LETTER

Porous titanosilicate nanorods in the structure of yuksporite, (Sr,Ba)₂K₄(Ca,Na)₁₄(□,Mn,Fe) {(Ti,Nb)₄(O,OH)₄[Si₆O₁₇]₂[Si₂O₇]₃}(H₂O,OH)_n, resolved using synchrotron radiation

SERGEY V. KRIVOVICHEV,^{1,*} VIKTOR N. YAKOVENCHUK,² THOMAS ARMBRUSTER,³ NICOLA DÖBELIN,³ PHILIPP PATTISON,^{4,5} HANS-PETER WEBER,^{4,5} AND WULF DEPMEIER⁶

¹Department of Crystallography, Faculty of Geology, St. Petersburg State University, St. Petersburg 199034, Russia ²Geological Institute, Kola Science Center, Russian Academy of Sciences, Apatity 184200, Russia ³Laboratorium für chemische and mineralogische Kristallographie, Universität Bern,

Freiestrasse 3, CH-3102 Bern, Switzerland

⁴Swiss-Norwegian beamline, European Synchrotron Radiation Facility, BP 220, Grenoble 38043, France ⁵Laboratoire de Cristallographie, University of Lausanne, BSP Dorigny, CH-1015 Lausanne, Switzerland ⁶Institut fuer Geowissenschaften, Mineralogie/Kristallographie, Kiel Universität, Olshausenstrasse 40, 24118 Kiel Germany

ABSTRACT

The crystal structure of yuksporite, $(Sr,Ba)_2K_4(Ca,Na)_{14}(\Box,Mn,Fe){(Ti,Nb)_4(O,OH)_4[Si_6O_{17}]_2[Si_2O_7]_3}(H_2O,OH)_n$, where $n \sim 3$ [monoclinic, $P2_1/m$, a = 7.126(3), b = 24.913(6), c = 17.075(7) Å, $\beta = 101.89(3)^\circ$, V = 2966.4(17) Å³] has been solved using X-ray synchrotron radiation data collected from a needle-like crystal with dimensions of $6 \times 6 \times 50 \mu m^3$ at the Swiss-Norwegian beamline BM01 of the European Synchrotron Research Facility (ESRF, Grenoble, France). The structure was refined to $R_1 = 0.101$ on the basis of 2359 unique observed reflections with $|F_o| \ge 4\sigma_F$. The structure of yuksporite is based upon titanosilicate nanorods elongated along **a** and with an elliptical cross-section of ca. 16×19 Å = 1.6×1.9 nm. Silicate tetrahedra form double xonotlite-like chains ${}^1_{\infty}[Si_6O_{17}]$ oriented parallel to (001). Two ${}^1_{\infty}[Si_6O_{17}]_2[Si_2O_7]_3$ nanorods are porous. The internal pores are defined by eight-membered rings (8MR) with open diameters of 3.2 Å. The interior of the titanosilicate nanorods is occupied by Sr, Ba, K, and Na cations and H₂O molecules. The node into a three-dimensional structure.

INTRODUCTION

Titanosilicates represent a new and rapidly expanding class of porous materials with important applications in catalysis, gas separation (Kuznicki 1989; Kuznicki et al. 2001), optoelectronics (Lamberti 1999), ion-exchange (Attar and Dyer 2001), etc. Before being synthesized under laboratory conditions, many of these materials were known in nature, usually from alkaline lowtemperature hydrothermal assemblages (Khomyakov 1995). Here we report the occurrence and structure of porous titanosilicate nanorods in the structure of yuksporite, a mineral from the Kola peninsula in Russia. We show that these nanorods are constructed from octahedra (Ti) and tetrahedra (Si) and are structurally related to other titanosilicates such as ETS-4 (Philippou and Anderson 1996; Braunbarth et al. 2000; Nair et al. 2001), a synthetic counterpart of zorite (Mer'kov et al. 1973; Sandomirskii and Belov 1979), another mineral from the Kola peninsula, which is now used in industry on a multitonne scale. The structure solution of yuksporite was performed using high-energy synchrotron Xray radiation (Brown and Sturchio 2002). The occurrence of the titanosilicate nanometer-scale rods are of interest to nanoscience, in either applied (Patzke et al. 2002) or natural aspects (Banfield

and Navrotsky 2002; Hochella 2002).

Yuksporite, a complex titanosilicate of calcium, potassium, and sodium, was first described by Fersman (1923) from the Hackmann Valley, in Yuksporlak Pass, and on the upper Vuonnemiok River, all near Mt. Yukspor in the Khibiny massif. Subsequently, it was found in another part of Russia, in the Murun massif, southwest of Olekminsk, Yakutia (Konev et al. 1985). Yuksporite crystallizes at the late stage of hydrothermal activity and is found in association with microcline, aegirine, titanite, pectolite, biotite, and astrophyllite. Pale pink needles of yuksporite, up to 2-3 mm long and up to 0.01 mm across, usually form radial aggregates in cavities between microcline crystals. Konev et al. (1985) reported for yuksporite an orthorhombic unit cell with a =24.869(8), b = 16.756(6), c = 7.057(3) Å. Recently, Men'shikov et al. (2003) re-investigated the crystallographic parameters of yuksporite on the basis of electron microscopy data and reported the mineral to be triclinic, a = 16.50(5), b = 25.21(4), c = 21.11(3)Å, $\alpha = 100.4(3)$, $\beta = 110.0(4)$, $\gamma = 90.4(1)^{\circ}$.

