for H2O lost by exsolution of H2O from the melt during
temperature quenching of the hydrous melt to a hydrous glass.

To avoid this quenching problem H2O solubility in the melts was
determined by locating the univariant phase boundary, meltN melt �
vapor, by examining the run products in a petrographic microscope
(Burnham and Jahns, 1962). This method requires that bubbles in the
glass formed by excess H2O over that needed to saturate the melt at
high pressure and temperature, can be distinguished from those formed
by H2O exsolution from the melt during quenching. This distinction is
quite straightforward with the hydrous glasses examined in the present
study as quench bubbles, when present, form clouds of small, often
submicron bubbles. In contrast, bubbles formed by excess H2O are
typically �5 �m in diameter (Fig. 1). The uncertainty in the H2O
solubility in melts thus obtained is taken as 1/2 that of each of the melt
vs. melt � vapor brackets, and is less than 1 wt%. The reliability of this
method was tested by using it to measure the H2O solubility in
NaAlSi3O8 melt at 1 GPa and 750°C. The observed solubility at these
conditions, 17.5 � 0.5 wt % H2O, compares well with the 17.2 wt%
H2O at 1 GPa and 690°C reported by Burnham and Jahns (1962).

3. RESULTS AND DISCUSSION

The experimental data are shown in Figures 2–5 where the
solid lines represent a third-order polynomial fit of the brackets
to temperature at each pressure for each composition. The H2O
solubilities extracted from those data are summarized in Table
1. At 0.8 and 1.3 GPa (Figs. 2 and 3), the pressure-temperature
trajectory of the univariant equilibrium, melt N melt � fluid,
could be determined from the experimental charges in the
entire 1000°–1300°C temperature of this study from the ap-
pearance of large bubbles representing quenched aqueous fluid
(Fig. 2). At 1.65 GPa (Fig. 4), the liquidus of NS8�H2O is
somewhere between 1000° and 1100°C because quartz, melt,
and fluid coexist at 1000°C at this pressure. Hence, only water
solubility data for T �1100°C were obtained. At 2.0 GPa
(Fig. 5), the melt N melt � fluid boundary could not be
determined for NS8�H2O because stable fluid bubbles were
not detected in experimental charges containing in excess of 40
wt% H2O. This observation suggests that even at 1000°C and
2.0 GPa, these conditions are above those of the critical curve

for this composition (see Paillat et al., 1992, for detailed dis-
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Fig. 2. Experimental results from solubility experiments at 0.8 GPa for compositions NS2, NS2 2/3, NS4, and NS8 as

shown on panels. Closed symbols: Hydrous melt only. Open symbols: Hydrous melt � aqueous fluid.
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Fig. 3. Experimental results from solubility experiments at 1.3 GPa for compositions NS2, NS2 2/3, NS4, and NS8 as
shown on panels. Closed symbols: Hydrous melt only. Open symbols: Hydrous melt � aqueous fluid.
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Fig. 4. Experimental results from solubility experiments at 1.65 GPa for compositions NS2, NS2 2/3, NS4, and NS8 as
shown on panels. Closed symbols: Hydrous melt only. Open symbols: Hydrous melt � aqueous fluid.
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Fig. 5. Experimental results from solubility experiments at 2.0 GPa for compositions NS2, NS2 2/3, NS4, and NS8 as

shown on panels. Closed symbols: Hydrous melt only. Open symbols: Hydrous melt � aqueous fluid.
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Table 1. Solubility of H2O as a function of composition, temperature, and pressure.

