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Abstract—Isotopologues of molecular gases containing more than one rare isotope (multiply substituted
isotopologues) can be analyzed with high precision (1� �0.1‰), despite their low natural abundances (� ppm
to ppt in air), and can constrain geochemical budgets of natural systems. We derive a method for calculating
abundances of all such species in a thermodynamically equilibrated population of isotopologues, and present
results of these calculations for O2, CO, N2, NO, CO2, and N2O between 1000 and 193 to 77 K. In most cases,
multiply substituted isotopologues are predicted to be enriched relative to stochastic (random) distributions by
ca. 1 to 2‰ at earth-surface temperatures. This deviation, defined as �i for isotopologue i, generally increases
linearly with 1/T at temperatures � 500 K. An exception is N2O, which shows complex temperature
dependences and 10’s of per-mill enrichments or depletions of abundances for some isotopologues. These
calculations provide a basis for discriminating between fractionations controlled by equilibrium thermody-
namics and other sorts of isotopic fractionations in the budgets of atmospheric gases. Moreover, because
abundances of multiply substituted isotopologues in thermodynamically equilibrated populations of molecules
vary systematically with temperature, they can be used as geothermometers. Such thermometers are unusual
in that they involve homogeneous rather than heterogeneous equilibria (e.g., isotopic distribution in gaseous
CO2 alone, rather than difference in isotopic composition between CO2 and coexisting water). Also, multiple
independent thermometers exist for all molecules having more than one multiply substituted isotopologue
(e.g., thermometers based on abundances of 18O13C16O and 18O12C18O are independent); thus, temperatures

0016-7037/04 $30.00 � .00
estimated by this method can be tested for internal consistency. Copyright © 2004 Elsevier Ltd
1. INTRODUCTION

Stable isotope geochemistry is principally concerned with
bulk isotopic compositions of natural materials (e.g., �13C or
�18O values). In gases, these bulk compositions effectively
only depend on abundances of molecules containing one rare
isotope (hereafter referred to as singly substituted isotopo-
logues; e.g., 13C16O2 or 18O12C16O). However, there also exist
molecules having more than one rare isotope (hereafter referred
to as multiply substituted isotopologues; e.g., 18O13C16O).
Urey (1947) and Bigeleisen and Mayer (1947) recognized that
multiply substituted isotopologues have unique thermodynamic
properties, different from both isotopically normal and singly
substituted isotopologues of the same molecule. Similarly, the
kinetic theory of gases predicts that multiply substituted isoto-
pologues undergo distinctive fractionations during processes
such as diffusion or gravitational settling (Present, 1958; Kaye,
1987; and references therein), and it seems likely to us that they
also exhibit distinctive kinetic fractionations during metabolic
or photochemical reactions. It follows that distributions of
multiply substituted isotopologues in nature could provide
unique constraints on geological, geochemical, and cosmo-
chemical processes. Similar statements could be made about
distributions of rare isotopes within condensed phases, al-
though calculation and analysis of such isotopic “clumps”
involve several difficulties beyond those encountered with gas-
eous molecules. We intend to address them in the near future,
but consider them beyond the scope of this paper.
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The geochemistry of singly substituted stable isotopologues
is a large and diverse field, but virtually nothing is known about
the natural abundances of their multiply substituted relatives.
We suspect this is because commonly available gas-source
mass spectrometers do not provide meaningful measurements
of abundances of these very rare species and, in the absence of
such data, there has been little incentive to explore their geo-
chemistry. Eiler and Schauble (2004) report precise (sub-0.1‰)
measurements of synthetic and atmospheric 18O13C16O at nat-
ural isotopic abundances. These data both document the exis-
tence of anomalies and variations in abundances of multiply
substituted isotopologues, and, more generally, demonstrate a
set of techniques that could also be used to study multiply
substituted O2, N2, CO, NO, N2O, and perhaps other gases.
These techniques do not appear to be appropriate for precise
analysis of multiply deuterated molecules (e.g., D2 or CH2D2).
Therefore, although such analyses might become possible in
the future, we will not consider these species in this study.

Theory describing partition functions of multiply substituted
isotopologues was derived long ago (Bigeleisen and Mayer,
1947; Urey, 1947), but has not been systematically evaluated.
This theoretical framework is a prerequisite for applied study
because it provides a context for interpreting measured abun-
dances of these species. This theory is particularly useful for
recognizing and interpreting isotopic variations caused by equi-
librium thermodynamics, much as calculations by Richet et al.
(1977) provide a context for interpreting differences in bulk
stable isotope composition between different molecular gases.
In this paper, we develop a method for calculating the relative
abundances of all stable isotopologues of molecular gases
based on principles of statistical thermodynamics and various

matrix algebra operations. We also combine that method with
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existing spectroscopic data to calculate expected abundances of
isotopologues of thermodynamically equilibrated populations
of N2, O2, CO, NO, CO2, and N2O between 1000 and 193 to
77 K.

2. METHODOLOGY

To calculate the abundances of all isotopologues of a
given molecule at thermodynamic equilibrium and a speci-
fied temperature, we: (1) define the set of possible isotopo-
logues for that molecule; (2) select a subset of these isoto-
pologues that can uniquely define the bulk isotopic
composition of a given population of molecules (e.g., its
18O/16O ratio, including contributions from all isotopo-
logues); (3) define the set of independent isotope exchange
reactions between all isotopologues; (4) use principles of
statistical thermodynamics to evaluate the equilibrium con-
stants of those reactions as functions of temperature (Big-
eleisen and Mayer, 1947; Richet et al., 1977; O’Neil, 1986);
and, finally, (5) calculate the proportions of all possible
isotopologues that are consistent with both the bulk isotopic
composition and the calculated equilibrium constants. Most
steps of this algorithm make use of widely known mathe-
matical principles and are defined and illustrated by example
in section 2.1. Evaluation of equilibrium constants (step 4)
involves principles of physical chemistry that are less widely
understood and are described separately in section 2.2.

2.1. Algorithm

It is relatively straightforward to calculate the abundances of
multiply substituted isotopologues of diatomic molecules of
elements having only two isotopes. For example, there is only
one isotope exchange reaction involving the three stable isoto-
pologues of molecular nitrogen:

14N14N � 15N15N `
K

214N15N (1)

and, at equilibrium, proportions of these three isotopologues
are uniquely defined by: the equilibrium constant for this reac-
tion (K), the known bulk isotopic composition of that popula-
tion (i.e., its 15N/14N ratio), and the equations describing iso-
topic mass balance in this system (i.e., n14N

� n14N15N
�

2n14N14N
, and n15N

� n14N15N
� 2n15N15N

, where ni is the number
of molecules of isotopologue i).

However, molecules containing three or more atoms
and/or containing elements with more than two isotopes
have several independent isotope exchange reactions, each
of which has an equilibrium constant that constrains the
proportions of isotopologues. These systems also have only
one possible distribution of isotopologues when thermody-
namically equilibrated at a given temperature, but that dis-
tribution is less easy to infer by inspection. We developed a
method for handling such systems based on Gauss-Jordan
reduction of a matrix. This method is inspired by composi-
tion-space analysis commonly used in petrology (Thompson,
1982).

We first project isotopic composition of every isotopo-
logue of a molecule of interest into the composition space
defined by the isotopes that molecule can contain. Figure 1a

and b illustrates examples of projections of isotopologues of
N2 into the composition space 14N-15N and of O2 into the
composition space 16O-17O-18O. Molecules containing five
or more isotopologues (e.g., CO, NO, CO2, and N2O) cannot
easily be illustrated in such plots but follow the same prin-
ciples. All such projections can be formulated as matrices of
simultaneous linear equations. For example, the stable iso-
topes making up CO2, 12C, 13C, 16O, 17O, and 18O can be
used to define a five end-member composition space, and the

Fig. 1. (a) Projection of the compositions of isotopologues of N2 into
the composition space 14N-15N; note all isotopologues of N2 lie on a
straight line. (b) Projection of compositions of isotopologues of O2 into
the composition space 16O-17O-18O; note all isotopologues of O2 lie on
a plane.
twelve possible isotopologues of CO2 can be projected into
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that space using the set of linear equations making up the
following matrix:

�
16O 12C 16O
16O 13C 16O
16O 12C 17O
16O 12C 18O
16O 13C 17O
17O 12C 17O
16O 13C 18O
17O 12C 18O
17O 13C 17O
18O 12C 18O
17O 13C 18O
18O 13C 18O

� � �
1 0 2 0 0

0 1 2 0 0

1 0 1 1 0

1 0 1 0 1

0 1 1 1 0

1 0 0 2 0

0 1 1 0 1

1 0 0 1 1

0 1 0 2 0

1 0 0 0 2

0 1 0 1 1

0 1 0 0 2

� �
12C
13C
16O
17O
18O
�

↓ ↓ ↓
M C A

(2)

We define C here as the transformation matrix, M as the
molecular species matrix and A as the isotope component
matrix. Equation (2) can be simplified to:

E · M � C · A (3)

where E is 12 � 12 unit matrix.
The rank and dimensionality of matrix C define the set of

linearly independent isotopologues needed to describe the bulk
isotopic composition of the population; this set of isotopologues is
referred to as the system components. The number of these system
components always equals the number of isotopes contributing to
a pool of isotopologues minus 1 (i.e., 4 in the case of the stable
isotopes of CO2), although several different choices of these four
system components are possible, and the choice of a preferred set
is arbitrary and does not affect the final calculation result. How-
ever, we believe it is least confusing to use isotopically normal and
singly substituted isotopologues as the system components be-
cause these species are the most abundant and familiar, and they
control the bulk isotopic compositions. We can select the preferred
set of independent isotopologues by placing them in the first four
positions of matrix M; subsequent matrix operations will identify
these as the system components, as illustrated below. We diago-
nalize matrix C using Gauss-Jordan reduction and document the
necessary operations in matrix E. This can be done by hand or
using PLU decomposition—a tool included in several commercial
software packages, including MAPLE or MATLAB. Any m � n
real matrix can be decomposed as the product of PLU (where P is
a permutation m � m matrix, L is a real lower triangular m � m
matrix with 1 as each diagonal element, and U is an upper
triangular m � n matrix). The result is expressed as follows:

C � PLU (4)

Because matrices P and L are invertible, we can multiply both
sides of the Eqn. 3 by their inverses to find:

(PL)�1 · M � U · A (5)

The rank of the characteristic matrix, U, equals the rank of
matrix C, and therefore, the number of system components that

define the bulk isotopic composition of the population. More-
over, the locations of non-0 rows in matrix U correspond to the
location of those system components in matrix M. The first n
rows (counting from the top, where n equals the rank of matrix
U) in matrices (PL)-1 and U define the relationships between
system components and isotope components; the remaining
rows of matrix (PL)-1 contain the stoichiometric coefficients for
isotopologues in the set of linearly independent isotope ex-
change reactions for this molecule.

