Crystal structure of mahnertite

Dmitry Yu. PUSHCHAROVSKY ${ }^{1, *}$, Natalia V. ZUBKOVA ${ }^{1}$, Simon J. TEAT² ${ }^{2}$, Elizabeth J. MACLEAN ${ }^{2}$ and Halil SARP3
${ }^{1}$ Geology Department, Moscow State University, 119899 Moscow Russia
${ }^{2}$ CCLRC Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD, UK ${ }^{3}$ Département de Minéralogie du Muséum d'Histoire Naturelle de Genève, 1, route de Malagnou, CH-1208 Genève, Switzerland

Abstract

Mahnertite, $\left(\mathrm{Na}_{0.88} \mathrm{Ca}_{0.12}\right) \mathrm{Cu}_{2.75}\left[\mathrm{AsO}_{4}\right]_{2} \mathrm{Cl}_{0.62} \cdot 3.63 \mathrm{H}_{2} \mathrm{O}, \mathrm{M}=565.17$, is tetragonal, with space group I4/mmm, $a=$ 10.037(1) , $c=23.739(1) \AA, V=2391.5(4) \AA^{3}, Z=8, \rho_{o}=3.32, \rho_{c}=3.14 \mathrm{~g} / \mathrm{cm}^{3}, \mu=9.78 \mathrm{~mm}^{-1}$. The crystal structure of mahnertite was solved and refined against data collected at the Daresbury Synchrotron Radiation Source, using a $20 \times 20 \times 2 \mu \mathrm{~m}^{3}$ single crystal, $\lambda=0.6898 \AA, F(000)=2150, R=0.049$ for 639 reflections with $I>2 \sigma(I)$. The structure consists of sheets parallel to (001), which comprise two symmetrically independent distorted Cu 5 -vertex square pyramids $\mathrm{Cu}_{5}\left(\phi=\mathrm{O}, \mathrm{Cl}\right.$ or $\mathrm{H}_{2} \mathrm{O}$) as well as AsO_{4} tetrahedra. Four Cu_{5} pyramids located around the 4 -fold axis share edges to form clusters linked by AsO_{4} tetrahedra. The sheets are linked by the common apical vertex of the $\mathrm{Cu}(2) \phi_{5}$ polyhedra. As a result, a heterogeneous framework is formed. (Na, Ca) atoms, additional $\mathrm{Cu}(3)$ cations and $\mathrm{H}_{2} \mathrm{O}$ molecules are located in the interlayers. The mineral is structurally related to zdenekite, $\mathrm{NaPbCu}_{5}\left(\mathrm{AsO}_{4}\right)_{4} \mathrm{Cl} \cdot 5 \mathrm{H}_{2} \mathrm{O}$.

Key-words: mahnertite, crystal structure, arsenate.

Introduction

The sodium copper arsenate mahnertite, ideally $(\mathrm{Na}, \mathrm{Ca}) \mathrm{Cu}_{3}\left[\mathrm{AsO}_{4}\right]_{2} \mathrm{Cl} \cdot 5 \mathrm{H}_{2} \mathrm{O}$, was discovered in the Cap Garonne mine, Var, France (Sarp, 1996) and approved by the CNMMN of IMA before publication. The preliminary X-ray diffraction study of mahnertite (powder diagram and precession photos) (Sarp, 1996) revealed that the mineral is tetragonal with $a=10.085, c=23.836 \AA$, space group $P 4_{2} 2_{1} 2, Z=8$. The results of the electron microprobe analysis led to the chemical formula $\mathrm{Na}_{0.90} \mathrm{~K}_{0.05} \mathrm{Ca}_{0.23}$ $\mathrm{Cu}_{2.79}\left(\mathrm{AsO}_{4}\right)_{2.07} \mathrm{Cl}_{0.81} \cdot 4.91 \mathrm{H}_{2} \mathrm{O}$. Crystals of mahnertite are thin square plates, which form aggregates or spherules $(0.2$ mm in diameter). The crystal structure of mahnertite remained undetermined primarily because, due to the small size and plate-like shape of the crystals, data collection by conventional single crystal X-ray diffraction was not possible. However, the single crystal diffraction facility on the UK Synchrotron Radiation Source (SRS) at the Daresbury Laboratory is designed for measuring diffraction from small crystals (Wang, 2003). A study of the structural properties of mahnertite has therefore been carried out using synchrotron radiation and the results of this work are reported below.

