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Institut de Physique du Globe de Paris, Case 89, 4 Place Jussieu, 75252 Paris Cedex 05, France
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Abstract

The goal of this study is to investigate whether temporal variations of the gravity field caused by tectonic processes

(hereafter geodynamic signals) can be recognized in satellite gravity data, including the currently operating GRACE

satellites and future systems. We restricted our study to subduction zones, calculating possible gravity field variations

associated with elastic stress accumulation in locked areas and with stress release by earthquakes. We used fault-plane

solutions for the Alaska-1964, Chile-1960 and Hokkaido-2003 earthquakes, and GPS-based strain accumulation data in

locked areas of the Alaska subduction zone. Vertical displacements of the Earth’s surface were calculated using a model of

a rectangular fault in an elastic half-space. We developed and applied a statistical signal-recognition technique to identify

signals caused by displacements of unknown magnitude on fault planes of given position and dimension. Our goal is thus

to detect and analyse in satellite gravity data a signal constrained by ground geophysical and geodetic data. We assumed

different levels of data accuracy, ranging from the first GRACE model GGM-01S to two orders of magnitude lower,

corresponding to the target accuracy for GRACE and GOCE data. We concluded that using the developed technique,

gravity field variations similar to those caused by Alaska-1964 earthquake should be recognizable in GRACE data at the

accuracy level of the model GGM-01S. If forthcoming satellite gravity models have an accuracy one order of magnitude

better, then the signal recognition probability will be about 99% using our approach. The required accuracy is close to the

errors due to imperfect corrections for atmospheric effects. For the Chile-1960 earthquake we considered different fault-

plane models and found that one can distinguish between these models with a probability approaching 70% at present level

of GRACE accuracy. Increasing the data accuracy by one order of magnitude makes this probability very high. Because the

gravity signal from the Hokkaido-2003 earthquake was rather weak, it would only be recognized if the data accuracy

increases by two orders of magnitude thus approaching the target GRACE accuracy. If forthcoming gravity models are one
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order of magnitude more accurate compared to the first GRACE model then 5 years of data will allow recognition of time

varying gravity signal associated with locked areas of the Alaska subduction zone. Our method may be easily applied to

other geodynamic targets and more generally be adapted to other time varying gravity studies.

D 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In the past few years, our knowledge of the Earth

gravity field and its temporal variations was consid-

erably improved thanks to dedicated satellite mis-

sions. Presently operating (CHAMP, GRACE) and

planned (e.g. GOCE) satellite missions are opening an

exciting new era in the remote study of the Earth

using gravity data. The GRACE satellite system,

launched in 2002, was designed to increase the

accuracy of global Earth gravity models by several

orders of magnitude and to monitor temporal varia-

tions of the gravity field for the first time [1]. The

GOCE satellite, to be launched in 2006, will provide

even higher accuracy gravity field models (up to 250

spherical harmonics) [2].

GRACE was designed to produce a new global

gravity field model every 3–5 weeks during its 5-

year lifetime, allowing the identification of temporal

variations of the global gravity field and contributing

to various branches of Earth sciences, including the

study of crustal and upper mantle structure and

geodynamic monitoring of tectonically active

regions. GOCE should provide several global gravity

field models of even higher accuracy, making it

possible to study shorter wavelength components in

temporal variations of the gravity field. Mission

scheduling includes two 6-month measurement peri-

ods separated by a 5-month period during which the

satellite will be boosted to a higher orbit. During

each 6-month period three Earth gravity field models

will be constructed by integrating data from two

months of measurements [3].

The first global GRACE gravity field model,

named GGM-01S, was issued in 2003. It includes

spherical harmonics up to degree 120 with half-

wavelengths longer than 170 km. This model is

almost two orders of magnitude more accurate than

the gravity models based on data from all previous
satellite missions (e.g. EGM-96). GRACE baseline

accuracy is almost two orders of magnitude smaller

than GGM-01S accuracy (Fig. 1). GOCE will

improve the resolution to wavelengths as short as

100 km with a cumulative error of about 1 cm in the

geoid height or 1 mGal in the gravity field. Several

follow-on missions are currently under discussion or

preparation in the USA and Europe.

The main goals of the GRACE mission are to

monitor climate changes and to study atmospheric

and global oceanic circulation processes for environ-

mental purposes. GRACE also records short-term

variations caused, for instance, by atmospheric

processes, snow thickness changes, soil humidity

changes or modification of the ice-sheet balance.

Geodynamic processes such as changes in the

Earth’s topography or mass distribution as a result

of lithospheric plate interactions (collision, subduc-

tion, rifting), postglacial rebound, mantle convection,

earthquakes, sedimentation and erosion, should also

contribute to temporal variations of the Earth gravity

field.

Several studies have been devoted to quantitative

estimates of the contribution of regional geodynamic

processes to temporal variations of the Earth’s gravity

field. Velicogna and Wahr [4] addressed the effect of

postglacial rebound and the possibility of recovering

mantle viscosity profiles using satellite data, and

concluded that GRACE data could significantly

contribute to solve this problem. In a very recent

paper, Sun and Okubo [5] compared the GRACE

target accuracy to degree amplitude spectra for

coseismic deformations resulting from the 1964 and

2002 Alaska, and 2003 Hokkaido earthquakes. They

concluded that coseismic deformations for an earth-

quake with a seismic magnitude above 7.5 could be

detected by GRACE.

Here we do not only compare the relative amplitude

of geodynamic signal and instrumental noise, but we



Fig. 1. Accuracy of spherical harmonics in different geoid height

models. (1) GOCE (target mission accuracy); (2) GOCE (target

mission accuracy); (3) the first GRACE models GGM-01S. Gravity

anomaly half-wavelength k/2 is related to the degree of spherical

harmonic l by the relation: k/2c110�(180/l) km.
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also evaluate the probability of correctly interpreting

temporal series of space gravity data, i.e. of retrieving

a geodynamic signal when it is really present. To do so,

we take into account a priori information on the

investigated signal using surface geodetic or geo-

physical data, as well as the variance of the noise. This

last incorporates instrumental errors and mismodelling

of the other sources of temporal gravity variations.