In the case of CO2, the matrix (PL)-1 and matrix U are

(PL)�1

��
1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

�1 0 1 0 0 0 0 0 0 0 0 0

0 0 �1 1 0 0 0 0 0 0 0 0

1 �1 �1 0 1 0 0 0 0 0 0 0

1 0 �2 0 0 1 0 0 0 0 0 0

1 �1 0 �1 0 0 1 0 0 0 0 0

1 0 �1 �1 0 0 0 1 0 0 0 0

2 �1 �2 0 0 0 0 0 1 0 0 0

1 0 0 �2 0 0 0 0 0 1 0 0

2 �1 �1 �1 0 0 0 0 0 0 1 0

2 �1 0 �2 0 0 0 0 0 0 0 1

�
(6)

U ��
1 0 2 0 0

0 1 2 0 0

0 0 �1 1 0

0 0 0 �1 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

� (7)

In this case, the rank of U is four, indicating that the rank of the
transformation matrix C is four, that four independent isotopo-
logues are needed to describe the bulk composition of this system
(as expected), and that they are the first four isotopologues in
matrix M (16O12C16O, 16O13C16O, 16O12C17O, and 16O12C18O).
The independent exchange reactions are defined by the bottom
eight rows of matrix (PL)-1 (i.e., excluding the first four rows—the
rank of matrix U); these reactions can be expanded as follows:

row 5 :

6O12C16O � 16O13C17O `
K1

16O13C16O � 16O12C17O K1 �
x2x3

x1x5
(8i)



4782 Z. Wang, E. A. Schauble, and J. M. Eiler
row 6 :

16O12C16O � 17O12C17O `
K2

216O12C17O K2 �
x3

2

x1x6

(8ii)

row 7 :

16O12C16O � 16O13C18O `
K3

16O13C16O

� 16O12C18O K3 �
x2x4

x1x7

(8iii)

row 8 :

16O12C16O � 17O12C18O `
K4

16O12C17O

� 16O12C18O K4 �
x3x4

x1x8

(8iv)

row 9 :

216O12C16O � 17O13C17O `
K5

16O13C16O

� 216O12C17O K5 �
x4

2

x1x10

(8v)

row 10 :

16O12C16O � 18O12C18O `
K6

216O12C18O K6 �
x4

2

x1x10

(8vi)

row 11 :

216O12C16O � 17O13C18O `
K7

16O13C16O

� 16O12C17O � 16O12C18O K7 �
x2x3x4

x1
2x11

(8vii)

row 12 :

216O12C16O � 18O13C18O `
K8

16O13C16O

� 216O12C18O K8 �
x4

2x2

x1
2x12

(8viii)

where Ki indicates the equilibrium constant for exchange reac-
tion i, and i equals the row number minus four. Assuming ideal
mixing of all isotopologues of a given molecule, equations
relating Ki to the mole fractions of reactant and product isoto-
pologues are given next to each reaction, where xj is the mole
fraction of the isotopologue in row j of matrix M (e.g., x1 is the
mole fraction of 16O12C16O).

Given known values of Ki for all independent isotope ex-
change reactions (calculated in section 2.2, below), one need
only define the mole fractions of the system components (i.e.,
16O12C16O, 16O13C16O, 16O12C17O, and 16O12C18O for our
example) to solve the set of eight nonlinear equations, Eqn. 8i
through 8viii, and thereby retrieve the mole fractions of all
dependent isotopologues. The mole fractions of the system
components can be calculated based on independently defined
bulk concentrations of isotopes in the population of isotopo-
logues being considered (e.g., concentrations of 13C, 12C, 16O,

17O, and 18O spread among all isotopologues of CO2 for our
example) and the known Ki values. We do so by simultaneous
solution of a number of mass balance equations equal to the
number of system components (i.e., four mass balance equa-
tions for our example). These mass-balance equations are of
two kinds: (1) one stipulating that the sum of mole fractions of
all isotopologues equals one (i.e., �i�1

n xi � 1, summed over all
n isotopologues; e.g., n � 12 for our example); and (2) several
stipulating that the sum of mole fractions of all isotopologues
containing a given isotope, multiplied by the stoichiometric
coefficient for that isotope in that isotopologue (e.g., two for
16O in 16O13C16O), equals the known concentration of that
isotope in the entire population of isotopologues. n-1 indepen-
dent equations of this second type are needed, where n equals
the number of system components (e.g., constraints of this
second type provide n-1 independent equations, where n equals
the number of system components). For our example, the
resulting four equations are:

x2 �
x2x3

K1x1

�
x2x4

K3x1

�
x2x3

2

K5x1
2

�
x2x3x4

K7x1
2

�
x2x4

2

K8x1
2

� x13C
(9i)

2x1 � 2x2 � x3 � x4 �
x2x3

K1x1

�
x2x4

K3x1

� 2x16O (9ii)

x4 �
x2x4

K3x1

�
x3x4

K4x1

�
2x4

2

K6x1

�
x2x3x4

K7x1
2

�
2x2x4

2

K8x1
2

� 2x18O

(9iii)

x1 � x2 � x3 � x4 �
x2x3

K1x1

�
x3

2

K2x1

�
x2x4

K3x1

�
x3x4

K4x1

�
x2x3

2

K5x1
2

�
x4

2

K6x1

�
x2x3x4

K7x1
2

�
x2x4

2

K8x1
2

� 1 (9iv)

For the special case that each value of Ki equals the mass-action
constant for the relevant balanced reaction (e.g., when Ki values
for Eqn. 8i through 8viii are 1, 4, 1, 2, 4, 4, 2, and 4, respec-
tively), the exact solution for Eqn. 9i through 9iv is that the
concentration of each of the system components equals the
product of the concentrations of the isotopes it contains (e.g.
x1 � x12Cx16O

2 , x3 � 2x16Ox12Cx17C). This is referred to as the
stochastic or random distribution and corresponds to the ex-
pected distribution at infinite temperature. For the general case
that Ki values are controlled by enhanced thermodynamic sta-
bilities of certain isotopologues relative to others and differ
from the stochastic distribution, we solve Eqn. 9i through 9iv
numerically using line search procedures and a quasi-Newton
method (also called the variable metric method). Programs for
such numerical procedures can be found in Numerical Recipes
(e.g., Press et al., 2002, chapter 10.1 and 10.7) or MATLAB
(referring to MATLAB help files).We recommend using the
concentrations of isotopologues corresponding to the stochastic
distributions as initial guesses for these numerical solutions;
other choices will yield the same result, just more slowly.

To test the precision of our numerical methods for solving Eqn.
9i through 9iv, we calculated the concentration of each isotopo-
logue of CO2 for a population having the stochastic distribution of
isotopes using both: (1) the exact solution, and (2) the numerical
method in which the initial guess for concentrations of indepen-

dent isotopologues differed greatly from the stochastic distribution
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(i.e., so that the numerical algorithm must converge on the final
result from a highly aberrant initial condition). Differences be-

tween these two methods, defined as �xnumeric

xexact

� 1�, are less then

5.0 � 10-13 for all twelve CO2 isotopologues for assumed bulk
isotopic compositions within the natural range. This error is trivial
compared to the variations in expected abundances of isotopo-
logues calculated in section 3.

2.2. Evaluation of Equilibrium Constants

In this section we describe how equilibrium constants (Ki

values) can be evaluated using classical statistical thermody-
namics and spectroscopic data. We frame our discussion
around calculation of the equilibrium constant for the isotope
exchange reaction 8iii above, which involves isotopologue
18O13C16O, data for which is reported by Eiler and Schauble
(2004). The same principles apply to other isotope exchange
reactions of CO2 and other gases discussed in section 3 of this
paper.

The equilibrium constant of isotope exchange reaction 8iii,
K3, can be expressed as

K3 �
Q16O13C16O · Q16O12C18O

Q16O12C16O · Q16O13C18O

(10)

where Qi is partition function for each isotopologue, i. Each
partition function, Qi, in this equation is the product of trans-
lational, vibrational (including zero point), and rotational ener-
gies, the rotation-vibration interaction energy, and electronic
energy. For isotope exchange reactions involving molecules in
the ground state, the electronic energy is ignored if one adopts
the Born-Oppenheimer approximation (as we do), because it is
independent of isotopic mass. Thus, only terms associated with
the energies of translation, rotation and vibration need be
considered. Urey (1947) presented a simplified calculation of
the components of the partition function that are most impor-
tant for isotope exchange reactions. He only considered the
vibrational energy, approximated intramolecular bonds as har-
monic oscillators, and adopted the Teller-Redlich product rule.
Urey’s solution for polyatomic molecules, stated in terms rel-

evant for evaluation of the partition function ratio,
Q16O13C16O

Q16O12C16O

(as

an example), is:

�Q16O13C16O

Q16O12C16O
�

�
�16O12C16O

�16O13C16O
�
i�1

3n�5 ui
16O13C16O

ui
16O12C16O

e�
ui

16O13C16O

2

1 � e�ui
16O13C16O

1 � e�ui
16O12C16O

e�
ui

16O12C16O

2

(11)

where �16O12C16O and �16O13C16O are symmetry numbers of
16O12C16O and 16O13C16O (both equal 2), n is the number of

atoms in the molecule of interest (both equal 3), ui �
hc�i

(�i

kT

is the normal vibrational wave number for 16O12C16O or
16O13C16O at each vibrating mode i; h is Plank’s constant; c is
light speed; k here is Boltzmann constant; T is absolute tem-
perature). There are 3n-6 normal vibrational modes for nonlin-
ear polyatomic molecules, while there are only 3n-5 for linear
polyatomic molecules such as CO2 and N2O because the bend-
ing vibrational mode is doubly degenerate. Note that a factor of

�i
n mi

3
2 (where mi is the mass of atom i of n atoms that form the

molecule) for each molecule is omitted in this expression
because this factor will be eventually cancelled out when
calculating equilibrium constants (refer to Davidson (1962)).
Expressions having the form of Eqn. 11 have been widely used
to predict equilibrium constants of isotope exchange reactions
among gaseous species, and their temperature dependence
(e.g., Richet et al., 1977). The equilibrium constant of isotope
exchange reaction such as 8i through 8viii can be calculated by
combining two or more expressions having the form of Eqn.
11. For example, K3 equals the product of two partition func-

tion ratios, �Q16O13C16O

Q16O12C16O
�·�Q16O12C18O

Q16O13C18O
�, as shown in Eqn. 10, each

of which can be calculated using Eqn. 11.
For molecules with known zero point energies (obtained

from ab initio and quantum mechanic molecular models), the
partition function ratio is evaluated starting with the first vi-

bration quantum number, rather than using
1

2�i
3n�5

�i to esti-

mate the zero point energy. After this modification, the parti-

tion function ratio �Q16O13C16O

Q16O12C16O
� becomes:

�Q16O13C16O

Q16O12C16O
�

�16O12C16O

�16O13C16O

e�(u0
16O13C16O�u0

16O12C16O) �
i�1

3n�5 ui
16O13C16O

ui
16O12C16O

1 � e�ui
16O12C16O

1 � e�ui
16O13C16O

(12)

where u0
16O13C16O �

hc�0
16O13C16O

kT
, indicating the contribution from

the zero point energy. We used Eqn. 11 and 12 to evaluate
equilibrium constants of reactions involving multiply substituted
isotopologues when approximating intramolecular bonds as har-
monic oscillators. Eqn. 12 is better than Eqn. 11 in describing
partition function ratios at low temperatures and was used when-
ever possible.