Experimental

A single crystal with dimensions $20 \times 20 \times 2 \mu \mathrm{~m}^{3}$ was used for the structure determination at room temperature. The small dimensions of the crystal were a result of the difficulty in separating out a single crystal from the aggregate of thin square plates which made up the sample from the Cap Garonne mine. The data were collected at $\lambda=$ $0.6898 \AA$ using a Bruker AXS SMART 1K CCD area detector diffractometer on station 9.8 of the SRS (Cernik et al., 1997). The data were collected using a single 180° ω-rotation, corrected for absorption using the program SADABS (Sheldrick, 1997a) and processed (Clegg et al., 1998) to yield refined tetragonal cell constants of $a=$ $10.037(1), c=23.739(1) \AA, V=2391.5(4) \AA^{3}$. The systematic absences indicated a I-centred cell. The details of the crystal data and of the data collection are summarised in Table 1.

SHELXTL (Sheldrick, 2000) and SHELX-97 (Sheldrick, 1997b) yielded solution by direct methods and refinement of the crystal structure by using 3947 reflections merged to 792 independent reflections (space group $I 4 / \mathrm{mmm})$, of which 639 reflections have $I>2 \sigma(I)\left(R_{\mathrm{int}}=\right.$ 0.052). A first structure model was obtained in space

[^0]Table 1. Crystal data, structure solution and refinement for mahnertite.

Chemical formula	$\left(\mathrm{Na}_{0.88} \mathrm{Ca}_{0.12}\right) \mathrm{Cu}_{2.75}\left(\mathrm{AsO}_{4}\right)_{2} \mathrm{Cl}_{0.62} \cdot 3.63 \mathrm{H}_{2} \mathrm{O}$
Molecular weight	565.17
Temperature	$293(2) \mathrm{K}$
Radiation and wavelength	synchrotron, $0.6898 \AA$
Crystal system, space group	tetragonal, I4/mmm
Unit cell dimensions	$a=10.037(1) \AA$
	$c=23.739(1) \AA$
Z	$V=2391.5(4) \AA^{3}$
Density (calc.)	8
Absorption coefficient μ	$3.14 \mathrm{~g} / \mathrm{cm}^{3}$
$F(000)$	$9.78 \mathrm{~mm}^{-1}$
Reflections for cell refinement	2150
Crystal colour	$2083\left(2 \theta\right.$ range $\left.5.57-58.76^{\circ}\right)$
Crystal size	dark green
Data collection method	$0.02 \times 0.02 \times 0.002$ mm
	Bruker SMART CCD diffractometer,
θ range for data collection	ω rotation with narrow frames
Index ranges	2.14 to 29.38°
Intensity decay	$-13 \leq h \leq 9,-9 \leq k \leq 13,-22 \leq l \leq 21$
Reflections collected	10%
Independent reflections	3947
Reflections with $I>2 \sigma(I)$	$792\left(R_{\text {int }}=0.052\right)$
Absorption correction	639
Max. and min. transmission	multi-scan
Structure solution	0.94 and 0.55
Refinement method	direct methods
Weighting parameters a, b	full-matrix least-squares on F^{2}
Number of refined parameters	$0.0822,22.6201$
Final R indices $[I>2 \sigma(I)]$	70
R indices (all data)	$R 1=0.049$, w $R 2=0.124$
Goodness-of-fit on $F 2$	$R 1=0.065$, w $R 2=0.136$
Largest diff. peak and hole	1.079
	2.99 and $-1.51 \mathrm{e} / \AA^{3} 3$

Table 2. Final positional and displacement parameters $\left(\AA^{2}\right)$ for mahnertite.