Besides, let us notice that a direct comparison of

energy spectra should be carefully interpreted, since

the spherical harmonic spectrum bdilutesQ the effect of
a local signal on the whole sphere, and may lead to

over-pessimistic conclusions. More precisely, we

consider here global gravity field variations resulting

from the dynamics of subduction zones. We inves-

tigate whether satellite gravity data can be used to

quantify processes of elastic stress accumulation and

its release through earthquakes. We address two

questions: (1) Can satellite data be used to recover

some characteristics of the seismic deformations and

thus to estimate parameters of the fault plane? To

answer, we first check that seismic signals can be

detected in GRACE data, then we investigate if

GRACE data can help in constraining the fault plane
parameters; (2) Can satellite gravity data be used to

monitor the elastic stress accumulation in locked areas

of subduction zones?

For our purpose, we use the first GRACE model

GGM-01S, available at http://www.csr.utexas.edu/

grace/gravity. For technical reasons, this model is

almost two orders of magnitude less accurate than

GRACE baseline accuracy. However, it is very likely

that the accuracy of the following GRACE models

will increase; hopefully it will reach the planned

accuracy. Moreover, we do not restrict our consid-

eration to GRACE data, as it has been done in [5], but

investigate perspectives of geodynamic signal recog-

nition from global gravity in order to set accuracy

requirements for future satellite missions. Our results

therefore apply to future as well as current data and

satellite missions.
2. Deformation and gravity changes expected in

subduction zones

In general, the geodynamics of subduction zones

are poorly constrained. Dense geodetic networks and

precise repeated levelling usually do not cover the

area needed for proper modelling. This is due to the

fact that most (if not all) high strain area is usually

situated in the oceanic domain and cannot be

surveyed by routine geodetic instruments. As a

result, even for the greatest earthquakes, such as

Chile-1960, geodetic surveys only registered surface

displacements in regions far from the epicentral

zone, not permitting a unique determination of the

fault plane position and parameters [6].

Seismology and geodetic data show that subduc-

tion is not a continuous process. In some areas, the

rate of subduction is lower than the rate of litho-

spheric plate convergence. These areas are referred

to as partly or completely locked. In these areas,

subduction recommences when the accumulated

stress becomes larger than the locking stress thresh-

old. The locking stress apparently depends upon a

number of factors including the topography of the

plate interfaces, the dip of the sinking plate, the

thermal state (i.e. age of the plate) and the presence

of water and sediments in the coupling zone. The

stress can be released as an earthquake or a slow

aseismic thrust event.

http://www.csr.utexas.edu/grace/gravity
http://www.csr.utexas.edu/grace/gravity
http://www.csr.utexas.edu/grace/gravity
http://www.csr.utexas.edu/grace/gravity


Fig. 2. Definition of fault plane parameters. A fault length is 2L, W

is its dimension downdip, d is the depth to its lower edge, d is fault’s

dip, u is an angle measured from the North to Oy axis clockwise

and c is an angle measured between direction of displacemen

vector U (|U|=a) and direction of Ox axis also clockwise.
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Huge amounts of data on the dynamics of locked

areas of subduction zones have been collected by the

Japanese geodetic network GEONET. This network,

established in 1994, includes about 1000 stations

separated by an average distance of 25 km [7]. It

allows to monitor the position and dimension of

locked areas and to register slow thrust events

leading to aseismic release of accumulated elastic

energy. For example, a slow thrust event in the

Bungo Channel, separating Shikoku and Kyushu

islands (south-western Japan), lasted about 300 days

and led to an energy release equivalent to a 6.6

earthquake [8,9]. Below, we will show how high-

accuracy satellite gravity data can help to constrain

fault plane parameters and to monitor stress accu-

mulation and release in locked areas of subduction

zones, including silent slip events which are not

recorded by world seismological networks.

Solution for a point or finite source in an elastic

half-space based on dislocation theory is the main

tool for the mathematical description of stress

accumulation and release in locked areas of sub-

duction zones [e.g. [10–13]]. This model describes

the earthquake motion releasing the stress accumu-

lated during the locked period of a subduction zone.

Savage [14] suggested that the same model could be

used to mathematically describe the stress accumu-

lation process. In Savage’s [14] model, the velocity

field is divided into two components. The first

component corresponds to a non-locked subduction

with a velocity derived from the plate convergence

rate. The second component represents a movement

in the opposite direction that is localized at the

locked portion of the slab. Depending on the

coupling ratio, the sum of two components at the

locked portion can be smaller than the plate

convergence rate or equal to zero. This model

suggests that the first component (subduction) does

not produce any stress, whereas the second one

(thrusting) causes the stress accumulation that can be

described by the dislocation model.

Most studies use an analytical solution for finite

sources in an elastic half-space (e.g. [12]), but more

sophisticated models have been suggested. Sun and

Okubo [15,16] considered the free surface deforma-

tion and consequent variations of the gravity field for

a single dislocation or for dislocations on a finite

fault, in a homogeneous spherical Earth. Ma and
Kusznir [17] obtained a solution for layered elastic

media and investigated faulting as a result of

lithospheric extension. Spherical self-gravitating

models of viscoelastic layered media were considered

in [18–21].

As a first approach, we use a simple elastic half

space model, neglecting the Earth’s sphericity. The

impact of Earth’s sphericity was estimated by Sun

and Okubo [15], they concluded that this effect is

small in the area of main deformations. More

precisely, the discrepancy on ground does not exceed

10 per cent within an epicentral distance of about 108.
Thus for a low altitude satellite as gravity satellites

our first order approximation is reasonable.

Formulas for the components of the displacement

vector at the free surface of an elastic half-space with

Lamé parameters k and l caused by movements on

a finite rectangular fault were obtained by integrating

a solution for a single dislocation (see e.g. [13]). The

used coordinate system and the notation of fault

plane parameters are given in Fig. 2. Formulas for

the components of the displacement vector are listed

in Appendix A.

When the fault surface is approximated by a

single plane, components of the displacement vector

depend on nine parameters: the size of the fault plane

(L,W), the depth to its lower edge (d), the fault

orientation (d, u), two parameters of the displace-

ment vector (|U|=a and c), and two coordinates

specifying the geographical position of the fault (e.g.

the longitude and the latitude of the origin). An a
,

t
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priori value can be assigned to some of these

parameters. Indeed, one can impose d and u to

coincide with strike and dip of the subducting plate

or when studying an earthquake, one can use a fault

plane solution to constrain (d, u) and the dimension

of the fault plane. Recently Vallée and Bouchon [22]

published a method to estimate all fault plane

parameters using data from the world seismological

networks. Seismological data may also be useful for

estimating parameters of locked intervals of a

subduction zone. For example, parameters of the

planes approximating the rupture zone of the Alaska-

1964 earthquake estimated by Christensen and Beck

[23] are close to the parameters of the present-day

locked asperities estimated by Zweck et al. [24] from

detailed geodetic data. For all subduction zones there

are estimates of the direction of convergence, which

provide an estimate of the angle k. When the

subduction zone is completely locked, a is equal to

the convergence rate, otherwise it depends on the

coupling ratio, which varies from 0 to 1 in partly

locked zones and can be negative in regions of

postseismic restoration. Since a can only be esti-

mated from the results of detailed repeated geodetic

measurements, it cannot generally be a priori defined.