Because molecules both vibrate and rotate, centrifugal forces
acting on intramolecular bonds make it difficult to separate
vibrational and rotational contributions to the partition function
and require that we treat these bonds as anharmonic. It is
commonly assumed that this effect leads to insignificant cor-
rections in calculated partition functions. However, it is con-
ceivable that these terms could influence the stabilities of
multiply substituted molecules, so we have evaluated them for
all cases we deemed computationally tractable. For diatomic
molecules, we use the anharmonic nonrigid rotor model (Pitzer,
1953; see Davidson, 1962, for a broader summary). In this
model, the energy in each quantum level is described as a

function of quantum numbers v and J:
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�v,J

hc
� �e�v �

1

2�� �exe�v �
1

2�
2

� BeJ(J � 1)

� DJ2(J � 1)2 � 	�v �
1

2�J(J � 1) (13)

where �e is the harmonic vibration wave number and is related
to the second derivative of the potential curve at its minimum,
�exe describes the anharmonicity of the potential curve, xe is
the cubic anharmonic correction term and is half of the relative
deviation of the harmonic vibration wave number (�e) from the
first vibrational spacing (�0), which can be directly measured

from infrared or Raman spectroscopic data; Be �
h

8
2Iec
and is

the rotational constant, where Ie is moment of inertia of the
diatomic molecule, c is speed of light, and h is Plank’s con-
stant; J and v are the rotational and vibrational quantum num-

bers, respectively; D �
4Be

3

�e
3

and describes centrifugal stretch-

ing; and 	 is the vibration-rotation coupling constant.
After removing small, higher order terms and integrating v

and J, the contribution of the rovibration partition function to
the overall partition function can be separated into the product
of three parts: (1) Q0 is from the zero point energy contribution
(Richet et al., 1977); (2) Qharm-rigid, has the same meaning as in
the harmonic oscillator and rigid motor models above; and (3)
Qcorr is the deviation from the harmonic oscillator and rigid
motor model due to anharmonicity. These terms can be shown
to have the following form (Eqn. 8–40 in Davidson, 1962):

Qv�r � Q0Qharm�rigidQcorr (14)

Q0 � e�
��e

2
�

�exe

4
�hc

kT (15)

Qharm�rigid �
1

�y

1

1 � e�u
(16)

Qcorr � 1 �
2�

y
�

�

eu � 1
�

2xu

(eu � 1)2
�

y

3
�

y2

15
(17)

where

u �
hc(�e � 2�exe)

kT
, y �

hc�Be �
	

2�
kT

, � �
D

Be �
	

2

and

� �
	

Be �
	

2

.

The full partition function Qi including translational energy is:

Qi � MiQi
v�r (18)

where Mi is the mass of isotopologue i. We used Eqn. 13
through 18 to evaluate equilibrium constants of reactions in-

volving multiply substituted isotopologues when describing
intramolecular bonds of diatomic molecules with an anhar-
monic model.

Anharmonic models of partition functions for polyatomic mol-
ecules are more complex than Eqn. 13 through 18 (e.g., Nielsen,
1951) and can only be approximated by numerically solving the
Schrödinger equation using an accurate rovibrational potential
energy surface, and considering the first several thousand rovibra-
tional state energies. This would be unreasonably time-consuming
for the relatively broad overview of isotopologues and tempera-
tures we consider. However, we tested the validity of our simpler
approximations by conducting a limited set of more accurate
calculations of this type for CO, CO2. The results, presented in the
Appendix, are effectively indistinguishable from those produced
using the Urey method at temperatures of less than 275 K. We
suspect that differences between these methods at higher temper-
atures reflect limitations of the spectroscopic data for multiply
substituted isotopologues at higher quantum states and do not
reflect methodologic errors. We conclude that the harmonic oscil-
lator approximation (Eqn. 11 and 12), in addition to being appli-
cable to a large range of molecules and conditions, is sufficiently
accurate for our purposes. We therefore focus on results of these
simpler calculations in the following section.

3. APPLICATION TO COMMON MOLECULAR GASES

In this section, we use the algorithm developed in section 2 to
calculate the equilibrium proportions of all stable isotopologues of
N2, O2, NO, CO, CO2, and N2O between 1000 and 193 to 77 K
based on published spectroscopic data. The lower temperature
limit for each molecule is chosen to be its 1-atm boiling or, for
CO2, sublimation temperature (77.3 K for N2, 81.6 for CO, 90.2 K
for O2, 121.3 for NO, 184.6 K for N2O, and 192.6 for CO2; Lide
and Frederikse, 1994). This lower limit is somewhat arbitrary but
focuses on the temperature ranges appropriate for most geochemi-
cal and cosmochemical problems of possible interest.

The input data and results of these calculations are organized
below by molecular species, from the simplest (symmetric,
diatomic molecules) to the most complex (N2O). The precision
and accuracy of our model calculations depend chiefly on the
quality of the spectroscopic data, on the accuracy and com-
pleteness of the harmonic and anharmonic models of intramo-
lecular bonds, and on the assumption of ideal mixing of all
isotopologues of a given molecule. Before presenting our re-
sults, we first define terms that are useful for expressing the
systematics of multiply substituted isotopologues.

3.1. Definition and Properties of �

To appreciate the magnitude of isotopic variations that could
result from distinctive partition functions of multiply substi-
tuted isotopologues, it is useful to compare abundances of these
species calculated as described in section 2 of this paper to
those expected if all isotopes are randomly distributed among
all isotopologues (the stochastic distribution). We define here
the variable, �i, to describe this difference:

�i � �Ri�e

Ri�r

� 1�
 1000 (19)

where R is the abundance of an isotopologue of interest, i,
i-e

divided by the abundance of the isotopologue having no rare
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isotopes in the same pool of molecules, evaluated at
thermodynamic equilibrium. For example, R18O13C16O�e �

�18O13C16O�e

�16O12C16O�e

. Ri-r is that same ratio in a pool of CO2 mole-

cules of the same bulk isotopic composition but having the
stochastic distribution of isotopologues. Ri-r is a simple
function of the abundances of isotopes contributing to a

pool of isotopologues (e.g., R18O13C16O�r �
�18O13C16O�r

�16O12C16O�r

�

2�18O��13C��16O�
�12C��16O�2 �

2�18O��13C�
�16O��12C�

). Values of �i have units

of per mill deviation from the stochastic distribution and are
independent of bulk isotopic composition over the range of
natural abundances of rare isotopes (because �i values of
singly substituted isotopologues are close to zero for these
isotopic compositions, in which case �i values of multiply
substituted isotopologues only depend on Ki values). Posi-
tive and negative values of �i correspond to enrichments and
depletions, respectively, in the isotopologue, i, relative to
the stochastic distribution.

3.2. Relationship Between � and K Values

An isotope exchange reaction only involving one doubly
substituted isotopologue of a given molecule can be written as

A1 � A4`
K

A2 � A3 (20)

where A4 is the doubly substituted isotopologue, A1 is the
isotopologue having no rare isotopes, and A2 and A3 are singly
substituted isotopologues (note A2 and A3 can be the same
isotopologue; e.g., reaction 8ii and 8vi). Based on the law of
mass action and assuming ideal mixing of stable isotopes on a
given molecular site, the following expressions can be used to
describe the equilibrium constants for such reactions:

K �
�A2��A3�
�A1��A4�

(21)

Kr �
�A2�r��A3�r�
�A1�r��A4�r�

(22)

where Kr refers to the equilibrium constant for the stochastic
(random) distribution. Also, from the definition of �i in Eqn. 19
we know:

�Ai�
�A1�

� � �i

1000
� 1� ·

�Ai�r�
�A1�r�

(23)

After dividing Eqn. 21 by Eqn. 22 on both sides and replacing
the concentration ratios with � values following Eqn. 23, we
find:

K

Kr

�

� �2

1000
� 1�� �3

1000
� 1�

� �1

1000
� 1�� �4

1000
� 1� (24)

Taking the natural logarithm of both sides of Eqn. 24, and

rearranging, we find the following expression for the �4:
ln� �4

1000
� 1�� ln � �2

1000
� 1�� ln � �3

1000
� 1�

� ln � �1

1000
� 1�� ln

K

Kr

(25)

Because we defined A1 as the isotopologue having no rare
isotopes, �1, by definition, equals 0. When �i is small (ca.
�10‰), Eqn. 25 can be reduced to:

�4 	 �2 � �3 � 1000ln
K

Kr

(26)

based on the approximation that ln(1 �x) � x when x is much
smaller than 1.

For all populations of isotopologues of diatomic and sym-
metric triatomic molecules (i.e., CO2, but not N2O) having bulk
isotopic compositions within the range typical of natural ma-
terials, �i values of singly substituted isotopologues are near 0
(ca. �0.01‰) at temperatures of interest. In this case, the
following simple relationship exists between value of K and
value of �4:

�4 	 �1000ln
K

Kr

(27)

Asymmetric triatomic molecules (among whose different
isotopologues the highest symmetry is C�v) such as N2O are
exceptions for which �i values of singly substituted isotopo-
logues can be far from 0 (see section 3.5). In the interests of
completeness, we present both �i values and Ki values for all
isotope exchange reactions for each molecule considered in the
following section. In general, these two sets of variables have
simple relationships to one another, as in Eqn. 27. However, it
is important to note that while the K values are independent of
bulk composition, �i values can differ significantly from the
values we show for highly enriched bulk isotopic compositions.