Composition Pressure (GPa) Temperature (°C) H2O solubility (mol%, O � 1)

NS2 0.8 10.00 18.5 � 0.4
NS2 0.8 11.00 16.5 � 1.0
NS2 0.8 12.00 14.8 � 0.4
NS2 0.8 13.00 13.0 � 0.4
NS2 1.3 10.00 26.6 � 0.7
NS2 1.3 11.00 23.5 � 0.7
NS2 1.3 12.00 21.3 � 0.7
NS2 1.3 13.00 19.4 � 0.6
NS2 1.65 10.00 32.9 � 0.5
NS2 1.65 11.00 30.0 � 1.0
NS2 1.65 12.00 27.5 � 0.9
NS2 1.65 13.00 24.9 � 0.7
NS2 2 10.00 35.2 � 0.3
NS2 2 11.00 33.0 � 0.5
NS2 2 12.00 30.8 � 0.9
NS2 2/3 �0.8 10.00 18.3 � 1.1
NS2 2/3 0.8 11.00 17.0 � 1.1
NS2 2/3 0.8 12.00 15.8 � 0.7
NS2 2/3 0.8 13.00 14.3 � 0.7
NS2 2/3 1.3 10.00 29.1 � 0.8
NS2 2/3 1.3 11.00 26.3 � 0.7
NS2 2/3 1.3 12.00 23.5 � 1.4
NS2 2/3 1.3 13.00 21.8 � 0.7
NS2 2/3 1.65 10.00 35.1 � 0.7
NS2 2/3 1.65 11.00 32.5 � 0.7
NS2 2/3 1.65 12.00 30.2 � 0.8
NS2 2/3 1.65 13.00 28.8 � 0.8
NS2 2/3 2 10.00 38 � 1.0
NS2 2/3 2 11.00 34.7 � 0.8
NS2 2/3 2 12.00 33.9 � 0.7
NS4 0.8 10.00 19.7 � 0.3
NS4 0.8 11.00 18.4 � 0.5
NS4 0.8 12.00 16.5 � 0.7
NS4 0.8 13.00 16.2 � 0.7
NS4 1.3 10.00 30.2 � 0.6
NS4 1.3 11.00 27.5 � 0.5
NS4 1.3 12.00 26.7 � 0.8
NS4 1.3 13.00 26.5 � 0.8
NS4 1.65 10.00 35.4 � 0.3
NS4 1.65 11.00 35.3 � 0.8
NS4 1.65 12.00 35.4 � 0.8
NS4 1.65 13.00 35.7 � 0.9
NS4 2 10.00 38.5 � 0.3
NS4 2 11.00 41.4 � 1.1
NS8 0.8 11.00 20.5 � 0.7
NS8 0.8 12.00 22.1 � 1.4
NS8 0.8 13.00 23.4 � 0.6
NS8 1.3 11 32.0 � 0.6
NS8 1.3 12 33.9 � 0.6
NS8 1.3 13 37.5 � 1.0
NS8 1.65 11 36.3 � 0.6
NS8 1.65 12 41.2 � 1.2
NS8 1.65 13 45.9 � 0.6
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Fig. 6. Solubility of H2O (in mol % calculated with 1 oxygen in molecular weight) in silicate melt compositions (as shown
on individual panels) as a function of pressure for temperature indicated.
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Fig. 7. Solubility of H2O (in mol % calculated with 1 oxygen in molecular weight) in silicate melt compositions (as shown
on individual panels) as a function of temperature for pressures indicated.
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Fig. 8. Solubility of H O (in mol % calculated with 1 oxygen in molecular weight) in silicate melt as a function of
2

composition (mol % Na2O) as a function of pressure and temperature indicated.
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cussion of likely P-T trajectories of critical curves in silicate-
H2O systems). In other words, there appears to be complete
miscibility between hydrous melts and aqueous fluids for this
composition under these pressure and temperature conditions.
For NS2 2/3 � H2O at 2 GPa, this condition occurs at T
�1200°C, whereas for NS4 � H2O fluid and melt could not be
distinguished at temperatures above 1100°C. For NS2 � H2O,
there is no evidence from the present experiments suggesting
that hydrous melts and aqueous fluids are miscible at the
conditions investigated.