Thus, the dynamic of subduction zones is not fully

constrained by surface measurements. We now inves-

tigate how satellite gravity data, combined with

ground data, may help in understanding and monitor-

ing subduction zones.
3. A statistical approach for recognizing and

discriminating geodynamic signals in subduction

zones from gravity field variations

The geoid height u(h, u, ti) measured by satellites

can be written as the sum of three components: a

stationary component ū(h, u), a temporal variation

component of geodynamic origin uG(h, u, ti), and a

noise component du(h, u, ti), i.e.:

u h;u; tið Þ ¼ ūu h;uð Þ þ uG h;u; tið Þ þ du h;u; tið Þ;
i ¼ 1; N ;M ; ð1Þ

where: h and u are colatitude and longitude and M is

the number of satellite gravity models, each of them
relating to a time ti. We assume hereafter that the

gravity data have already been corrected for mass

redistribution in the ocean and atmosphere and for

continental water storage. Methodology and error

estimates for these corrections have been examined

in [25,26]. Thus, the noise du(h, u, ti) includes

measurement errors, errors due to imperfect correc-

tions for the redistribution of masses in the Earth’s

fluid envelops, and probably some other geoid

temporal variations of unknown origin.

Consecutive satellite geoid models relating to a

point of time ti will be constructed and distributed as a

set of coefficients of spherical expansion:

N h;uð Þ¼
XL
l¼2

Xl
m¼0

Clmcos muð ÞþSlmsin muð Þð ÞPm
l coshð Þ

ð2Þ

where Pl
m are fully normalized associated Legendre

functions, coefficients C and S are measured in units

of length (meters) and L is the highest degree in

spherical harmonic decomposition.

Using the spherical expansion (Eq. (2)) one can re-

arrange Eq. (1) to the following form:

Clm tið Þ
Slm tið Þ

� �
¼ C̄Clm

S̄Slm

( )
þ C̃Clm tið Þ

S̃Slm tið Þ

( )
þ

dClm tið Þ
dSlm tið Þ

� �
;

l ¼ 2; N ; L;m ¼ 0; N ; l; i ¼ 1; N ;M ; ð3Þ

where Clm and Slm are spherical expansion coef-

ficients of the geoid height corrected for the ocean,

atmosphere, continental water storage and glacial

rebound contributions; C̄lm and S̄lm are coefficients

of the spherical expansion of the stationary geoid

component ū(h, u), C̃lm and S̃lm are coefficients

corresponding to geodynamic signal uG(h, u, ti),

and dClm and dSlm are expansion coefficients of the

noise including instrumental errors and mismodel-

ling of the other contributions to the temporal

variations of the geoid. To shorten the equations,

we will use the following notation for all spherical

expansion coefficients:

Qi
lmk ¼

Clm tið Þ; k ¼ 0

Slm tið Þ; k ¼ 1
;

�
ð4Þ
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keeping the additional indexes corresponding to

different geoid components as in Eq. (3).

Further we will treat the coefficients of spherical

expansion of the noise du(h, u, ti) as normally

distributed random variables with zero expectation

vector and given covariance matrix, which incorpo-

rates covariances of measurement errors and cova-

riances of unmodelled temporal variations of non-

geodynamic origin (these two error sources can be

treated as independent). Covariances of the measure-

ments errors are estimated in the course of the

satellite data processing and should be available with

the geoid spherical expansion coefficients. In the

first GRACE model GGM-01S it is supposed that

errors in the harmonics of different order are

independent (i.e. the covariance matrix is diagonal).

For the satellite CHAMP the full covariance matrix

is available. It is likely that the full covariance

matrix will be available for the other satellite

missions as well. Covariances of the errors intro-

duced by different corrections can be estimated by

comparing different global data sets (atmospheric

pressure, snow thickness, soil humidity) compiled by

different meteorological centres, as was done in

[25,26], even if this could lead to underestimated

errors due to the non-independence of the compared

models. Velicogna et al. [26] showed that the

accuracy of the correction for atmospheric effects

was approximately one order of magnitude better

than the accuracy of the GGM-01S model. The

largest errors are in fact due to the poor knowledge

of continental hydrology. Corrections for hydrology

are difficult to estimate precisely since the existing

hydrological models considerably differ. Ramillien et

al. [27] showed that the precision of correction for

hydrology could be of the same order as GGM-01S

model errors. In addition, one has to keep in mind

that these are mean estimates although hydrological

effects are spatially localized. We assume that the

errors associated to these various corrections are

gaussian. The cumulative errors will also have a

normal distribution as the contributions are consid-

ered as independent. Finally, we suppose that

coefficients dQi
lmk having different indexes l, m, k,

i are not independent, but that their combined

probability distribution is a multidimensional normal

distribution with zero mean vector and given

covariance matrix.
Gravity signals associated with many geodynam-

ical processes can be presented as a product:

uG h;u; tð Þ ¼ ad f h;uð Þg tð Þ; ð5Þ

where parameter a measured in unit of length

stands for the magnitude of the geodynamic process

(displacement at the fault plane or rate of displace-

ment at partly locked asperity of subduction zone

multiplied to time period under consideration T,

etc.), f(h, u) is a dimensionless function specifying

the form of the geodynamic gravity signal normal-

ized to the magnitude of a, and g(t)a[0, 1] is a

dimensionless function determining the variation of

the signal in time. The time constants of strain

accumulation processes at locked intervals of

subduction zones is considerably larger than the

life-time of satellite systems. Besides, geodetic data,

for example, data from the Japanese GEONET

system [7], show a nearly time-linear growth of

lithospheric shortening across the locked intervals

of the subduction zone. In this case the time

dependence can be presented as a linear function:

g(t)=(t�t0)/T, where t0 is a reference point in time

and the parameter a in Eq. (5) is a product of the

convergence rate by the coupling ratio and the time

period (T) under consideration. For the strain

induced by an earthquake one can assign:

g(t)=r(t�t0), where r(t) is a Heaviside step function

and parameter a is the displacement amplitude on

the fault plane.