3.3. � Values for Isotopic Masses

While it is possible to precisely measure abundances of
doubly substituted isotopologues of some molecular gases,
the instruments used for this purpose today do not have
sufficient mass resolution to separate isotopologues that are
isobars of one another. For example, measurements of
16O13C18O presented by Eiler and Schauble (2004) must be
corrected for minor contributions from 17O12C18O and
17O13C17O (much as conventional measurements of �13C
must be corrected for contributions from the isobar,
16O12C17O; Santrock et al., 1985 and references therein).
We report �i values for all individual isotopologues in this
paper both for completeness in our theoretical treatment and
because it may be possible in the future to resolve some of
these isobars. However, we also report �i values calculated
in the same fashion as defined in Eqn. 19, but including
contributions from all isotopologues having a single nominal

cardinal mass. For example, �47 for CO2 is calculated as:
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�47 ��
[16O13C18O] � [17O12C18O] � [17O13C17O]

[16O12C16O]

[16O13C18O]r � [17O12C18O]r � [17O13C17O]r

[16O12C16O]r

� 1�

 1000 (28)

These �i values calculated for a given cardinal mass obscure
important details of the geochemistry of some isotopologues,
but are useful because they provide a practical guide to the
isotope effects that are measurable using existing technology.

3.4. Diatomic Molecules

Abundances of isotopologues of N2, NO, CO, and O2 were
calculated using both the harmonic oscillator approximation
(Eqn. 11 and 12) and the anharmonic model (Eqn. 13 through
17). Results of these calculations are presented in Figures 2
through 5 and in Table 2. We use molecular constants for
14N14N, 14N16O, 12C16O, and 16O2 taken from Huber and
Herzberg (1979) (see Table 1). Properties of other isotopo-

Fig. 2. (a) Variation of � values of all isotopologues of N2 with 1/T;
the inset shows the abundances of all isotopologues of N2 for the
stochastic distribution and an 15N/14N ratio equal to atmospheric N2.
(b) Variation of �1000 · ln(Ki/Ki-random) (i � 1) with 1000/T for the
isotope exchange reaction in Eqn. 30.
logues of these molecules were calculated based on spectro-
scopic data and the following relationship from Dunham
(1932):

�1

�2

�
�2

�1

;
�1xe1

�2xe2

�
�2

�1

;
Be1

Be2

�
�2

�1

;
	e1

	e2

� ��2

�1
�3⁄2

(29)

where � �
m1m2

m1�m2

and is the reduced mass; �i, is the normal

mode wave number (as above); xe is the cubic anharmonic
correction term; Be is the rotational constant; 	e is vibration-
rotation coupling constant; and subscripts 1 or 2 refer to dif-
ferent isotopologues of the same molecule. Isotopic masses and
average natural abundances are from Walker et al. (1989).

3.4.1. N2

The two required system components for N2 were chosen to
be 14N14N and 14N15N. The independent exchange reaction that
goes with these system components is:

K1

Fig. 3. (a) Variation of � values of all isotopologues of NO with 1/T;
the inset shows the abundances of all isotopologues of NO for the
stochastic distribution, an 15N/14N ratio equal to atmospheric N2 and an
oxygen isotope composition equal to VSMOW. (b) Variation of �1000
· ln(Ki/Ki-random) (i � 1 or 2) with 1000/T for the isotope exchange
reactions in Eqn. 31i and 31ii.
14N14N � 15N15N`214N15N (30)
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Results of our calculations for N2 using the harmonic oscillator
approximation are shown in Figure 2a and 2b and Table 2.
Figure 2a shows �i values of all isotopologues of N2 as func-
tions of 1/T; the inset shows the abundances of all isotopo-
logues of N2 for the stochastic distribution and a bulk isotopic
composition equal to terrestrial atmospheric N2 (IUPAC,
1994). Note that �14N15N does not differ significantly from zero
at any temperature within the range considered; i.e., this iso-
topologue is present in very nearly the abundance predicted for
the stochastic distribution. In contrast, �15N15N is ca. 1‰ at room
temperature and increases with decreasing temperature. At
temperatures less than ca. �400 K, �15N15N varies linearly with
1/T. Figure 1b shows values of �1000 · ln(K1/K1-r) as a
function of 1/T, where Kr is the equilibrium constant of reac-
tion 30 (K1-r � 4 for the stochastic distribution). The value of
�30 exactly equals �15N15N.

If nitrogen in the earth’s atmosphere were in equilibrium
with respect to reaction 30, we would expect a ca. 1‰ excess
of 15N15N beyond the stochastic distribution. This should be
readily detectable using existing analytical methods, provided
contributions from 14N16O and 12C18O (common products of

Fig. 4. (a) Variation of � values of all isotopologues of CO with 1/T;
the inset shows the abundances of all isotopologues of CO for the
stochastic distribution, a 13C/12C ratio equal to PDB, and an oxygen
isotope composition equal to VSMOW. (b) Variation of �1000
· ln(Ki/Ki-random) (i � 1 or 2) with respect to 1000/T for the isotope
exchange reactions in Eqn. 32i and 32ii.
fragmentation and oxidation reactions in mass spectrometer
sources) can be minimized (it is unlikely they could be mass-
resolved by a practical instrument). Given the slow rates of
gas-phase isotope exchange reactions for most simple mole-
cules, we think it likely that the earth’s atmosphere is not in
thermodynamic equilibrium, and instead that its 15N15N con-
tent reflects the net effects of fractionations accompanying
various biologic and photochemical sources and sinks. Given
the very long lifetime of N2 in air, we think it possible that any
such net enrichments or deficits could be large.

Fig. 5. (a) Variation of � values of all isotopologues of O2 with 1/T;
the inset shows the abundances of all isotopologues of O2 for the
stochastic distribution and an oxygen isotope composition equal to
VSMOW. (b) Variation of �1000 · ln(Ki/Ki-random) (i � 1 to 3) with
1000/T for the isotope exchange reactions in Eqn. 33i through 33iii.

Table 1. Molecular constants for diatomic molecules of 16O16O
14N14N, 12C16O, and 14N16O; data are from Huber and Herzberg
(1979). re is the equilibrium internuclear distance, other terms are
defined in the text.

�e

(cm�1)
�exe

(cm�1) Be 	e re (Å)

14N14N 2358.570 14.324 1.63745 0.01791 1.21260
14N16O 1904.204 14.075 1.70493 0.01710 1.15077
12C16O 2169.814 13.288 1.93128 0.01750 1.12832

16O16O 1580.193 11.981 0.04747 0.01593 1.20752
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3.4.2. NO

The four required system components for NO were chosen to
be 14N16O, 15N16O, 14N17O, and 14N18O. The two independent
exchange reactions that go with these system components are:

14N16O � 15N17O`
K1

15N16O � 14N17O (31i)

14N16O � 15N18O`
K2

15N16O � 14N18O (31ii)

Results of our calculations for NO using the harmonic oscilla-
tor approximation are shown in Figure 3a and b and Table 2.
Figure 3a shows the dependence of � values on 1/T; the inset
shows the abundances of all isotopologues for NO having the
stochastic distribution, a bulk isotopic composition of N equal
to atmospheric N2 (IUPAC, 1994), and of O equal to Vienna
Standard Mean Ocean Water (VSMOW) (IUPAC, 1994). Val-
ues of �15N18O and �15N17O are �1‰ at earth-surface tempera-
tures, increase with decreasing temperature, and vary linearly
with 1/T at temperatures less than 500 K. Figure 3b shows the
dependences of �1000 · ln(Ki/Ki-r) (i � 1 or 2) on 1/T (Ki-r �
1 for both reactions). As for N2, there is a simple relationship
between �i values and related Ki values (see section 3.2). The
�32 value (a weighted sum of �15N17O and �14N18O) approximately
equals 0 despite significant enrichments in 15N17O because the

abundance ratio,
�15N17O�
�14N18O�

, is very small; �33 exactly equals

�15N18O.
The atmospheric budget of NO is influenced by emissions

from soils (particularly fertilized agricultural fields) and a com-
plex set of photochemical sources and sinks (including transfer
between NO and NO2). The budget has not been well studied
by conventional stable isotope techniques, perhaps because of
the low mixing ratio of nitric oxide in air (tens of pptv). We can

Table 2. Calculated � for isotopologues of N2, NO, CO, and O2

200 K

Harmonic Anharmonic Harm

N2
14N15N �0.0069 �0.0069 �0
15N15N 1.8619 1.8603 1
NO
15N16O �0.0053 �0.0053 �0
14N17O �0.0046 �0.0046 �0
15N17O 1.2261 1.2240 0
14N18O �0.0088 �0.0088 �0
15N18O 2.3560 2.3518 1
CO
13C16O �0.0073 �0.0073 �0
12C17O �0.0189 �0.0188 �0
12C18O �0.0362 �0.0361 �0
13C17O 1.6735 1.6714 0
13C18O 3.2134 3.2094 1
O2
16O17O �0.0036 �0.0036 �0
16O18O �0.0069 �0.0068 �0
17O17O 0.8274 0.8254 0
17O18O 1.5899 1.5862 0
18O18O 3.0569 3.0498 1
think of no basis for confidently predicting the abundances of
15N17O and 15N18O in air, although it seems reasonable to
suspect they could be sensitive to the balance between soil
sources vs. atmospheric photochemical sources and sinks.

3.4.3. CO

The four required system components for CO were chosen to
be 12C16O, 13C16O, 12C17O, and 12C18O. The two independent
exchange reactions that go with these system components are:

12C16O � 13C17O`
K1

13C16O � 12C17O (32i)

12C16O � 13C18O`
K2

13C16O � 12C18O (32ii)

Results of our calculations for CO using the harmonic oscillator
approximation are shown in Figure 4a and b and Table 2.
Figure 4a shows the dependence of � values on 1/T; the
inset shows the abundances of all isotopologues for CO
having the stochastic distribution, a 13C/12C ratio equal
to Pee Dee Belemnite (PDB) (Craig, 1957), and an oxygen
isotope composition equal to VSMOW (IUPAC, 1994). Values
of �13C18O and �13C17O are �1‰ at earth-surface temperatures,
increase with decreasing temperature, and vary linearly with
1/T at temperatures �600 K. Figure 4b shows the dependence
of �1000 · ln(Ki/Ki-r) (i � 1 or 2) on 1/T (Ki-r � 1 for both
reactions). The �30 value (equal to the weighted sum of �12C18O

and �13C17O) approximately equals 0 because the abundance

ratio,
�13C17O�
�12C18O�

, is very small; �31 exactly equals �13C18O.