Though yuksporite has been known for at least 80 years, its structure resisted characterization because of the small dimensions and poor diffraction of its crystals. The recent introduction of third-generation X-ray synchrotron sources provided a unique opportunity to structurally characterize many minerals previously inaccessible using in-house X-ray sources (Pluth et al. 1997; Burns et al. 2000; Cahill et al. 2001).

^{*} E-mail: sergey.krivovichev@uibk.ac.at

EXPERIMENTAL METHODS

X-ray diffraction experiments were performed under ambient conditions at the Swiss-Norwegian beamline BM01 of the European Synchrotron Research Facility (ESRF) with an imaging plate area detector (Mar345; 2300 × 2300 pixels) with a crystal-to-detector distance of 160 mm. Some tens of needle-like crystals of yuksporite were mounted on tapered glass fibers. Most of them yielded very poor diffraction patterns. However, we were able to find two crystals whose diffraction patterns could be indexed. Data were collected from both crystals. However, the data were better for the crystal with dimensions of $6 \times 6 \times 50$ um³. Diffraction data were measured using monochromatized radiation ($\lambda = 0.80000$ Å) in an oscillation mode by rotating the crystal in φ by 2° in 2 min per frame; 100 frames were measured. The unit-cell parameters were refined using 387 reflections. We determined that yuksporite is monoclinic, $P2_1/m$, a = 7.126(3), b = 24.913(6), c = 17.075(7) Å, $\beta =$ 101.89(3)°, V = 2966.4(17) Å³. These data are in general agreement with the unitcell parameters reported by Konev et al. (1985), taking into account weaknesses of spots in the diffraction photographs taken by these authors (A.N. Sapozhnikov, personal communication). However, our unit-cell parameters are in disagreement with those reported by Men'shikov et al. (2003). The intensities were integrated and merged with the program CrysAlis. Lorentz and polarization corrections were applied and absorption effects were corrected using SADABS ($R_{int} = 0.057$). The structure was solved using the SHELXS program. A pseudomerohedral twinning model was introduced by means of a transformation matrix [100/010/101] which significantly improved the refinement quality (the R_1 index changed from ~15 to 10%). In this model (001) is the twin composition plane. The occupancies of the atom positions were refined using scattering factors for Ti, K, Ca, Na, Sr, and Mn, and were subsequently fixed at the values given in Table 1 so as to be in agreement with the results of chemical analysis (see below). The agreement factor for the final model is $R_1 = 0.101$ for 2359 unique observed reflections with $|F_0| \ge 4\sigma_F$. The refinement results include atomic positional and isotropic displacement parameters (Table 1). Selected bond lengths are given in Table 2. Because of the poor quality of crystals and twinning effects, the bond lengths are somewhat in error. For example, some of the Si-O distances are in the range of 1.49-1.57 Å, which is relatively short. However, the data were good enough to reveal the general topological and geometrical features of the structure.

Because of the errors in the observed bond lengths, bond-valence analysis of the structure does not provide reliable information for the assignment of the OH and H₂O groups. Therefore, the following measures were undertaken: (1) all anions bonded to Si and Ti are considered to be O atoms; (2) anions not bonded to Si and Ti and bonded to three Ca, Na, or Sr positions each with cation-anion distances of 2.3-2.5 Å are considered to be OH groups; (3) other anions are considered to be H₂O groups.

The chemical composition of yuksporite was determined by wavelength-dispersion spectrometry using a Cameca MS-46 electron microprobe operating at 20 kV and 20 nA. The following standards were used: lorenzenite (Na and Ti), diopside (Ca, Si), wadeite (K), MnCO₃ syn. (Mn), hematite (Fe), celestine (Sr), Nb metal (Nb), and synthetic BaSO₄ (Ba). The chemical composition is (in wt%): Na₂O 5.58, SiO₂ 40.30, K₂O 7.01, CaO 17.60, TiO₂ 9.31, MnO 0.44, Fe₂O₃ 0.31, SrO 5.36, Nb₂O₅ 3.29, BaO 3.75, H₂O(calc) 7.05, sum 100.00. The empirical chemical formula calculated on the basis of Si = 18 is (Na_{4.83}K_{4.00}Ba_{0.66})_{2=9.49}(Ca_{8.42}Sr_{1.39})_{2=9.81}(Ti_{3.13}Nb_{0.06}Mn_{0.17}Fe_{0.10})_{2=3.88}Si₁₈O₅₉nH₂O, where n ~ 3, which is in general agreement with the results of the crystal-structure study.