Complete miscibility between hydrous melts and silicate-
bearing aqueous fluids has been documented via in situ high-
temperature and -pressure experiments in the hydrothermal
anvil cell. Such data have been reported for systems along the
join NaAlO2-SiO2-H2O, a haplogranite composition, one per-
alkaline composition in the NaAlO2-Na2O-SiO2-H2O system
as well as for NaAlSi3O8 with boron and fluorine added (Shen
and Keppler, 1997; Bureau and Keppler, 1999; Sowerby and
Keppler, 2002). Although there may be some uncertainty in the
pressure measurements in these hydrothermal diamond anvil
cell experiments (Mysen and Wheeler, 2000b) and the compo-
sitions used in those experiments differ from those reported
here, the results in Figures 4 and 5 generally are in accord with
the results from the hydrothermal diamond anvil cell experi-
ments in that complete miscibility likely occurs at pressures at
or above 1 GPa. It is, however, also clear that the exact

Fig. 9. Relationship between ln( f H2O
o /X H2O

melt) and (P �
indicated on panels at temperatures indicated. When error
for more detailed discussion.
pressure-temperature coordinates of the critical curves likely
depend significantly on silicate composition, consistent with
suggestions of Bureau and Keppler (1999).

The results in Table 1 (see also Figs. 2–5) are expressed in
terms of pressure, temperature, and composition dependence of
H2O in the melts in Figures 6–8. The isothermal H2O-solubil-
ity (Fig. 6) is positively correlated with pressure, a feature
common to all existing H2O solubility data in silicate melts
(see, for example, McMillan, 1994, for review and more recent
data by, for example, Dixon and Stolper, 1995; Holtz et al.,
1995, 2000; Dingwell et al., 1997; Schmidt et al., 1999; Tamic
et al., 2001).

The temperature dependence of H2O-solubility, (�XH2O/
�T)P, depends on melt composition and pressure (Fig. 7). For
the 2 most sodic compositions, NS2 and NS2 2/3, the (�XH2O/
�T)P becomes decreasingly negative with increasing pressure.
For composition NS4, (�XH2O/�T)P changes from negative to
positive at pressures between 1.3 and 2.0 GPa with (�XH2O/
�T)P�0 at 1.65 GPa. The (�XH2O/�T)P for the most silica-rich
composition Na2O-SiO2 composition, NS8, is positive at all
pressures studied. No other data exist for comparable compo-
sitions in the pressure/temperature range of the present exper-
iments. However, at lower pressures (near 0.5 GPa), the
(�XH2O/�T)P of highly polymerized compositions such as
NaAlSi3O8 and haplogranite (an albite-orthoclase-quartz mix-
ture; see, for example, Holtz et al., 2000), changes from neg-
ative to positive (Paillat et al., 1992; Holtz et al., 2000). Thus,

at temperatures indicated on figures for compositions as
e not shown, errors are smaller than symbol size. See text
1)/RT
the present data are generally consistent with those observa-
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tions that increasing pressure leads to change from decreasing
to increasing H2O-solubility with increasing temperature. The
solubility data are also consistent with the general concept that
with increasing pressure the melt-fluid immiscibility gap
shrinks and the critical temperature decreases (e.g., Paillat et
al., 1992; Bureau and Keppler, 1999).

Under isothermal and isobaric conditions, the H2O-solubility
in Na2O-SiO2-H2O melts decreases with increasing Na2O con-
tent (Fig. 8). This relationship is more pronounced the higher
the temperature and the higher the pressure. To our knowledge,
there exist not data with which to compare these results in the
pressure and temperature range of the present experiments. The
relationships in Figure 8 do suggest that the solution mecha-
nism of H2O in these melts may depend on silicate composition
(see also further discussion below). Otherwise, silicate compo-
sition-dependent H2O might be difficult to rationalize.