The natural atmospheric budget of CO includes sources from
fossil fuel and biomass combustion and photo-oxidation of
volatile hydrocarbons, and sinks to soil uptake and oxidation by
atmospheric radicals. It is difficult to predict the expected
impact of these processes on abundances of multiply substi-

ct temperature using harmonic or anharmonic oscillator models.

300 K 1000 K

Anharmonic Harmonic Anharmonic

�0.0039 �0.0002 �0.0002
1.0441 0.0636 0.0642

�0.0028 �0.0001 �0.0001
�0.0024 �0.0001 �0.0001

0.6458 0.0277 0.0281
�0.0046 �0.0002 �0.0002

1.2378 0.0525 0.0533

�0.0040 �0.0002 �0.0002
�0.0103 �0.0005 �0.0005
�0.0198 �0.0010 �0.0010

0.9179 0.0487 0.0487
1.7589 0.0924 0.0924

�0.0017 �0.0001 �0.0001
�0.0033 �0.0001 �0.0001

0.4047 0.0128 0.0137
0.7751 0.0243 0.0261
1.4850 0.0460 0.0495
, at sele

onic

.0039

.0456

.0028

.0024

.6476

.0046

.2413

.0040

.0104

.0198

.9197

.7623

.0017

.0033

.4063

.7782
tuted isotopologues, although experience with CO2 (discussed
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below) suggests combustion sources will be near the stochastic
distribution. Losses to soil are suspected to rate limited by soil
diffusion and may involve fractionations controlled by the
kinetic theory of gases (see Eiler and Shauble (2004) for
examples of such fractionations of 18O13C16O). Photochemical
sources and sinks are less easily predicted and suggest we must
await experimental study.

3.4.4. O2

The three required independent system components for O2

are chosen to be 16O16O, 16O17O, and 16O18O. The set of three
independent reactions that go with these system components is:

16O16O � 18O18O`
K1

216O18O (33i)

16O16O � 17O18O`
K2

16O17O � 16O18O (33ii)

16O16O � 17O17O`
K3

216O17O (33iii)

Results of our calculations for O2 using the harmonic oscillator
approximation are shown in Figure 5a and b and Table 2.
Figure 5a shows � values of all isotopologues of O2 as func-
tions of 1/T; the inset shows the abundances of all isotopo-
logues for O2 having the stochastic distribution and an oxygen
isotope composition equal to VSMOW (IUPAC, 1994). Values
of �17O17O, �17O18O, and �18O18O are ca. 1‰ at earth-surface tem-
peratures, increase with decreasing temperature, and vary lin-
early with 1/T at temperatures less than ca. 400 K. Figure 5b
shows values of �1000 · ln(Ki/Ki-r) (i � 1, 2 and 3) as
functions of 1/T. The value of �34 (equal to the weighted sum
of �16O18O and �17O17O) approximately equals 0 because the

abundance ratio,
�17O17O�
�16O18O�

, is very small; �35 exactly equals

�17O18O and �36 exactly equals �18O18O.
The atmospheric budget of O2 is dominated by photosyn-

thetic sources and respiration sinks, resulting in a distinctive
heavy-isotope enrichment referred to as the Dole effect (Dole,
1935), which has been ascribed to fractionations during respi-
ration (Lane and Dole, 1956). In the absence of other fraction-
ations, the kinetic theory of gases predicts this should lead to
several tenths of per mill depletions of �17O18O and �18O18O rather
than values of ca. �1‰ predicted for thermodynamic equilib-
rium. However, the Dole effect is also influenced by strato-
spheric ozone chemistry and by fossil fuel and biomass com-
bustion. In particular, atmospheric O2 is anomalously low in
�17O given its �18O value (i.e., it lies below the terrestrial
fractionation line defined by earth rocks and waters on a plot of
�17O vs. �18O; Luz et al., 1999). This phenomenon has been
ascribed to nonmass-dependent isotopic fractionations associ-
ated with ozone chemistry (Luz et al., 1999) or to unusual mass
dependence of diffusive fractionations during respiration
(Young et al., 2002). While the fractionation of 18O18O and
17O18O during natural ozone chemistry are not well known, we
speculate that they could differ from those predicted for ther-
modynamic equilibrium and diffusive fractionation, and there-
fore might constrain contributions of these various processes to
the overall atmospheric budget.
Results of calculations for N2, NO, CO, and O2 using an
anharmonic model of intramolecular bonds and temperatures of
200 K, 300 K, and 1000 K are listed in Table 2, where they can
be compared with results using the harmonic oscillator approx-
imation. Note that � values calculated using the harmonic
oscillator model are slightly larger at low temperatures (ca. 200
K) and slightly lower at high temperatures (ca. 1000 K) than
those calculated using the anharmonic nonrigid rotor model;
thus, results plotted in Figures 2 through 5 contain small
systematic errors reflecting imperfections in the harmonic os-
cillator model. However, these errors are a small fraction of �
values at any given temperature, and we conclude that the
harmonic oscillator model is sufficiently accurate for the pur-
poses of interpreting measured abundances of multiply substi-
tuted isotopologues.

Note that all values of � for the diatomic molecules dis-
cussed above vary linearly with 1/T when temperature is lower
than ca. 600 to 400 K. This reflects the same factors that control
the temperature dependence of better-known intermolecular
isotope exchange reactions (e.g., Bigeleisen and Mayer, 1947;
O’Neil, 1986). Bigeleisen and Mayer (1947) showed that ex-
pressions for partition function ratios such as Eqn. 11 can be
approximated as follows:

Q2

Q1

� 1 � �1

2
�

1

U2

�
1

e�U2 � 1�(U1 � U2) � 1 � G(U1 � U2)

(34)

where Ui � hc�i /kT. Because vibrational wave numbers for the
molecules considered in this section are generally between
1600 to 2400 cm-1, U2 values are generally larger than 5 when
temperature is below 400 K. In this case, G approaches a value
of 0.5 and partition function ratios vary linearly with 1/T. At
higher temperatures, where U2 values are smaller than 5, G
converges toward a value of U2/12 and partition function ratios
instead vary linearly with 1/T2. Hence, equilibrium constants
for the isotope exchange reactions we consider should vary
linearly with 1/T below ca. 600 to 400 K, and nonlinearly with
1/T at higher temperatures.

3.5. Triatomic Molecules

As the number of atoms in a molecule increases, it becomes
increasingly difficult to predict equilibrium distribution of iso-
topologues of the molecule, both due to gaps in the spectro-
scopic data and the larger number of independent isotope
exchange reactions that must be considered. Moreover, anhar-
monic models of intramolecular bonds are more difficult to
formulate and evaluate, because the vibrational-rotational po-
tential energy surface is complicated and the interaction be-
tween rotation and vibration is often strong. For these reasons,
the only triatomic (or higher order) molecules we consider are
CO2 and N2O, both of which have full spectroscopic data and
accurate potential energy surfaces available in the literature
(Chedin, 1979; Chedin and Teffo, 1984; Zúñiga et al., 1999;
Zúñiga et al., 2001). The models we present for these molecules
are based upon the same “Urey-type” treatment of vibrational
energies discussed above. The Appendix presents additional
calculations made using higher-order theory to test the validity

of the approximations used in this approach. These tests sug-
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gest the “Urey” method of calculating partition function ratios
is adequate for our purposes, even for triatomic molecules.

3.5.1. CO2

The four required system components for CO2 were chosen
to be 16O12C16O, 16O13C16O, 16O12C17O, and 16O12C18O. The
set of eight independent exchange reactions that go with these
system components are listed above in Eqn. 8i through 8viii
(section 2.1). Zero point energy and normal mode frequencies
of CO2 isotopologues (Table 3) were calculated using the
potential energy surface from Zúñiga et al. (2001). Results
of our calculations for CO2 using the harmonic oscillator
approximation are shown in Figure 6a and b and Table 4.
Figure 6a shows � values of all isotopologues of CO2 as
functions of 1/T; the inset shows the abundances of all isoto-
pologues for CO2 having the stochastic distribution, a 13C/12C
ratio equal to PDB (Craig, 1957) and an oxygen isotope
composition equal to VSMOW (IUPAC, 1994). Values of
�18O13C18O, �17O13C18O, �17O13C17O, �16O13C18O,� 16O13C17O and �18O12C18O

are all between ca. 0.5‰ and 2‰ at earth-surface temperatures,
increase with decreasing temperature, and vary linearly with
1/T at temperatures �400 K. Figure 6b shows values of �1000
· ln(Ki/Ki-r) (i � 1 through 8) as functions of 1/T (values of Ki-r

for these reactions are listed in section 2 immediately following
Eqn. 9. The �46 value (equal to the weighted sum of
�16O12C18O, �17O12C17O and �16O13C17O) is �0 due to low abundances
of 17O12C17O and 16O13C17O compared with that of

Table 3. Calculated zero point energies and normal mode wave
numbers for all isotopologues of CO2 and N2O, using potential energy
surfaces from Zuniga et al. (2001) and Zuniga et al. (1999).