Atom	x	y	z	U_{eq}
As	$0.20754(5)$	$0.20754(5)$	$0.32286(5)$	$0.0143(4)$
$\mathrm{Cu}(1)$	0.5	$0.2707(1)$	$0.28092(6)$	$0.0164(4)$
$\mathrm{Cu}(2)$	0.0	0.0	$0.3783(1)$	$0.0201(7)$
$\mathrm{Cu}(3)^{*}$	$0.184(1)$	$0.184(1)$	$0.4556(8)$	$0.047(4)$
$\mathrm{Na}_{0.88} \mathrm{Ca}_{0.12}$	0.5	0.0	$0.3700(3)$	$0.025(1)$
$\mathrm{O}(1)$	$0.3704(4)$	$0.1708(5)$	$0.3235(3)$	$0.023(1)$
$\mathrm{O}(2)$	$0.1400(4)$	$0.1400(4)$	$0.2634(3)$	$0.015(2)$
$\mathrm{O}(3)$	$0.1370(4)$	$0.1370(4)$	$0.3794(4)$	$0.022(2)$
$\mathrm{W}(1)$	$0.340(2)$	0.0	$0.4443(7)$	$0.16(1)$
$\mathrm{W}(2)^{*}$	0.5	$0.31(1)$	$0.451(5)$	$0.17(5)^{* *}$
$\mathrm{~W}(3)^{*}$	0.5	$0.23(1)$	$0.441(5)$	$0.15(4)^{* *}$
$\mathrm{~W}(4)^{*}$	$0.626(8)$	$0.305(8)$	$0.449(3)$	$0.09(3)^{* *}$
$\mathrm{Cl}(1)$	0.5	0.5	$0.3433(3)$	$0.026(1)$
$\mathrm{Cl}(2)=\mathrm{Cl}_{0.5} \mathrm{~W}_{0.5}$	0.0	0.0	0.5	$0.028(3)$
$*$ Occupancy coefficients for $\mathrm{Cu}(3)=0.125, \mathrm{~W}(2)=\mathrm{W}(3)=0.25$ and $\mathrm{W}(4)=0.125$				
were fixed during the refinement				
$* *$ Isotropic displacement parameters				

The equivalent isotropic displacement parameters for cations, anions and $\mathrm{W}(1)$ water molecule were converted (Fischer \& Tillmanns, 1988) from the anisotropic parameters $\left(U_{\text {eq }}=1 / 3\left(U_{11}+U_{22}+U_{33}\right)\right)$.
group I4. The programme PLATON (Spek, 2003) was used to search for higher symmetry and, based on this, the space
group 14 mm was chosen. However, based on the close values of $R_{\text {int }}$, the centrosymmetric space group $14 / \mathrm{mmm}$

Table 3. Selected interatomic distances (\AA) for mahnertite.

$\mathrm{As}-\mathrm{O}(1)$	$1.676(4) \times 2$	$\mathrm{Cu}(2)-\mathrm{O}(3)$	$1.944(6) \times 4$
$-\mathrm{O}(2)$	$1.706(7)$	av.	1.944
$-\mathrm{O}(3)$	$1.674(8)$	$-\mathrm{Cl}(2)=\mathrm{Cl}_{0.5} \mathrm{~W}_{0.5}$	$2.889(3)$
av.	1.683		
		$\mathrm{Cu}(3)-\mathrm{O}(3)$	$1.93(2)$
$\mathrm{O}(2)-\mathrm{O}(1)$	$2.734(7) \times 2$	$-\mathrm{W}(4)$	$2.26(9)$
$\mathrm{O}(3)-\mathrm{O}(1)$	$2.714(7) \times 2$	$-\mathrm{W}(1)$	$2.43(1) \times 2$
$\mathrm{O}(1)-\mathrm{O}(1)$	$2.833(9)$	$-\mathrm{Cl}(2)=\mathrm{Cl}_{0.5} \mathrm{~W}_{0.5}$	$2.82(1)$
$\mathrm{O}(2)-\mathrm{O}(3)$	$2.75(1)$		
av.	2.746	$(\mathrm{Na}, \mathrm{Ca})-\mathrm{O}(1)$	$2.420(6) \times 4$
$\mathrm{Cu}(1)-\mathrm{O}(1)$	$1.928(5) \times 2$	$-\mathrm{W}(1)$	$2.39(2) \times 2$
$-\mathrm{O}(2)$	$1.971(4) \times 2$	av.	2.41
av.	1.950		
$-\mathrm{Cl}(1)$	$2.737(4)$		