The H2O solubility data presented in Figures 2–4 and Ta-
ble 1 can be used to estimate partial molar volumes of H2O in
the melts. For H2O-saturated melt in equilibrium with free
H2O, the Gibbs free energy of solution of H2O is (J/mol);

�GT(P) � 0 � �GT(1 bar) � RT ln
aH2O

melt

fH2O
o

� �
1

P

V̄H2O
meltdP, (1)

where R is the universal gas constant (82.157 cm3bar/mol K),
T is temperature (Kelvin), aH2O

melt is activity of H2O in the melt,

fH2O
o is the fugacity of pure H2O in bar, and V̄H2O

melt (cm3/mol) is
the partial molar volume of H2O in the melt. The activity of
H2O, aH2O

melt , is not known. We assume, therefore, that the mol
fraction, xH2O

melt , may be substituted for aH2O
melt. Calorimetric data for

NaAlSi3O8-H2O glasses indicate only a small negative heat of
mixing (0–49 kJ/mol) (Clemens and Navrotsky, 1987). The
assumption a

H2O
melt � X

H2O
melt would not, therefore, introduce a large

error in calculations of V̄H2O
melt from solubility.

The slope of the (P � 1)/RT vs. ln��H2O

o ⁄XH2O
melt� equals V̄H2O

melt at
given temperature, T (e.g., Lange, 1994). In the 0.8–2.0 GPa
pressure range examined here, these lines are straight (Fig. 9).

The uncertainty in V̄H2O
melt reflects the progression of the errors in

the measured water solubilities for the melts. These straight
lines are consistent with a suggestion that the partial molar

volume of H2O, V̄H2O
melt , does not vary with pressure in the

0.8–2.0 GPa pressure range within the uncertainty of the cal-
culated partial molar volume values for melts saturated with
H2O at the pressures used.

The V̄H2O
melt derived from the slopes in Figure 9 ranges between

�10 and 14 cm3/mol with a slight negative temperature depen-

dence (Fig. 10A). The V̄H2O
melt also depends slightly on silicate

composition with minimum V̄H2O
melt-values for compositions with

�20 mol % Na2O (Fig. 10B). A comparison of V̄H2O
melt in NS4

melt with V̄H2O
melt for melts with the same nominal NBO/Si-value

but different metal oxide (K2O and CaO; see Mysen and Acton,
1999; Mysen, 2002; see open symbols in Fig. 10A) suggests

that V̄H2O
melt may be positively correlated with the ionization

potential of the metal cation.

The V̄H O
melt values in Figure 10 (�10 to � 14 cm3/mol)
2

compare reasonably well with those calculated from water
solubility data for haplogranite (Qz28Ab38Or34), albite, and
diopside composition melts (Hodges, 1974; Paillat et al., 1992;
Holtz et al., 1995), and for a composition in the CaO-Al2O3-
SiO2-H2O system by McMillan et al. (1986) [NBO/T � 0.6,
Al/(Al � Si)�0.14]. Those values (�11 to �18 cm3/mol) also
are in the same range as the values reported from direct mea-

surements of V̄H2O
melt for andesite glass and SiO2 (Richet and

Polian, 1998; Richet et al., 2000) and NaAlSi3O8 melt (Burn-
ham and Davis, 1971; Kushiro, 1978; Ochs and Lange, 1997).

Acknowledgments—This research was conducted with partial support
from NSF grants EAR-9901886, 0405383, and an REU grant from NSF
to the Carnegie Institution of Washington.

Fig. 10. Partial molar volume of H2O in melts, V̄H2O
melt A. as a function

of temperature for compositions indicated (CS4 and KS4 are compo-
sitions CaSi4O9 and K2Si4O9, respectively. Those data are from Mysen,
2002, and Mysen and Acton, 1999), and B. for melt composition for

temperatures indicated. These V̄H2O
melt values were calculated with Eqn. 1

for H2O-saturated melts in the 0.8–2.0 GPa pressure range.
Associate editor: F. J. Ryerson
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