Using Eqs. (4), (5), Eq. (3) can be transformed to:

Qi
lmk ¼ Q̄Qlmk þ ad Q̃Qlmkd g tð Þ þ dQi

lmk ; ð6Þ

where Q̃lmk are the coefficients of expansion of the

normalized form of the geodynamic signal f(h, u).

After obtaining M successive geoid models, the

stationary part of the geoid height ū(h, u) can be

estimated by correcting each geoid model for known

factors and averaging all M models. When using this

approach, an average value should be also subtracted

from function g(t). In terms of spherical expansion

coefficients one obtains:

Q̄Qlmk ¼
1

M

XM
i¼1

Qi
lmk : ð7Þ
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Then, the residual time-varying part is:

DQi
lmk ¼ Qi

lmk � Q̄Qlmk ; ð8Þ

Assuming that the estimate errors of the same

spherical coefficients in different gravity field models

are independent, hence that their standard deviations

do not depend on time and are equal to r2
lmk, one

finds that the standard deviations of spherical coef-

ficients of temporal variations (Eq. (8)) are equal to

(1+1/M)rlmk
2 .

We now test if the residual (Eq. (8)) is either

dominated by noise or by the searched signal. Here

two types of errors could occur: to make a wrong

conclusion that the data contain a signal when there is

no signal (false alarm), or to conclude that the data do

not contain a signal when in reality a signal is present

(signal missing). Our aim is to estimate the corre-

sponding probabilities of errors for different geo-

dynamic signals and different amplitudes of the noise

in the satellite data.

The procedure of decision making reduces to

verification of the statistical hypothesis H that the

difference (Eq. (8)) is a noise, i.e. that its spherical

expansion coefficients are random values having

multidimensional normal distribution with zero

expectation vector and given covariance matrix C,

against the alternative K (probably a composite one)

that DQi
lmk also possesses a multidimensional normal

distribution with the same covariance matrix C, but

that the components of its expectation vector are equal

to Q̃lmkd ad g(t). If the form of the signal f(h, u), the

dependence on time g(t) and the amplitude a are

known, the alternative is simple. In the opposite case,

it is composite and depends on a number of unknown

parameters including parameters of functions f(h, u)

and g(t).

We can consider parameter a to be an unknown

value characterized by distribution w(a). In practical

applications, one can usually only assign a mean value

a0 and some uncertainty intervals ra. Thus, it is

reasonable to suggest that wa is close to a normal

distribution with a mean a0 and a standard deviation

ra. When a0 is known precisely, ra=0.

To test the hypothesis that the data contain the

searched signal, we compute a likelihood ratio

between signal and noise as explained in Appendix

A, and compare it with a threshold. This likelihood
ratio takes into account the distributions of proba-

bilities on signal and noise, i.e. the a priori informa-

tion on the signal derived from ground-based geodetic

and geophysical measurements, and the amplitude of

the cumulative noise incorporating all possible sour-

ces of errors. To decide which hypothesis H or K

seems more realistic, we choose the threshold

following the Neyman-Pearson criteria [28]. Proba-

bilities of false alarm (named a error) and signal

missing (named b error) are then derived [28]. By

definition, the false alarm error (a error) is an

erroneous rejection of the hypothesis H when it is

true. In our case, it results in erroneous decision that a

geodynamic signal of given shape is present in the

temporal gravity variations. The signal missing error

(b error) is an acceptance of the hypothesis H when it

is false. In our case, it results in erroneous decision

that the data do not contain the desired geodynamic

signal.

The procedure of testing the statistical hypothesis

H is detailed in Section B1 of Appendix B. Based on

the peculiarities of the geodynamic problem under

study, one should assign some tolerance probability of

false alarm a, find the corresponding threshold value

F from Eq. (B13) and compare it to the calculated

statistic u2 (Eq. (B7)). If (B7) is true, then the

hypothesis H that the temporal variations do not

contain a geodynamic signal has to be rejected at the

significance level a. The corresponding probability of

signal missing b can be computed from Eq. (B14). In

Section 4 we investigate the recognition of different

geodynamic signals in satellite data of various

accuracies by assigning a tolerance probability of

wrong signal detection (false alarm) a and computing

the probability of signal missing b.
An important problem to be solved using

satellite gravity data is to discriminate between

several models. For example, let us examine which

of two possible fault plane models I or II better

corresponds to the satellite gravity data. To do so,

we follow the procedure considered above. We

assume that both signals corresponding to models I

and II are known including their respective

amplitudes a and b. The principle of signal

discrimination is the same as previously explained.

We test a simple hypothesis H, that coefficients of

residuals (Eq. (8)) correspond to a signal associated

to model I, i.e. are random values having multidimen-
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sional normal distribution with the expectation vector

corresponding to signal I and covariance matrix C

equal to the covariance matrix of the noise, against the

similar simple hypothesis where components of the

expectation vector corresponds to signal associated to

model II (with the same covariance matrix C). The

likelihood ratio between both signals is computed,

taking into account the different geodynamical

parameters and the characteristics of the cumulative

noise in the data (see Section B2 of Appendix B).

Probabilities of errors are derived for the two possible

types of errors: false alarm (signal associated to model

I is recognized whereas in reality data contain signal

associated to model II) and signal missing (signal

associated to model I is not seen whereas it is

present).
4. Recovering geodynamic signals in subduction

zones

We now apply our method to three cases: (1) to

check whether temporal variations of the Earth

gravity field can help to recognise an earthquake

induced signal assuming that all parameters of the

fault plane are known except the modulus of the

displacement vector a; (2) to check if it is possible to

discriminate between several possible earthquake

fault plane models using satellite gravity data; (3)

to test the hypothesis that temporal variations contain

a geodynamic signal caused by a partly locked

fragment of a subduction zone, assuming that all

parameters of the partly locked plane are known

except the modulus of displacement vector a. The

signal recognition procedure is as follows. After

assigning parameters to a geodynamic model, we

compute the vertical displacement of the Earth’s

surface uz(h, u) and transform it into a surface

density reqv(h, u)=Dq(h, u)d uz(h, u), with a

density contrast Dq equal to 2.67�103 kg/m3 on

land and 1.64�103 kg/m3 at the sea bottom. Then,

coefficients of the spherical expansion of the surface

density are given by:

Qr
lmk ¼

1

4p

Z p

0

Z 2p

0

reqv h;uð Þ 1� kð Þcos muð Þ½

þksin muð Þ�Pm
l coshð Þsinhdhdu ð10Þ
and transformed into variations of the geoid height

using the following formula:

Q̃Qlmk ¼
Qr

lmk

4pq̄qP 2l þ 1ð Þ ; ð11Þ

where q̄P=5.517�103 kg/m3 is the average Earth

density. Gravity effect of the deformation of the

underlying Earth due to the surface load is

neglected: we will consider only the gravity effect

from the Earth’s surface deformation, as this surface

is the main density interface. This assumption is

supported by field measurements at the site of

Alaska-1964 earthquake: by comparing the ampli-

tude of the vertical displacements during the earth-

quake with measured gravity changes, Barnes [29]

concluded that the Earth’s surface vertical move-

ments explain almost all observed variations of the

gravity field.