was equally possible. The corresponding refinement in both space groups resulted in essentially the same preliminary values of R-factors (~ 0.09). In the refinement in the acentric space group the possibility of inversion twinning was taken into account by refining the batch scale factor: this parameter refined to a value of 50:50 indicating that either the structure is a $50: 50$ twin or a centre of symmetry has been omitted from the space group elements. The similar R-factors in the centric and acentric space groups as well as the more reasonable interatomic distances and atomic displacement parameters indicate that $14 / \mathrm{mmm}$ is the true space group. Thus, the real symmetry of mahnertite revealed on the basis of three dimensional set of reflections became higher in respect to the space group $P 4_{2} 2_{1} 2$ reported in its first description (Sarp, 1996). However, all systematic absences in the latter space group ($h 00: h=$ $2 n+1 ; 00 l: l=2 n+1$) were also observed in the threedimensional set of reflections due to the I-centred cell. A small peak located in the difference Fourier map during the refinement was modelled as a partially occupied $\mathrm{Cu}(3)$ site, giving a final occupancy with sensible displacement parameter; with the assumption of occupancy on this site, the content of Cu in the cell (2.75 apfu$)$ became close to that determined from electron microprobe analysis (2.79 apfu). The (Na, Ca) position was found in the difference Fourier map and was identified assuming the standard interatomic distances between these cations and O atoms. Its electron content confirmed the $\mathrm{Na} / \mathrm{Ca}$ ratio found by electron microprobe analysis. Other residual electron density peaks were found and modelled as disordered water molecules. Three of the sites (W(2), W(3) and W(4)) are characterised by partial occupancies. The relatively high isotropic displacement parameters of these molecules as well as anisotropic displacement parameters and $U_{\text {eq }}$ of the $\mathrm{W}(1)$ water molecule indicate that they are disordered over several sites, which are very close together. Since no new chemical information would be obtained by modelling this disorder, it was decided to leave them with relatively high $U_{\text {iso }} / U_{\text {eq }}$ and without splitting.

The final difference Fourier map contained the following residual peaks: $\Delta \rho_{\max }=+2.99 \mathrm{e} / \AA^{3}, \Delta \rho_{\min }=$ $-1.51 \mathrm{e} / \AA^{3}$. The atomic co-ordinates, displacement param-
eters and selected interatomic distances are given in Tables 2 and 3. Calculation of the sum of the bond strengths of the anions (Brese \& O'Keeffe, 1991) allowed the assignment of O and $\mathrm{H}_{2} \mathrm{O}$ to oxygen positions and indicated statistical replacement of Cl atoms by $\mathrm{H}_{2} \mathrm{O}$ molecules in $\mathrm{Cl}(2)$ sites (Table 4). The largest deviations of the bond valence sums from being ideal were observed for $\mathrm{Cl}(1)$ and $\mathrm{Cl}(2)=\left(\mathrm{Cl}, \mathrm{H}_{2} \mathrm{O}\right)$ which form the longest distances with $\mathrm{Cu}(1)$ and $\mathrm{Cu}(2)$, respectively. Due to the partial occupancies of the non-bonded water molecules, mahnertite can be considered as a mineral with some structural disorder and its general formula, mainly in accordance with electron microprobe analysis, is as follows: $\left(\mathrm{Na}_{0.88} \mathrm{Ca}_{0.12}\right) \mathrm{Cu}_{2.75}$ $\left[\mathrm{AsO}_{4}\right]_{2} \mathrm{Cl}_{0.62} \cdot 3.63 \mathrm{H}_{2} \mathrm{O}(Z=8)$. The density calculated on the basis of the structural formula, $3.14 \mathrm{~g} / \mathrm{cm}^{3}$, essentially matches the experimental density of $3.32 \mathrm{~g} / \mathrm{cm}^{3}$.

The intensity calculations (Yvon et al., 1977) for mahnertite (Table 5) demonstrated a general agreement of the strongest reflections in the X-ray powder diffraction data despite some discrepancies between I_{obs} and $I_{\text {calc }}$. This difference can be attributed to a preferred orientation of the plate-like crystallites with the thickness of several micrometers. We can add that the observed values of intensity in the powder pattern were estimated visually. The figures were drawn using the program ATOMS3.2 (Dowty, 1995).