Zero point
energy(cm�1) �1(cm�1) �2

†(cm�1) �3(cm�1)

CO2
16O12C16O 2525.394 1348.479 670.315 2387.185
16O13C16O 2472.905 1348.479 651.237 2319.243
16O12C17O 2507.955 1328.175 667.609 2377.682
16O12C18O 2492.277 1309.544 665.205 2369.462
16O13C17O 2455.240 1328.154 648.452 2309.472
17O12C17O 2490.437 1308.042 664.892 2367.872
16O13C18O 2439.355 1309.467 645.976 2301.041
17O12C18O 2474.686 1289.553 662.478 2359.382
17O13C17O 2437.498 1308.042 645.654 2299.360
18O12C18O 2458.866 1271.185 660.056 2350.649
17O13C18O 2421.542 1289.536 643.168 2290.624
18O13C18O 2405.519 1271.185 640.673 2281.620
N2O
14N14N16O 2362.891 1293.360 594.047 2273.531
14N15N16O 2324.403 1291.559 580.468 2224.518
15N14N16O 2339.811 1276.422 590.511 2250.898
15N15N16O 2301.072 1275.062 576.848 2201.112
14N14N17O 2347.536 1270.870 591.559 2269.847
14N15N17O 2308.882 1268.802 577.922 2220.888
15N14N17O 2324.378 1254.108 588.008 2246.910
15N15N17O 2285.474 1252.506 574.286 2197.158
14N14N18O 2333.729 1250.451 589.349 2266.682
14N15N18O 2294.920 1248.131 575.659 2217.776
15N14N18O 2310.497 1233.829 585.785 2243.483
15N15N18O 2271.441 1231.997 572.009 2193.768

† �2 � is doubly degenerate.
16O12C18O (Fig. 5a). Similarly, �47 (equal to the weighted sum
of �16O13C18O, �17O12C18O and �17O13C17O) is only slightly greater than
�16O13O18O, and �48 (equal to the weighted sum of �17O12C18O and
�17O13C18O) is only slightly greater than �18O12C18O at any given
temperature. Alternate calculated abundances of CO2 isotopo-
logues using spectroscopic data from Chedin (1979) and Che-
din and Teffo (1984) are also provided in Table 4 for compar-
ison. Differences between these results and those based on the
Zúñiga et al. (2001) potential energy surface model are up to
� 0.3‰ at 200 K (though generally �0.1‰). These differences
are detectable with existing analytical methods (Eiler and
Schauble, 2004) and suggest that analyses of �i values in
equilibrated mixtures of CO2 isotopologues could be used to
chose between, or otherwise constrain, models of the CO2

molecule.
To the best of our knowledge, 18O13C16O is the only mul-

tiply substituted isotopologue to be precisely measured in at-
mospheric samples. These data are presented in Eiler and
Schauble (2004). Briefly, the atmosphere is enriched by ca. 0.7
to 0.8‰ in �47, consistent with thermodynamic equilibrium at
earth-surface temperatures being the first-order control, but
with a small (�0.2‰) but consistent deficit in �47 that might
reflect diffusive fractionations during photosynthetic carbon
fixation, and additions to air of high-temperature anthropogenic
CO2. Variations in �47 with time and location are likely to
result from variable temperatures of equilibration between air
and seawater or plant leaf water and variable contributions of
anthropogenic sources. It is possible that the abundances of
multiply substituted isotopologues of CO2 in the stratosphere,
where photochemical reactions contribute significantly to its
budget, will differ even more greatly from the existing tropo-
spheric measurements.

3.5.2. N2O

The four required system components for N2O were chosen
to be 14N14N16O, 14N15N16O, 14N14N17O, and 14N14N18O. The
set of eight independent exchange reactions that go with these
system components are:

14N14N16O � 15N15N16O`
K1

14N15N16O � 15N14N16O (35i)

14N14N16O � 15N14N17O`
K2

15N14N16O � 14N14N17O (35ii)

214N14N16O � 15N15N17O`
K3

14N15N16O � 15N14N16O � 14N14N17O

(35iii)

14N14N16O � 14N15N17O`
K4

14N15N16O � 14N14N17O (35iv)

14N14N16O � 14N15N18O`
K5

14N15N16O � 14N14N18O (35v)

14N14N16O � 15N14N18O`
K6

15N14N16O � 14N14N18O (35vi)

214N14N16O � 15N15N18O`
K7

14N15N16O � 15N14N16O � 14N14N18O

(35vii)

14N15N16O`
K8

15N14N16O (35viii)
Zero point energies and normal mode frequencies for N2O
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(Table 3) were calculated using the potential energy surface of
Zúñiga et al. (1999). Results of our calculations for N2O using
the harmonic oscillator approximation are shown in Figure 7a
through c, Figure 8a and b and Table 4. Figure 7a through c
shows � values of all isotopologues of N2O as functions of 1/T;
the inset to Figure 7a shows abundances of all isotopologues
for N2O having the stochastic distribution, a 15N/14N ratio
equal to atmospheric N2 (IUPAC, 1994), and an oxygen isotope
composition equal to VSMOW (IUPAC, 1994). Figure 8a and
b shows values of �1000 · ln(Ki /Ki-r) (i � 1 through 8) as
functions of 1/T. Note that, unlike all other molecules
considered in this study, relationships between �1000
· ln(Ki /Ki-r) and �i values are not simple for N2O. Values of
�1000 · ln(Ki /Ki-r) for reactions 35i through 35vii have mag-
nitudes and temperature dependences resembling those of anal-
ogous reactions of other molecules considered in this study,
whereas �1000 · ln(Ki/Ki-r) for reaction 35viii is exceptionally
large and strongly dependent on temperature. The aberrant
behaviors of N2O isotopologues (discussed below) can be
attributed to this large equilibrium constant for reaction 35viii.

There are several noteworthy differences between results for
N2O and CO2 despite similarities in masses of isotopologues
and their constituent atoms. First, values of �15N15NxO (where x �
16, 17, or 18) differ significantly from zero at low temperature,

Fig. 6. (a) Variation of � values of all isotopologues of C
of CO2 for the stochastic distribution, a 13C/12C ratio equa
(b) Variation of �1000 · ln(Ki/Ki-random) (i � 1 to 8) with 1
but do not increase monotonically with decreasing temperature.
Second, values of �14N15NxO are large positive numbers, more
than an order of magnitude larger than � values for any CO2

isotopologue. Finally, values of �15N14NxO are large negative
numbers, also more than an order of magnitude larger in
absolute value than � values for any CO2 isotopologue, and the
only � values of any isotopologue considered in this study that
are significantly less than 0. Note that large positive and neg-
ative � values for the 14N15N18O and 15N14N18O isotopologues
are similar in absolute value to one another at any given
temperature, so that �47 (equal to the weighted sum of
�14N15N18O, �15N14N18O, and �15N15N17O) is only ca. 0.5‰ at earth-
surface temperatures and has a temperature dependence resem-
bling doubly substituted isotopologues of other molecules we
considered.

The unusual behaviors of N2O result from the affinity of 15N
for the central position in N2O, stabilizing 14N15NxO species
relative to 15N14NxO species. The zero-point energies of
14N15NxO species are ca. 15.5 cm-1 less than those of
15N14NxO species having the same mass (Table 3). These
differences lead to ca. 80‰ enrichment of 14N15N16O relative
to 15N14N16O at 200 K. Furthermore, the complex temperature
dependence of �15N15N16O can be explained by different temper-
ature dependencies of the reduced partition functions of
�14N15N16O and �15N14N16O. Similar to Eqn. 25, the relationship

h 1/T; the inset shows the abundances of all isotopologues
B, and an oxygen isotope composition equal to VSMOW.
or the isotope exchange reactions in Eqn. 8i through 8viii.
O2 wit
between �15N15N16O and K1 is:
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ln ��15N15N16O

1000
� 1�� ln ��15N14N16O

1000
� 1�

� ln ��14N15N16O

1000
� 1�� ln

K1

K1�r

(36)

At low temperatures (e.g., �250 K), ln��15N14N16O

1000
� 1� � ln

��14N15N16O

1000
� 1� is a negative number and smaller than ln

K1

K1�r

,

giving rise to the negative �15N15N16O value; while at high tem-
peratures, it is a small negative number close to zero.

Alternative calculations of the abundances of N2O isotopo-
logues using spectroscopic data, zero point energies, and nor-
mal mode frequencies from Zúñiga et al. (2003) are also listed
in Table 4 for comparison. These results are generally similar
to those based on the Zúñiga et al. (1999) potential energy
surface, although a notable exception is the ca. 2.5‰ difference
in �15N15N16O at low temperature. This difference is difficult to
understand given agreement for all other isotopologues; one
possible explanation is that the spectroscopic data for
15N15N16O from Zúñiga et al. (2003) are not consistent with
those for other isotopologues considered in that study.

The atmospheric budget of N2O is dominated by sources
from the terrestrial biosphere and oceans and photochemical

Table 4. Comparison of calculated � values for isotopologues of N2O
et al. (2001) for CO2 and Zuniga et al. (2003) for N2O (II).

200 K

I II

CO2
16O13C16O �0.0082 �0.0082
16O12C17O �0.0117 �0.0121
Mass 45 �0.0084 �0.0085
16O12C18O �0.0225 �0.0228
16O13C17O 0.9347 0.9477
17O12C17O 0.2370 0.4537
Mass 46 �0.0205 �0.0208
16O13C18O 1.7977 1.8093
17O12C18O 0.4674 0.5187
17O13C17O 2.1273 2.3922
Mass 47 1.7552 1.7680
18O12C18O 0.9217 1.0100
17O13C18O 3.2220 3.5192
Mass 48 0.9311 1.0202
18O13C18O 4.5322 4.6997
N2O
14N15N16O 39.3299 39.3517
15N14N16O �39.3302 �39.3736
14N14N17O �0.0032 �0.0030
Mass 45 �0.0003 �0.0106
15N15N16O �0.4564 2.4191
14N15N17O 39.9751 39.9314
15N14N17O �39.1061 �39.1274
14N14N18O �0.0062 �0.0065
Mass 46 �0.0086 0.0103
15N15N17O 0.3899 0.3162
14N15N18O 40.5659 40.5792
15N14N18O �38.8990 �38.8564
Mass 47 0.8333 0.8612
15N15N18O 1.1670 1.1484
sinks (Rahn and Wahlen, 2000; Toyoda et al., 2001; McLinden
et al., 2003). Recent research on its budget has been motivated,
in part, by the fact that it is a greenhouse gas with a large,
though indirect, anthropogenic source (resulting from use of
agricultural fertilizers). Stable isotope data are a prominent part
of this research and take advantage of large isotopic contrasts
between biosphere sources and the mean atmosphere. The large
distinctive thermodynamic fractionations predicted for N2O
isotopologues (Figs. 7 and 8), combined with strong isotopic
fractionations associated with photolysis (Blake et al., 2003),
suggest that measurements of multiply substituted isotopo-
logues could contribute additional constraints to this problem.

4. DISCUSSION AND CONCLUSIONS

Results of our calculations can be summarized as follows.

1. Where as most singly substituted isotopologues do not have
measurable deviations from the stochastic distribution, mul-
tiply substituted isotopologues typically have per mill level
enrichments at earth-surface temperatures.

2. In most cases, deviations from the stochastic distribution (�
values) increase linearly with 1/T at temperatures �ca. 600
to 400 K.