We investigate the possibility of signal detection or

discrimination for different levels of noise. We use

expected degree amplitudes of the baseline errors: for

GRACE, they were provided by Brooks Thomas and

Mike Watkins at Jet Propulsion Laboratory (personal

communication) for GOCE, see [2]. We also consid-

ered the errors of the first GRACE model GGM-01S

(available at http://www.csr.utexas.edu/grace/gravity).

We took into account the first 90 harmonics for

GRACE, and the first 180 harmonics for GOCE. The

first GRACE gravity model was constructed using

almost 1 year of data. To estimate degree amplitude of

the errors in bimonthly models we multiplied the

GGM-01S error estimates by
ffiffiffi
6

p
. We assume that

errors due to mismodelling of the other contributions

to temporal variations are included in those levels of

noise. This hypothesis is realistic for a noise level

equal to GGM-01S errors. The lower noise levels can

be considered as target amplitudes for the mismodel-

ling errors.

4.1. Detection of signals caused by earthquakes

Now we consider two earthquakes: the magnitude

Mw=9.2 Alaska earthquake of March 28, 1964 and the

magnitude Mw=8.1 Hokkaido earthquake of Septem-

ber 26, 2003, which occurred after the launch of the

GRACE mission. We thus compare two gravity

models: before and after the earthquake.

http://www.csr.utexas.edu/grace/gravity
http://www.csr.utexas.edu/grace/gravity
http://www.csr.utexas.edu/grace/gravity
http://www.csr.utexas.edu/grace/gravity
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For the Alaska-1964 earthquake, we used the

simple rupture zone model suggested by Savage and

Hastie [12]. The model consists of a single plane

with parameters: 2L=600 km, W=200 km, d=51 km,

dip angle d=98, u=608, a=10 m, and c=908 (for

notation of parameters see Fig. 2). The vertical and

horizontal components of the displacement vector are

shown in Fig. 3 by contours and vectors, respec-

tively. The vertical displacement amplitude varies

from �2.2 to 3.9 m.

Table 1 gives the probability of b error (signal

missing) as a function of the probability of a
error (false alarm), for different satellite gravity

data accuracies. These results show that a strong

earthquake, such as Alaska-1964, can be detected

using the GRACE data even if the data accuracy
Fig. 3. Vertical displacement of the Earth surface in result of the Alaska-19

fault plane, corresponding to model 3 of [12]. Arrows show horizontal di

Kodiak island; Kn—Kenai peninsula, PW—Prince William Sound.
is at the level of the first model GGM-01S. The

probability of a false alarm and the probability of

signal missing for an earthquake similar to the

Alaska-1964 one using GGM-01S data are both

close to 30% (Table 1). When the data accuracy

is one order of magnitude higher, these proba-

bilities approach zero. For the Hokkaido-2003

earthquake we used parameters given by Vallée

and Vergoz (http://www.emsc-csem.org/Html/

JAPAN_ValleeVergoz.html). They used an approach

based on the analysis of global seismological data

[22]. The fault plane parameters are 2L=80 km,

W=130 km, d=62.5 km, d=288, u=2598 c=1298,
a=2–3 m. The amplitude of the vertical displace-

ments varies from �0.1 to 0.5 m, corresponding to a

geoid height anomaly of 0.11 m.
64 earthquake (meters). Rectangular shows surface projection of the

splacement. Maximal arrow corresponds to 6 m displacement. K—

http://www.emsc-csem.org/Html/JAPAN_ValleeVergoz.html
http://www.emsc-csem.org/Html/JAPAN_ValleeVergoz.html
http://www.emsc-csem.org/Html/JAPAN_ValleeVergoz.html
http://www.emsc-csem.org/Html/JAPAN_ValleeVergoz.html


Table 1

Probability of signal missing error (b error) depending on given

tolerance probability of false alarm (a error for different accuracy of

satellite gravity data while detecting the signal from an earthquake)

Probability of Probability of signal missing

false alarm
Alaska, 1964,

Mw=9.2

Hokkaido-2003, Mw=8.1

Accuracy of

GGM-01S

model

Accuracy of

GGM-01S

model

Planned

GRACE

mission

accuracy

Planned

GOCE

mission

accuracy

0.1 0.67 0.90 0.56 0.78

0.2 0.51 0.79 0.38 0.63

0.3 0.38 0.69 0.27 0.50

See Section 3 of the text for details. For example, for an earthquake

similar to the Alaska-1964 one, using GGM01S data the probability

of a false alarm as well as signal missing are close to 0.3. When data

accuracy is one order of magnitude higher these probabilities

approach to zero (not shown).
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The accuracy of the first GRACE model is not

sufficient to identify the Earth’s surface displace-

ment caused by the Hokkaido-2003 earthquake

(Table 1). To characterize this type of earthquake,

the accuracy of forthcoming satellite data must

achieve the GRACE target level. In this case, the

probabilities of a false alarm and of signal missing

approach 30%. The probability of a correct signal

detection for the planned GRACE mission accuracy

appears to be better than the same probability for

the planned GOCE mission accuracy, because the

main energy of the signal caused by the Hokkaido-

2003 earthquake is in the low harmonics (lb40), where

GRACE data are more accurate than GOCE data

(see Fig. 1).

Sun and Okubo [5] used a solution for a point

dislocation located in a compressible and self-

gravitating spherical Earth to model the gravity

signal form the Alaska (1964, 2002) and Hokkaido

(2003) earthquakes. We compared the degree

amplitude spectrum for a point dislocation used in

their study to the spectrum corresponding to the

finite rectangular plane of Savage and Hastie [12]

and found that these spectra considerably differ.