Discussion

The most specific feature of the mahnertite structure are sheets parallel to (001) (Fig. 1), which comprise two $(\mathrm{Cu}(1)$ and $\mathrm{Cu}(2))$ symmetrically independent distorted Cu 5 -vertex square pyramids $\left(\mathrm{Cu} \phi_{5}\right)$, where ϕ is an unspecified ligand $\left(\mathrm{O}, \mathrm{Cl}, \mathrm{H}_{2} \mathrm{O}\right)$ as well as AsO_{4} tetrahedra. These sheets are identical to those recently found in monoclinicpseudotetragonl zdenekite, $\mathrm{NaPbCu}_{5}\left(\mathrm{AsO}_{4}\right)_{4} \mathrm{Cl} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ (space group $P 2_{1} / n, a=10.023(7), b=19.55(1), c=$ 10.023(6) $\AA, \beta=90.02(1)^{\circ}$; Zubkova et al., 2003) and, consequently, the $a_{\text {tetr }}$ and $b_{\text {tetr }}$-parameters in both structures are almost the same. The bases of both inequivalent Cu pyramids are formed by four O atoms (average distance: 1.950 and $1.944 \AA$, respectively) whereas their

Table 4. Bond-valence calculations for mahnertite (the atoms with full occupancies are considered).

	As		$\mathrm{Cu}(1)$		$\mathrm{Cu}(2)$		(Na, Ca)		Σ
$\mathrm{O}(1)$	1.28×2	1.28	0.51×2	0.51			0.20×4	0.20	1.99
$\mathrm{O}(2)$	1.18		0.45×2						2.08
$\mathrm{O}(3)$	1.29				0.49×4	0.49			1.78
W(1)							0.22×2	0.22	0.22
$\mathrm{Cl}(1)$			0.14	0.14×4					0.56
$\mathrm{Cl}(2)=\mathrm{Cl}_{0.5} \mathrm{~W}_{0.5}$					0.07	0.07×2			0.14
Σ	5.03		2.06		2.03		1.24		

Parameters taken from Brese \& O'Keeffe (1991). Contribution to the balance of cations is in italics.

Table 5. X-ray powder diffraction data of mahnertite*.

hkl	$d_{\text {calc }}$	$d_{\text {obs }}$	$I_{\text {calc }}$	$I_{\text {obs }}$
002	11.870	11.90	100	100
101	9.245	9.29	7	60
110	7.097	7.132	5	50
112	6.091	6.110	1	5
200	5.019	5.046	4	60
202	4.622	4.641	8	40
105	4.292	4.307	3	15
006	3.957	3.974	2	10
220	3.549	3.566	1	10
222	3.400	3.411	<1	<5
301	3.313	3.327	1	10
107	3.213	3.232	2	5
206	3.107		4	
	\}	3.098	,	80
303	3.082		10	
224	3.046	3.061	11	70
008	2.967	2.982	2	<5
321	2.765	2.780	5	35
118	2.738		1	
		2.749	,	20
305	2.735		4	
226	2.642	2.652	8	35
323	2.626	2.637	5	20
208	2.554	2.568	6	20
400	2.509	2.521	3	15
316	2.476		1	
	\}	2.464	,	5
402	2.455		1	
325	2.401	2.411	4	15
330	2.366	2.383	1	<5
413	2.327		<1	
		2.331)	<5
332	2.320		<1	
219	2.274	2.284	4	20
415	2.166		1	
		2.169	,	10
327	2.152		1	

h kl	$d_{\text {calc }}$	$d_{\text {obs }}$	$I_{\text {calc }}$	$I_{\text {obs }}$
424	2.099	2.110	1	5
501	2.000	2.009	1	5
0012	1.978	1.981	1	10
503	1.946		1	
2111	1.945 \}	1.953	1\}	10
512	1.942		1	
435	1.849		1	
	\}	1.857	,	10
2012	1.840		1	
523	1.814	1.824	2	5
428	1.790	1.799	2	<5
440	1.774	1.783	2	10
442	1.755	1.765	1	5
525	1.735		1	
2212	$1.728\}$	1.740	1\}	10
507	1.728		1	
600	1.673	1.682	1	10
2014	1.606		1	
	\}	1.606)	10
509	1.597		2	
536	1.578		1	
	\}	1.582	\}	5
622	1.573		1	
624	1.533	1.540	1	10
2214	1.530		1	
	1.522	1.529)	10
529	1.522		2	

* XRD pattern recorded with a Gandolfi camera (CuKa1 radiation) (Sarp, 1996); dcalc and Icalc calculated using the program LAZY PULVERIX(Yvon et al., 1977)
apical fifth vertices accommodate $\mathrm{Cl}\left(\mathrm{Cl}\right.$ or $\mathrm{H}_{2} \mathrm{O}$ in the $\mathrm{Cl}(2)$ site) at much longer distances ($2.737,2.889 \AA$). According to Effenberger (1988), the $\mathrm{Cu}^{[2+]} \phi_{5}$ tetragonal