3. Abundances of multiply substituted isotopologues of N2O are
exceptions to the preceding generalizations. They vary com-
plexly with temperature and include tens of per mill enrich-

2 at select temperatures, using data in Table 3 (I) and data from Zuniga

300 K 1000 K

II I II

43 �0.0043 �0.0003 �0.0003
60 �0.0062 �0.0003 �0.0004
44 �0.0044 �0.0003 �0.0003
14 �0.0116 �0.0007 �0.0007
88 0.4982 0.0306 0.0327
48 0.2124 �0.0007 0.0181
04 �0.0106 �0.0006 �0.0006
84 0.9482 0.0582 0.0609
81 0.2011 �0.0010 0.0056
38 1.2332 0.0616 0.0865
38 0.9243 0.0563 0.0592
29 0.3900 �0.0013 0.0104
78 1.7888 0.0892 0.1187
81 0.3956 �0.0010 0.0108
92 2.3296 0.1169 0.1391

67 22.8072 3.6144 3.6031
89 �22.8282 �3.6146 �3.6116
15 �0.0013 �0.0001 0.0000
11 �0.0101 �0.0001 �0.0041
27 2.5882 0.0261 1.1336
63 23.0706 3.6293 3.6018
94 �22.7313 �3.6155 �3.6056
28 �0.0030 �0.0001 �0.0002
20 0.0146 0.0001 0.0074
38 0.3991 0.0401 0.0197
82 23.3915 3.6426 3.6272
68 �22.6107 �3.6163 �3.5874
08 0.3904 0.0131 0.0199
12 0.7867 0.0527 0.0454
and CO

I

�0.00
�0.00
�0.00
�0.01

0.48
0.08

�0.01
0.93
0.16
1.07
0.91
0.33
1.60
0.33
2.21

22.80
�22.80
�0.00
�0.00

0.07
23.11

�22.72
�0.00
�0.00

0.45
23.39

�22.65
0.37
ments and depletions of 14N15NxO, and 15N14NxO, respec-
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tively (where x � 16, 17, 18). We speculate that similarly
complex and large enrichments and depletions exist for other
triatomic and higher-order asymmetric molecules (i.e., those
with highest symmetry of C�v among their isotopologues).

These results provide a framework for interpretation of the
natural abundances of multiply substituted isotopologues. For
example, contributions of processes involving low temperature,
thermodynamically controlled isotopic exchange (e.g., air-sea
and air-leaf water exchange of CO2) could be identified as
contributors to budgets of atmospheric gases. Moreover, the
size and temperature dependence of � values of most multiply
substituted isotopologues suggest they can be used as geother-
mometers. Such thermometers differ from more familiar ones
based on differences in bulk stable isotopic composition be-

Fig. 7. (a) Variation of � values of isotopologues 14N15NxO, where
x � 16,17, or 18, with 1/T; the inset shows the abundances of all
isotopologues of N2O for the stochastic distribution, a 15N/14N ratio
equal to atmospheric N2, and an oxygen isotope ratio equal to VS-
MOW. (b) Variation of � values of isotopologues 14N14NxO, where x
� 17 or 18, and 15N15NxO, where x� 16,17, or 18, with 1/T. C:
Variation of � values of isotopologues, 15N14NxO, where x � 16,17, or
18, with 1/T.
tween coexisting phases; they instead involve homogeneous
equilibria (e.g., isotopic distribution within a population of
gaseous CO2 molecules alone) and are effectively independent
of bulk isotopic composition of that population. Furthermore,
multiple independent thermometers exist for all molecules hav-
ing more than one multiply substituted isotopologue (e.g.,
18O13C16O and 18O12C18O for CO2); thus, temperatures esti-
mated by this method can be tested for internal consistency.
Finally, the zero-point-energy differences between multiply
substituted isotopologues and their isotopically “normal” and
singly substituted relatives (Table 3) are also likely to manifest
themselves in kinetic fractionations during nonequilibrium re-
actions (e.g., Yung and Miller, 1997). Our calculations provide
guidance as to the sizes and directions of these effects.

It remains to be seen which of the isotope exchange reactions
modeled here are manifested in natural atmospheric gases,
other than initial evidence that 18O13C16O in air is dominantly
controlled by thermodynamic equilibrium (Eiler and Schauble,
2004). Furthermore, it must be determined which of these
reactions resist continuous re-equilibration in the atmosphere
and in the laboratory during sample preparation and analysis.
Evidence to date suggests that such reequilibration does not
occur for CO2 over timescales of days to weeks at atmospheric
pressures and temperatures and does not take place during most
vacuum and gas-chromatography sample preparation tech-

Fig. 8. (a) Variation of �1000 · ln(Ki/Ki-random) (i � 8) with 1000/T
for the isotope exchange reaction in Eqn. 35viii. (b) Variation of
�1000 · ln(Ki/Ki-random) (i � 1 to 7) with 1000/T for the isotope
exchange reactions in Eqn. 35i through 35vii.
niques, nor during dual-inlet mass spectrometry (Eiler and
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Schauble, 2004). Further work will be needed to establish
whether this also holds true of other common molecular gases.

Measurements of multiply substituted isotopologues place
special demands on techniques of sample preparation and mass
spectrometry. These are detailed by Eiler and Schauble (2004).
Briefly, they include (1) enough multiple static collectors to
simultaneously measure isotopically “normal”, singly substi-
tuted, and multiply substituted isotopologues (e.g., for CO2, at
least four collectors are needed and six are preferred); (2) high
sensitivity (e.g., ability to stably register ion beams for species
making up ca. 5–50 ppm of ca. �molar samples) and high
precision (1� �0.1‰). Fortunately, commonly available fara-
day cups and counting systems, when appropriately configured
and read through 1012 Ohm resistors, appear to be sufficient for
this task; (3) sample preparation procedures that remove po-
tential interferences from other common molecular gases (e.g.,
16O3 on 18O12C18O) and, more problematically, halocarbons
and hydrocarbons; and finally (4) as with more familiar mea-
surements of singly substituted isotopologues, measurements
of some multiply substituted isotopologues must be ion-cor-
rected to account for “internal isobars” of one isotopologue of
the analyte gas on another (e.g., 16O13C18O and 17O12C18O for
CO2). We are not aware of any instrument capable of resolving
these isobars and also capable of high-precision measurements
of isotope ratios. Therefore, at present, all such isobars are
corrected for following procedures similar to the 17O correction
applied to conventional measurements of �13C of CO2

(Santrock et al., 1985 and references therein). The related
problem of resolving isotopomers (e.g., 14N15N18O vs.
15N14N18O) should be addressable by either (1) spectroscopic
methods (e.g., Yung and Miller, 1997), or (2) mass spectrom-
etry of fragments (e.g., by monitoring 15N18O and 14N18O
fragments during analysis of N2O).
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APPENDIX

The calculations presented in section 3 of this study are based on
several approximations made in the derivation of the Urey equation and
its quantum-mechanical relatives. In this appendix, we present several
calculations using higher-order theory made to test the accuracy of the
harmonic oscillator and rigid rotor models. We make these tests for CO
and CO2 because their spectroscopic properties are relatively well
known.

Alternate Models for CO

Table A1 shows the calculated � value for each isotopologue of CO
at select temperatures based on three different methods: (1) the har-
monic oscillator model (i.e., Eqn. 11 in this paper); (2) an anharmonic
model using the Pitzer (1953) treatment (i.e., Eqn. 14 through 17); and
(3) a model in which each vibrotational partition function was calcu-
lated by numerical summation over several vibrational and rotational
quantum energy levels using the following equation:

Qv,J(T) � �
v�0

�
J�0

(2J � 1) · e
�hcE(v,J)

kT (A-1)

Input data for the first two methods are listed in Table 1 and are taken
from Huber and Herzberg (1979). Three different sets of constraints
were used for the third method: (1) a model using five Dunham
parameter equations, in which data from Table 1 and Eqn. 13 were used
to calculate energy at each quantum level, with vibrational and rota-
tional quantum numbers up to 70 and 200, respectively; (2) a model
using a larger number of Dunham parameters. In particular, forty-three
mass-independent Dunham parameters from Authier et al., (1993) were
used to evaluate the energy for every isotopologue at each quantum
level, including the zero point energy, and vibrational and rotational
quantum numbers were calculated up to 70 and 200, respectively; and
(3) a model based on the HITRAN database (High Resolution Trans-
mission), HITRAN2k (Rothman et al., 2003). This database compiles
4477 transmissions between low- and high-energy states of all six
isotopologues of the CO molecule, and from which we can deduce the
energy of each state involved. The line list for CO molecule in this
database is mainly from Goorvitch (1994), modified to incorporate
experimental data from Varberg and Evenson (1992). The zero point

energy from Goorvitch (1994) was also adopted. After calculating the
energy levels at each quantum number, Eqn. A-1 and Eqn. 18 were
used to calculate the full partition function. Results of these calcula-
tions summarized in Table A1 indicate that differences between these
models are effectively irrelevant for our purposes.

We also explored the number of energy levels required to calculate
�1000 · lnKi (i � 1,2) in Eqn. 32i and 32ii at 1000 K. Forty-three
Dunham parameters were used for this test. As shown in Figure A1-A
and B, values of �1000 · lnKi (i � 1,2) converge to within 0.05‰ when
vibrational energy levels are larger than 2 and rotational energy levels
are larger than 60. At lower temperatures, an even smaller number of
energy levels is required for convergence.

Alternate Models for CO2

The spectroscopic properties of CO2 are relatively well studied, but
remain incomplete. Rothman et al. (1992) present spectroscopic data
for eight isotopologues: 16O12C16O (155 vibrational energy levels);
16O13C16O (78 vibrational energy levels); 16O12C18O (59 vibrational
energy levels); 16O12C17O (26 vibrational energy levels); 16O13C18O
(16 vibrational energy levels); 16O13C17O (10 vibrational energy lev-
els); 18O12C18O (12 vibrational energy levels); 17O12C18O (3 vibra-
tional energy levels). These data are insufficient for a full analysis of �
values for most multiply substituted isotopologues. However, the 16
known energy levels for 16O13C18O are better than other multiply
substituted isotopologues and sufficient for a first-order analysis. We
calculated the rotational energy for each vibration level using spectro-
scopic constants Bv, Dv, and Hv as follows:

E(v, J) � G0 � Gv � BvJ(J � 1) � Dv[J(J � 1)]2 � Hv[J(J � 1)]3

(A-2)

Where G0 is zero point energy listed in Table 3, Gv is the energy at each
vibrational level with J � 0, and Gv, Bv, Dv, and Hv are listed in
Rothman et al. (1992). Partition functions are directly summed over
given vibrational quantum energy levels and calculated rotational quan-
tum energy levels, with J up to 200 using an equation similar to Eqn.
A-1, but including other factors:

Qv,J(T) � �
v1,v2,v3�0

�
l

v2

gvlgNS�
N

[2(N � l) � 1] · e
�hcE(v,J)

kT (A-3)

where v1, v2, and v3 are quantum numbers of three fundamental vibra-
tional modes (please refer to Rothman and Young (1981) for notation
details); l and N are angular momentum quantum numbers; l can take
values of v2, v2-2, v2-4, . . . , 1 or 0 and N can take any nonnegative

integer; the sum of vector l� and N� is the total angular momentum vector

J�, i.e., J� � N� � l�, therefore total angular momentum quantum number
J can take possible values of (N � l), (N � l-1), · · · , |N � l |. Here the
maximum of J (i.e., J � N � l) is chosen, which can take values of J,
(J-1), (J-2),�,�J, contributing to 2J � 1 degeneracy; gNS is statistical
weight caused by nuclear spin, and generally composed of two parts:
(1) nuclear spin degeneracy factor for unpaired nuclei, this factor is
(2I1�1)(2I2�1)(2I3�1) and same for all levels of a molecule (where Ii

denotes the nuclear spin number of atom i), therefore will be cancelled
out during the calculation of equilibrium constants; we ignored this part
during our calculation of partition function; (2) nuclear spin degeneracy
factor for coupling of equivalent nuclear pairs with rotational wave-
functions, this factor may differ between alternate rotational levels of
one isotopologue, and therefore is included in our calculation of par-
tition function (Herzberg, 1945; Gamache et al., 1990); since our
consideration excludes 17OC17O isotopologues due to the lack of
spectroscopic data of them, gNS is 1 or 0 depending on the symmetric
or antisymmetric rotational energy levels: i.e., when 2 oxygen atoms
are the same isotopes (point group D�h), gNS � 1 for symmetric
rotational states (N is even integer, e.g., 0,2,4, · · · ) and gNS � 0 for
antisymmetric rotational states (N is odd integer, e.g., 1,3,5, · · · );
otherwise, when 2 oxygen atoms are different isotopes (point group
C�v), gNS � 1 for both symmetric and antisymmetric rotational states;
gvl is a statistical weight factor due to internal rotation, gvl � 1 when l
� 0 and gvl � 2 when l 	0.

Results of these calculations are shown in Figure A2-A for temperatures

from 75 to 1000 K. Deviation in �1000 · lnK3 from that calculated using
the “Urey” method (Eqn. 11 through 13) is small (�0.1‰) below 260 K,



Table A1. Comparison of calculated �i for CO molecule at select temperature using three methods (please refer to text for details).

Temperature (K)

Harmonic approximation Anharmonic approximation

13C16O 12C17O 12C18O 13C17O 13C18O 13C16O 12C17O 12C18O 13C17O 13C18O

100 �0.0172 �0.0444 �0.0853 3.9421 7.5867 �0.0172 �0.0444 �0.0853 3.9392 7.5812
150 �0.0106 �0.0274 �0.0525 2.4292 4.6691 �0.0106 �0.0274 �0.0525 2.4268 4.6646
200 �0.0073 �0.0189 �0.0362 1.6735 3.2134 �0.0073 �0.0188 �0.0361 1.6714 3.2094
250 �0.0053 �0.0138 �0.0263 1.2206 2.3415 �0.0053 �0.0137 �0.0263 1.2187 2.3378
300 �0.0040 �0.0104 �0.0198 0.9197 1.7623 �0.0040 �0.0103 �0.0198 0.9179 1.7589
400 �0.0024 �0.0062 �0.0118 0.5503 1.0523 �0.0024 �0.0062 �0.0118 0.5487 1.0491
500 �0.0015 �0.0039 �0.0074 0.3429 0.6544 �0.0015 �0.0038 �0.0073 0.3415 0.6516
600 �0.0009 �0.0025 �0.0047 0.2202 0.4194 �0.0009 �0.0025 �0.0047 0.2190 0.4171
700 �0.0006 �0.0016 �0.0031 0.1453 0.2763 �0.0006 �0.0016 �0.0031 0.1444 0.2746
800 �0.0004 �0.0011 �0.0021 0.0985 0.1870 �0.0004 �0.0011 �0.0021 0.0978 0.1859
900 �0.0003 �0.0008 �0.0015 0.0684 0.1299 �0.0003 �0.0008 �0.0015 0.0681 0.1293

1000 �0.0002 �0.0005 �0.0010 0.0487 0.0924 �0.0002 �0.0005 �0.0010 0.0487 0.0924

Temperature
(K)

5 parameter Dunham equation 43 Dunham parameters HITRAN data calculation

13C16O 12C17O 12C18O 13C17O 13C18O 13C16O 12C17O 12C18O 13C17O 13C18O 13C16O 12C17O 12C18O 13C17O 13C18O

100 �0.0172 �0.0444 �0.0853 3.9413 7.5852 �0.0172 �0.0444 �0.0853 3.9412 7.5849 �0.0172 �0.0444 �0.0853 3.9412 7.5823
150 �0.0106 �0.0274 �0.0525 2.4287 4.6682 �0.0106 �0.0274 �0.0525 2.4281 4.6670 �0.0106 �0.0274 �0.0525 2.4281 4.6654
200 �0.0073 �0.0189 �0.0361 1.6733 3.2131 �0.0073 �0.0189 �0.0361 1.6724 3.2113 �0.0073 �0.0189 �0.0361 1.6724 3.2100
250 �0.0053 �0.0138 �0.0263 1.2207 2.3417 �0.0053 �0.0137 �0.0263 1.2195 2.3393 �0.0053 �0.0137 �0.0263 1.2195 2.3383
300 �0.0040 �0.0104 �0.0198 0.9202 1.7633 �0.0040 �0.0104 �0.0198 0.9186 1.7603 �0.0040 �0.0104 �0.0198 0.9186 1.7595
400 �0.0024 �0.0062 �0.0119 0.5518 1.0552 �0.0024 �0.0062 �0.0118 0.5496 1.0510 �0.0024 �0.0062 �0.0118 0.5496 1.0504
500 �0.0015 �0.0039 �0.0074 0.3456 0.6596 �0.0015 �0.0039 �0.0074 0.3428 0.6542 �0.0015 �0.0039 �0.0074 0.3428 0.6537
600 �0.0010 �0.0025 �0.0048 0.2238 0.4266 �0.0010 �0.0025 �0.0047 0.2205 0.4201 �0.0010 �0.0025 �0.0047 0.2203 0.4196
700 �0.0006 �0.0017 �0.0032 0.1499 0.2853 �0.0006 �0.0016 �0.0031 0.1459 0.2776 �0.0006 �0.0016 �0.0031 0.1443 0.2763
800 �0.0004 �0.0012 �0.0022 0.1037 0.1974 �0.0004 �0.0011 �0.0021 0.0992 0.1886 �0.0004 �0.0010 �0.0021 0.0911 0.1834
900 �0.0003 �0.0008 �0.0016 0.0743 0.1414 �0.0003 �0.0008 �0.0015 0.0693 0.1315 �0.0003 �0.0005 �0.0013 0.0421 0.1142

1000 �0.0002 �0.0006 �0.0012 0.0552 0.1050 �0.0002 �0.0006 �0.0011 0.0495 0.0939 �0.0001 0.0002 �0.0005 �0.0208 0.0483
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4797Equilibrium thermodynamics of multiply substituted isotopologues of molecular gases
but significant at higher temperatures. We suspect this reflects the absence
of spectroscopic data for high-energy quantum states for 16O13C18O, and
we conclude that the approximations associated with the Urey model are
sufficiently accurate for our purposes.

Comparison also has been made for partition function ratios between
calculations using these two methods. We use Eqn. 38 and 18 to
calculate partition function of each isotopologue of 16O12C16O,
16O13C16O, 16O12C18O, and 16O13C18O. To calculate the right partition

function ratio, we have to multiply Eqn. �i
n
mi

3
2 according to the

Teller-Redlich product rule (refer to Davidson, 1962), where mi is the
mass of atom i of n atoms that form the molecule, i.e.,

�Q16O13C16O

Q16O12C16O
�

� �m13C

m12C
� 3

2 �16O12C16O

�16O13C16O
�
i�1

3n�5 ui
16O13C16O

ui
16O12C16O

e�
ui

16O13C16O

2

1 � e�ui
16O13C16O

1 � e�ui
16O12C16O

e�
ui

16O12C16O

2

(A-4)

We omit this factor in Eqn. 12 because this factor will be eventually
cancelled out during the calculation of equilibrium constants. We define M
as the relative difference in per mill between partition function ratios
calculated using direct summation method and Urey’s method as:

M �
�Qi ⁄ Q16O12C16O�Numerical � 1 
 1000 (A-5)

Fig. A1. Sensitivity test for the value of A: �1000 · lnK1 and B:
�1000 · lnK2 in Eqn. 32i and 32ii as a function of maximum vibra-
tional and rotational quanta calculated.
i � �Qi ⁄ Q16O12C16O�Urey

�

Where i � 16O13C16O, 16O12C18O, and 16O13C18O. Figure A2-B shows
the difference between these two model changes with temperature. To
the first order, there is a difference of up to 20‰ between these two
methods at temperatures lower than 500 K, and the deviation in �1000
· lnK3 between two models can be approximated into M16O13C18O �

M16O13C16O � M16O12C18O within 0.1‰. As we can see in Figure A2-B,
even though individual Mi is up to �19‰ at temperatures lower than
250 K, the deviation in �1000 · lnK3 is smaller than 0.1‰. This
difference seems to be qualitatively correlative to the number of vibra-
tional levels used in the direct summation calculation. With increasing
temperatures higher than 300 K, Q16O13C18O began to show progressively
higher deviation from the Urey method. This is caused by a greater
contribution from the higher vibrational energy levels of 16O13C18O,
for which information is not yet available. Especially, the lack of
several vibrational energy levels from 2000 cm-1 to 3000 cm-1 (e.g.,
11102 e,f and 03301 e,f; notations follow Rothman and Young (1981)
and Rothman et al. (1992)) during the calculation will reduce the value

of
Q16O13C18O

Q16O12C16O

, even at low temperatures (�300 K), and therefore, reduce

the value of �1000 · lnK3. Hence, we believe that the deviation of
�1000 · lnK3/K3-r calculated using the direct summation method from
the calculation result of the Urey method shown in Figure A2-A is due
to the insufficiency of vibrational energy levels known for isotopologue
16O13C18O, rather than due to the calculation method, and we conclude

Fig. A2. A: Comparison of �1000 · ln(K3/K3-r) in Eqn. 8iii calcu-
lated using Urey method with using direct summation method as a
function of 1000/T; B: Relative difference Mi (defined in equation A-5)
between partition function ratios calculated using Urey method and
direct summation method as a function of 1000/T.
that the approximations associated with the Urey model are sufficiently
accurate for our purposes.
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