The degree amplitude spectrum for a dip-slip at the

large Alaska fault plane decreases rather fast with

degree of spherical harmonic. The spectrum for the

shallow point dislocation is almost constant or even
increases, thus overestimating possibility to recog-

nize coseismic deformations from satellite data.

Anyway, the degree amplitude spectrum corre-

sponding to the Alaska-1964 earthquake is situated

below the target GRACE accuracy for harmonics of

degree of nN10 not depending on the model of the

seismic source (we suggest that when comparing

spectrum of the Alaska-1964 earthquake to the

target GRACE accuracy, Sun and Okubo [5] plotted

the solution for the vertical opening instead of the

dip-slip on their Fig. 5, thus arriving to the

conclusion that Alaska-1964 signal could be seen

in the gravity temporal variations).

We should emphasize that we neglected the

uncertainties on fault plane parameters in the above

examples. However, it would be possible to take them

into account (see Section 3 and Appendix A).

4.2. Discrimination between several possible fault

plane models using satellite gravity data

Plafker and Savage [6] suggested three possible

fault plane models for the Chile-1960 earthquake.

The parameters of these models differ (see Fig. 4)

because they are poorly constrained by geophysical

data. For instance, the surface displacement for all

three models is very similar in the geodetic

surveyed area (on land, east of longitude 2868, see
Fig. 4). The upper boundary of the fault plane is at

the sea bottom in models A and B, and at a depth

of 20.2 km for model C. For all three models, 2L is

equal to 1000 km, and u=978. Because Plafker and

Savage [6] solved a 2D problem, they only

determined the component of displacement normal

to the fault plane, i.e. k=908. The other parameters

are for model A: W=75 km, d=52.6 km, d=44.58,
U=35.4 m. For model B: W=60 km, d=34.8 km,

d=35.58, U=19.5 m. For model C: W=105 km,

d=100 km, d=49.58, U=13.7 m. These models lead

to very different vertical displacements. The max-

imal amplitude reaches 19.8 m for model A, 9.9 m

for model B and 6.7 m for model C. Fig. 4 shows

the vertical displacements and fault plane geometries

for the three models along a profile running across

the subduction zone.

As previously, we assume that we possess two

satellite gravity models: one before and one after

the earthquake. Table 2 gives the possibilities of



Fig. 4. Three different fault plane models for the Chile-1960

earthquake [9] along the profile running across strike of the Chile

subduction zone. Upper graph shows the amplitude of vertical

displacements in mm; the lower graph shows position of the fault

planes.
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distinguishing one model from another. Even if the

accuracy is identical to the one of the first GRACE

model GGM-01S, model A can be discriminated
Table 2

Distinguishing between three possible models of the Chile-1960 earthqua

Probability of the a-error Probability of the b-error

For the accuracy of GGM-01S mod

A–B A–C B

0.01 – – –

0.1 0.62 0.73 0

0.2 0.45 0.57 0

0.3 0.33 0.44 0

In this specific case, a-error consists in erroneous rejection of the tru

erroneous rejection of model B in the alternative: B against C. Conseque

when it is true. See Section 3 of the text for details. For example, when dist

to GGM01S model the probabilities of both a and b errors are 0.3. When

approach to zero.
from model B (these models are most different),

with a- and b-error probabilities close to 0.3. If the

satellite data accuracy is one order of magnitude

better, the a and b errors of discriminating between

models A and B or models A and C approach zero.

The error of distinguishing between models B and

C is also small. More accurate satellite gravity data

e.g. corresponding to the planned accuracy level for

GRACE and GOCE missions will allow to dis-

criminate between fault plane models for smaller

magnitude earthquakes.

4.3. Monitoring of the strain accumulation at locked

areas of subduction zones

To investigate this problem we used data on the

locked asperities of the Alaska subduction zone in

the area of the Alaska-1964 earthquake. Several

models of locked asperities have been proposed for

this region [e.g. [24,30]]. Zweck et al. [24] proposed

a detailed model subdividing the area into 1350

fragments of 20�20 km. They characterized every

fragment by a specific coupling ratio. All coupling

ratios were determined by fitting the calculated

Earth’s surface displacement to the observed geo-

detic data. As a result, two completely locked areas

were found: one near southwest Prince William

Sound and another near southwest Kodiak Island,

separated by an area of a small coupling ratio. At

the same time, under the western part of Kenai

Peninsula and further to the north there is a deep

area of reverse slip. The displacement direction in
ke fault plane

el For the accuracy one order of magnitude better the

that of GGM-01S model

–C A–B A–C B–C

1.3�10�13 6�10�6 0.13

.83 – – 0.016

.69 – – –

.57 – – –

e model A considering alternatives: model A against B or C or

ntly, b-error consists in erroneous rejection of an alternative model

inguishing model A from model B and when data accuracy is similar

data accuracy is one order of magnitude higher these probabilities
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this area is opposite to the plate convergence

direction and the rate of convergence is 20–30%

larger than the mean rate. Zweck et al. [2] explained

these movements by post-seismic creep following

the Alaska-1964 earthquake.

To investigate the stability of the results, Zweck

et al. [2] simplified their model, joining neighbour

segments having close coupling ratio values in a

single asperity. As a result they found a model

containing eight different fault planes. This model

provided a good fit to the geodetic data and its

main features appeared to be identical to that of

the detailed model. We thus computed the strain at

the Earth surface in the Alaskan subduction zone

using this simplified model. Vertical surface dis-

placements vary between �20 to +25 mm/year in

the considered zone. Our computation is validated

by field measurements based on GPS and tide

gauges [31]. The area where the vertical displace-

ment rate is larger than 10 mm/year measures

about 200�700 km2.