Fig. 1. The (001) sheets in the crystal structure of mahnertite. Cupolyhedra for $\mathrm{Cu}(1)$ and $\mathrm{Cu}(2)$ cations and AsO_{4} tetrahedra are shown in dark and light grey respectively. $\mathrm{Cu}(3)$ atoms are shown as small black circles. Water molecules and Na, Ca positions are shown as small and big grey circles respectively.
pyramids differ in the displacement of the copper atom with respect to the square base. This displacement can be characterized by the $\mathrm{O}-\mathrm{Cu}-\mathrm{O}$ angles formed by the O atoms located in the bases of the pyramids. In mahnertite these angles are close to 180° (175.6 ${ }^{\circ}$ and 178.5° for $\mathrm{Cu}(1) \phi_{5}$ and $\mathrm{Cu}(2) \phi_{5}$, respectively). This circumstance allows us to consider the copper atom in this pentahedron as being located approximately in the plane of the square base.

Four $\mathrm{Cu}(1) \phi_{5}$ pyramids located around the 4 -fold axes share edges to form clusters similar to those discovered in zdenekite (Zubkova et al., 2003). Similar to mahnertite, in all Cu_{5} pentahedra of the zdenekite structure the $\mathrm{Cu}-\mathrm{Cl}$ distance exceeds the $\mathrm{Cu}-\mathrm{O}$ distances (the average $\mathrm{Cu}-\mathrm{O}$ distance and the $\mathrm{Cu}-\mathrm{Cl}$ distance for four Cu_{5} pentahedra are 1.96 and $2.76 \AA$, respectively).

In both structures the AsO_{4} tetrahedra are linked to each cluster of four $\mathrm{Cu}(1) \phi_{5}$ pentahedra (four tetrahedra below and four tetrahedra above). Each tetrahedron shares two vertices with two Cu_{5} pentahedra of one cluster and one vertex with a Cu_{5} pentahedron from the adjacent cluster. The fourth vertex of each AsO_{4} tetrahedron ($\mathrm{O}(3)$) in mahnertite is linked to the $\mathrm{Cu}(2) \phi_{5}$ pentahedron, which does not belong to clusters. Like the $\mathrm{Cu}(1) \phi_{5}$ pentahedra considered above, the latter copper polyhedron is also a pentahedron and represents a distorted tetragonal pyramid. However, the $\mathrm{Cu}(2)$ atom is co-ordinated (along with four oxygen atoms) either by Cl atoms or by the water molecule statistically distributed in $\mathrm{Cl}(2)$ sites and oriented toward the interlayer space. All the oxygen atoms in this tetragonal

Fig. 2. The crystal structure of mahnertite: a general view along [100].
pyramid are located in its base and simultaneously serve as vertices of the AsO_{4} tetrahedra.

Mirror planes m parallel to (001) pass through the apical $\mathrm{Cl}(2)$ atoms (partially substituted by $\mathrm{H}_{2} \mathrm{O}$ molecules) of these pyramids providing linkage between the polyhedral sheets adjacent along [001] (Fig. 2). As a result a heterogeneous framework is formed. In common with zdenekite, there could be stacking faults of the sheets which are the main elements of the framework. This is consistent with the observed diffuse scattering parallel to the c-axis. All the Bragg reflections in reciprocal lattice lie on rods of weak diffuse intensity projecting along the c-axis. The Bragg peaks themselves are also slightly extended in this direction too. However, this is much less
marked than in the case of zdenekite, where the Bragg peaks extend in such a way that their tails run into each other, forming a continous rod of intensity. Thus, both structures can contain different stacking variations of the identical adjacent sheets.

The large interlayer voids of the framework accommodate $(\mathrm{Na}, \mathrm{Ca}) \mathrm{O}_{4} \mathrm{~W}(1)_{2}$ slightly distorted trigonal prisms formed by $4 \mathrm{O}(1)$ atoms and 2 water molecules, $\mathrm{Cu}(3)$ atoms and $\mathrm{W}(2-4)$ water molecules. $\mathrm{Cu}(3)$ is located in the compressed pseudotrigonal pyramid with one additional $5^{\text {th }}$ vertex which accommodate $\mathrm{Cl}(2)=\left(\mathrm{Cl}, \mathrm{H}_{2} \mathrm{O}\right)$. The equatorial plane of this polyhedron is formed by $\mathrm{H}_{2} \mathrm{O}$ molecules.