As we discussed above, strain accumulation in

locked asperities of subduction zones can be

considered as a time-linear function over time

intervals of several years (the life period of satellite

missions). We estimated the probability of detecting
Table 3

The probabilities of signal missing with respect to the chosen

probabilities of a false alarm when detecting linear-in-time trend in

gravity temporal variations dealt with locked fragment of the Alaska

subduction zone

Probability of Probability of signal missing

false alarm
For the

accuracy of

GGM-01S

model

For the accuracy

one order of

magnitude better

than that of

GGM-01S model

Planned GRACE

mission accuracy

0.1 0.87 0.47 9�10�6

0.2 0.76 0.30 1.5�10�6

0.3 0.65 0.20 4�10�7

Different possible satellite data accuracy levels are considered. See

Section 3 of the text for details. For example, when detecting

geodynamic signal from locked area of Alaska subduction zone

using satellite data one order of magnitude more accurate than

GGM01S model the probability of a false alarm or signal missing is

about 0.25.
a linear trend for different possible accuracy levels

(see Table 3) assuming that after the 5 year GRACE

mission 30 bimonthly satellite gravity models would

be available. Table 3 shows that the accuracy of the

first model GGM-01S is not sufficient for the linear

trend detection. If the accuracy increases by one

order of magnitude, the probability of detecting the

linear trend is rather high (the probabilities of a false

alarm and of signal missing are about 25%). The

GOCE satellite has less ability to solve this problem

because of the shorter life time of the satellite and

small expected number of gravity models (we

assumed five models during the two-year mission

duration). Thus it appears that it might be possible

to monitor vertical movements occurring on the

Earth surface at a large scale (typically 200�200

km2) such as mountainous areas or large sedimen-

tary basins.
5. Summary

In this paper, we applied a statistical signal

recognition technique to study the dynamics of

subduction zones using time varying satellite

gravity data. To do so, we systematically introduce

a priori information on the searched signal using

ground data. We believe that our method may be

easily adapted to other time varying gravity studies

(for hydrology, etc.) or to other geodynamic targets

(monitoring earthquake cycle, mountain ranges,

sedimentary basins, etc.). Our results demonstrate

that new satellite gravity data can be used to detect

and discriminate geodynamic signals generated by

subduction zone dynamics. In particular, to monitor

locked asperities of subduction zones or to

discriminate between different fault plane models,

it is enough to have satellite gravity data whose

accuracy is one order of magnitude better than the

first GRACE model GGM-01S. It is worth noting

that the required accuracy is of the same order of

the errors introduced by corrections for atmospheric

and hydrology effects. This clearly demonstrates

the broad perspectives of studying tectonic pro-

cesses with the use of forthcoming satellite gravity

data. Thus it appears that gravity satellites may be

considered in the future as a component of a

global monitoring system of the Earth.
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Appendix A. Formulas for components of displacement vector at the free surface in result of movement at a

rectangle fault plane

Components of displacement at the free surface in result of movement on a single fault plane having parameters

shown on Fig. 2 are [13]:

ux ¼ � a
2p cosc nq

R Rþgð Þ þ tan�1 ng
qR

þ I1sind
h i

þ sinc q

R
� I3sindcosd


 �n o
uy ¼� a

2p
cosc
Rþg

ỹyq

R
þ qcosdþ I2sind Rþ gð Þ


 �
jjþ sinc

R

ỹyq

Rþnð Þ þ cosdtan�1 ng
q
� I1Rsindcosd

h in o
uz ¼� a

2p
cosc
Rþg

d̃dq

R
þ qsind þ I4 Rþ gð Þsind

h i
þ sinc

R

d̃dq

Rþnð Þ þ sindtan�1 ng
q
�I5Rsindcosd

h ion
8>>><
>>>:

ðA1Þ

Here, when cos dp0:

I1 ¼
l

k þ l

�
� 1

cosd
n

Rþ d
f

�
� sind

cosd
I5;

I2 ¼
l

k þ l



� ln Rþ gð Þ

�
� I3;

I3 ¼
l

k þ l

�
1

cosd
y
f

Rþ d
f � ln Rþ gð Þ

�
þ sind

cosd
I4;

I4 ¼
l

k þ l
1

cosd
ln Rþ d

f
� �

� sindln Rþ gð Þ
� �

;

I5¼
l

k þ l
2

cosd
tan�1 g X þ qcosdð ÞþX Rþ Xð Þsind

n Rþ Xð Þcosd ;

and when cos d=0:

I1 ¼ � l
2ðk þ lÞ

nq

Rþ d
f� �2 ;

I3 ¼
l

2 k þ lð Þ

�
g

Rþ d
f þ y

f
q

Rþ d
f� �2 � ln Rþ gð Þ

�
;

I4 ¼ � l
k þ l

q

Rþ d
f ; I5 ¼ � l

k þ l
nsind

Rþ d
f

(when cosd=0 there are two cases sind=+1 and �1).

Above we used the following notations: a—modulus of displacement vector U, p=y cosd+d sind, q=y sind�d

cosd, ỹ=g cosd+q sind, d̃=g sind�q cosd, R2=n2+g2+q2, X2=n2+q2. Variables n and g were introduced to represent

the following substitution: f(n,g)=f(x,p)�f(x,p�W)�f(x�L, p) + f(x�L, p�W).
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Appendix B. Statistical procedure of geodynamic

signals recognition and discrimination

B.1. Recognition of geodynamic signal of a given

shape

Below we use notations introduced in Section 3. To

reduce formulas below, let us introduce the vector of

spherical expansion coefficients of gravity temporal

variations x and the vector of spherical coefficients of

normalized geodynamic signal f:

x ¼ xnf g ¼ DQi
lmk

� �
;

f ¼ ff gn ¼ Q̃Qlmkg tið Þ
� �

:
ðB1Þ

The way of numbering the elements (i.e. relation

between n and i, l, m, k) is optional. The total number

of coefficients is equal to [(L+1)2�3]M, where L is

the highest degree in spherical harmonic decomposi-

tion, M is number of satellite gravity models (consid-

ering temporal gravity variations, we excluded from

vectors x and f all coefficients with lb2 [see [25]] and

also do not consider coefficients Sl0 because sin

(mx)u0 for m=0). Using this notation, the likelihood

function of registered gravity temporal variations

takes the following form:

W xð Þ ¼ 2pð Þ�N=2
detCð Þ�1=2

exp � 1

2
x� afð ÞTC�1 x� afð Þ

� �
; ðB2Þ

where a is amplitude of geodynamic process (see Eq.

(6)), supposed to be unknown.

The likelihood ratio is given by the formula:

K xð Þ ¼
Z

w að Þexp � 1

2
x� afð ÞTC�1 x� afð Þ

� �

da=exp � 1

2
xTC�1x

� �
; ðB3Þ

where w(a) is the probability density of the amplitude

of geodynamic signal, and integration performs over

all allowable values of a. Eq. (B3) can be transformed

to the following form:

K xð Þ ¼
Z

w að Þexp ar � 1

2
a2d2

� �
da ðB4Þ
where:

r ¼ xTC�1f

d2 ¼ fTC�1f : ðB5Þ

Usually, one can assign only the mean value a0
and also estimate some uncertainty interval ra.

Thus, let us suggest that w(a) is close to the normal

distribution with the mean a0 and the deviation ra.

Substituting probability density function for a

normal distribution into (B3) and integrating with

respect to a over all real axis, one obtains:

K xð Þ¼ d2r2
aþ1

� ��1=2
exp � 1

2

d 2a2
0 � r 2 � 2a0r

d2r2
a þ 1

� �� �
:

ðB6Þ

By taking the logarithm of Eq. (B6), after simple

manipulations, one concludes that testing of the

hypothesis H reduces to calculation of statistic

u2=(r+a0)
2 and its comparison to a threshold, which

depends on chosen optimal criteria. In other words,

hypothesis H has to be rejected when:

u2 ¼ r þ a0ð Þ2zln c2 d2r2
a þ 1

� �
 �
d2r2

a þ 1
� �

þ a20 d2 þ 1
� �

¼ F; ðB7Þ

where c is a constant, which depends on chosen

optimal criteria. Choosing the appropriate criteria

and the corresponding constant c depends on the a

priori information available: a priori probabilities of

the signal presence, penalties for wrong decisions. If

no such information is available then the constant c

and, thus, the threshold F could be assigned on the

basis of the maximum likelihood or Neyman-

Pearson criteria.

We follow the Neyman-Pearson approach in

which the threshold F is determined by assigning

the tolerance probability of errors of the first and

the second kind (see Section 3). For every pair of

parameters (a0, r0) of the probability density function,

application of the Neyman-Pearson criteria ensures

the minimal probability of the second kind error, when

probability of the first kind error is assigned. Accor-

ding to the Neyman-Pearson lemma [28] the threshold
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F corresponding to the most powerful criterion is

determined from the condition:Z l

F

Wu2 xjHð Þdx ¼ a; ðB8Þ

where a is given tolerance probability of the first-kind

error, wu2(x|H) is the probability density function of

statistic u2 under condition that the hypothesis H is

true. Probability of the second kind error in this case is

equal to:

b ¼
Z F

�l
wu2 xjK; a0; r2

a

� �
dx; ðB9Þ

where wu(x|K, a0, ra
2) is the probability density

function of statistic u2, with parameters a0 and ra,

and under condition that the alternative hypothesis K

is true.

It follows from Eq. (B4) that statistic u is normally

distributed. When the hypothesis H is true, its

expectation and variance are:

M1 r þ a0jH½ � ¼ a0;D r þ a0jH½ � ¼ fTC�1f ¼ s2H :

ðB10Þ

It is easy to show that when alternative K is true,

then:

M1 r þ a0jK½ � ¼ a0 fTC�1f þ 1
� �

¼ aK ;

D r þ a0jK½ � ¼ fTC�1f þ r2
ajC�1f j2 ¼ s2K : ðB11Þ

The square of a normally distributed variable with

the mean b and variance s2 has the following integral

density distribution:

Fu2 xð Þ ¼
Z x

0

wu2 yð Þdy ¼ U

ffiffiffi
x

p � b

s

� �

þ U

ffiffiffi
x

p þ b

s

� �
� 1; xN0; ðB12Þ

where U(x) is Laplace’s integral.

It follows from Eqs. (B8), (B9) and (B12) that for a

given tolerance of false alarm a, the threshold F

determines by the formula:

a ¼ 2� U

ffiffiffiffi
F

p
� a0

sH

� �
� U

ffiffiffiffi
F

p
þ a0

sH

� �
; ðB13Þ
and corresponding probability of signal missing is:

b ¼ U

ffiffiffiffi
F

p
� aK

sK

� �
þ U

ffiffiffiffi
F

p
þ aK

sK

� �
� 1: ðB14Þ

Formulas (B13), (B14) are useful not only for

practical applications for signals detection but also

for studying of perspectives to hit geodynamic

signals in the data of the present and future satellite

missions.

B.2. Discrimination of two possible geodynamic

models

The procedure to estimate which of two known

geodynamic signals is present in temporal variations

of the gravity field is as follows. Suppose that there

are two theoretical alternative geodynamic signals

fA
G(h, u) and fB

G(h, u) corresponding to two different

alternative geodynamic models. Let coefficients of

their spherical expansion be Almk
i and Blmk

i . In this

case the problem reduces to testing a simple hypoth-

esis H0, that spherical coefficients of gravity temporal

variations DQlmk
i =Almk

i +dQlmk
i are random values,

having multidimensional normal distribution, cova-

riance matrix C, and expectation vector f A={ fn
A},

where fn
A=Almk

i . The alternative hypothesis H1 is that

DQlmk
i has the same distribution with the same

covariance matrix and expectation vector f B, which

components are fn
B. The way to number coefficients of

matrixes in a vector is optional.

Following the standard recipes of testing statistical

hypotheses (e.g. [28]), one obtains that hypothesis H0

has to be rejected if:

g¼ðfA � fBÞTC�1xVlnc� 1

2

XN
i¼1

f Ai
� �2 � f Bi

� �2
r2
i

¼ F

ðB15Þ
and accepted in the opposite case. Statistic g is

distributed normally, so a and b errors are:

a ¼ 1� U
F �M1 gjH0½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D gjH0½ �
p

 !
;

b ¼ U
F �M1 gjH1½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D gjH1½ �
p

 !
; ðB16Þ
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where U(x) is Laplace’s integral. Expectation and

variance when hypothesis H0 is true are:

M1 gjH0½ � ¼ fA � fB
� �T

C�1fB;

D gjH0½ � ¼ fA � fB
� �T

C�1 fA � fB
� � ðB17Þ

and when alternative hypothesis H1 is true are:

M1 gjH0½ � ¼ fA � fB
� �T

C�1fA;

D gjH0½ � ¼ fA � fB
� �T

C�1 fA � fB
� �

:
ðB18Þ

Hence, the procedure of discrimination of two

signals is similar to the procedure of signal detection.

One assigns the tolerance probability a to reject

erroneously the hypothesis H0, estimates the threshold

F from the left equation in (Eq. (B16)); calculates

statistic g and verifies inequality (Eq. (B15)). The

probability b to make a wrong decision that gravity

temporal variations contain the signal fA
G(h, u) when

in reality they contain the signal fB
G(h, u) determines

by the right equation in Eq. (B16).
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