The strongest reflection 002 in the powder diffraction pattern (Table 5) confirms the orientation of polyhedral sheets in mahnertite. As a conclusion it can be emphasized that both mahnertite and zdenekite contain a new type of mixed polyhedral sheets which are characterized by a different mode of stacking. Another alternation of the similar modules and consequently another polytype may be found in chemically related mineral species.

Acknowledgements: This work was supported in part by the Russian Scientific Foundation (Grant 03-05-64054), by the Russian Universities Programme and the Grants of the President of Russian Federation (MK-1046.2004.5, NS-1642.2003.5). The authors thank Prof. E.Tillmanns, Prof. V. Kahlenberg and Dr. K. Friese for their helpful suggestions.

References

Brese, N.E. \& O`Keeffe, M. (1991): Bond-valence parameters for Solids. Acta Cryst. B47, 192-197.
Cernik, R.J., Clegg, W., Catlow, C.R.A., Bushnell-Wye, G., Flaherty, J.V., Greaves, G.N., Hamichi, M., Burrows, I.D., Taylor, D.J., Teat, S.J. (1997): A new high flux chemical and materials crystallography station at the SRS Daresbury: Part 1

Design, Commissioning and Test Results. J. Synchrotron Rad., 4, 279-286.
Clegg, W., Elsegood, M.R.J., Teat, S.J., Redshaw, C., Gibson, V.C. (1998): A novel titanium-oxygen ladder structure supported by calix[4]arene ligands, characterised by synchrotron crystallography. J. Chem. Soc., Dalton Trans., 3037-3039.
Dowty, E. (1995): Atoms 3.2. A computer program for displaying atomic structures, Kingsport, TN 37663.
Effenberger, H. (1988): Contribution to the stereochemistry of copper. The transition from a tetragonal pyramidal to a trigonal bipyramidal $\mathrm{Cu}(\mathrm{II}) \mathrm{O}_{5}$ coordination figure with the structure determination of $\mathrm{PbCu}_{2}\left(\mathrm{SeO}_{3}\right)_{3}$. J. Solid State Chem., 73, 118-126.
Fischer, R.X. \& Tillmanns, E. (1988): The equivalent isotropic displacement factor. Acta Cryst., C44, 775-776.
Sarp, H. (1996): La mahnertite, $(\mathrm{Na}, \mathrm{Ca}) \mathrm{Cu}_{3}\left(\mathrm{AsO}_{4}\right)_{2} \mathrm{Cl} \cdot 5 \mathrm{H}_{2} \mathrm{O}$, un nouveau minéral de la mine de Cap Garonne, Var (France). Archs Sci. Gèneve, 49/2, 119-124.
Sheldrick, G.M. (1997a): SADABS, program for scaling and correction of area detector data, University of Göttingen.

- (1997b): SHELX-97: Program for the refinement of crystal structures. University of Göttingen.
- (2000): SHELXTL. Program for the solution and refinement of crystal structures (Bruker AXS Inc., Madison, WI).
Spek, A.L. (2003): Single-crystal structure validation with the program PLATON. J. Appl. Cryst., 36, 7-13.
Wang, M. (2003): Structure determination of niobium palladium arsenide, $\mathrm{Nb}_{5} \mathrm{Pd}_{4} \mathrm{As}_{4}$, from a $5 \times 5 \times 5 \mu \mathrm{~m}^{3}$ crystal with synchrotron radiation. J. Solid State Chem., 172, 232-236.
Yvon, K., Jeitschko W., Parthe E. (1977): Lazy Pulverix - a computer program, for calculating X-ray and neutron diffraction powder patterns. J. Appl. Cryst., 10, 73-74.
Zubkova, N.V., Pushcharovsky, D.Yu., Sarp, H., Teat, S.J., MacLean, E.J. (2003): Crystal structure of zdenekite, $\mathrm{NaPbCu}_{5}\left(\mathrm{AsO}_{4}\right)_{4} \mathrm{Cl} \cdot 5 \mathrm{H}_{2} \mathrm{O}$. Crystallography Reports, 48, 987-992.

Received 18 November 2003
Modified version received 15 March 2004
Accepted 31 March 2004

[^0]: *E-mail: dmitp@geol.msu.ru