RESULTS

The structure of yuksporite (Fig. 1) is based upon complex rods consisting of corner-sharing TiO₆ octahedra and SiO₄ tetrahedra (Fig. 2). The rods are parallel to **a** and have an elliptical cross-section measuring ca. 16×19 Å = 1.6×1.9 nm. The structure of titanosilicate rods in yuksporite is remarkable and is unique among both synthetic and natural silicates. Silicate tetrahedra consist of nine symmetry-independent types. SilO₄, Si4O₄ and SiSO₄ tetrahedra are linked via common O atoms to form xonotlite-like double *dreier* chains ${}^{1}_{\infty}$ [Si₆O₁₇] according to the Liebau's nomenclature (Liebau 1985; i.e., double chains with three tetrahedra within their identity periods) (Fig. 2c). These chains are parallel to **a** and are oriented perpendicular to **c**. Similar ${}^{1}_{\infty}$ [Si₆O₁₇] chains are made up of Si2O₄, Si6O₄, and Si8O₄ tetrahedra (Fig. 2d). Two ${}^{1}_{\infty}$ [Si₆O₁₇] chains are linked into

Atom Occupation	X	у	Ζ	U _{iso}						
Ti1 Ti _{0.80} Nb _{0.20}	0.1754(5)	0.59949(13)	0.0992(2)	0.008(2)						
Ti2 Ti _{0.75} Nb _{0.25}	-0.6751(6)	0.59968(13)	0.4004(2)	0.020*						
Si1 Si	-0.1835(10)	0.6319(2)	-0.0579(4)	0.014(2)						
SI2 SI	-0.8749(11)	0.6333(2)	0.5566(4)	0.020(2)						
SI3 SI	-0.0272(9)	0.5414(3)	0.2471(4)	0.020(2)						
SI4 SI	-0.6302(10)	0.6324(2)	-0.0584(4)	0.016(2)						
SI5 SI	0.0419(10)	0.6874(3)	-0.1648(4)	0.022(2)						
SIG SI	-0.5417(9)	0.6891(2)	0.6629(4)	0.016(2)						
SI/ SI	0.5259(7)	0.5442(2)	0.2476(3)	0.007(2)						
518 51	-0.3152(10)	0.6335(2)	0.5563(4)	0.015(2)						
519 51 5r1 5r Da	-0.0591(9)	0.6881(2)	0.2500(4)	0.016(2)						
Sri Sr _{0.35} Ba _{0.15}	-0.3119(7)	0.0337(3)	0.1271(3)	0.012(3)						
Sr2 Sr _{0.35} Ba _{0.15}	-0.1863(6)	0.0332(3)	0.3752(2)	0.008(2)						
	-0.0300(12)	3/4	-0.3017(5)	0.021(5)						
KZ K _{0.95} Dd _{0.05}	-0.4425(12)	2/4	-0.1552(5)	0.036(3)						
K3 K _{0.60}	0.1902(44)	2/4	0.0472(10)	0.030(9)						
K4 K _{0.90}	-0.0430(21)	2/4	0.4311(9)	0.070(8)						
No1 No	-0.1885(35)	0.6082(17)	0.0470(14)	0.051(13)						
Na1 Na _{0.50}	-0.3180(28)	0.6007(11)	0.3050(13)	0.000(10)						
	-0.0709(20)	0.0097(11)	0.1034(13)	0.030(9)						
	0.2479(8)	0.5873(1)	_0.2500(3)	0.013(4)						
	0.2479(0)	0.5177(2)	-0.2300(3)	0.0140(11)						
	-0.2/01(8)	0.5177(2)	-0.0913(3)	0.010(3)						
Ca4 Ca Na	-0.2491(0) -0.4213(13)	0.5051(2)	-0.2499(3)	0.010(2)						
C_{25} C_{25} C_{25} N_{25}	-0.4237(12)	0.4826(3)	0.0031(4)	0.020(3)						
M Mn Fe	-0.2532(23)	3/4	0.2424(10)	0.054(7)						
	0.4022(20)	0 5 2 2 3 (0)	_0.25/1(0)	0.032(5)						
01	0.4922(20)	0.3223(9)	0.2077(9)	0.032(3)						
02	-0.0764(29)	0.4232(0)	0.3672(6)	0.012(3)						
03	0.0030(21)	0.0465(6)	-0.2381(10)	0.034(3)						
04	-0.5099(16)	0.0449(0)	0.7320(9)	0.010						
05	-0.0110(19)	0.4794(6)	0.2479(9)	0.020(5)						
06	-0.6730(34)	0.5801(7)	-0.1130(10)	0.032(5)						
07	-0.6206(22)	0.5344(6)	0.4595(8)	0.010^						
08	0.1427(25)	0.5373(6)	0.0446(8)	0.010^						
OH9	-0.6310(22)	0.4644(6)	-0.0463(8)	0.010*						
OHIO	-0.1454(22)	0.5359(5)	0.4488(7)	0.010*						
011	-0.1951(27)	0.5804(6)	-0.1031(8)	0.010*						
012	-0.8177(24)	0.5794(5)	0.6045(7)	0.010*						
013	-0.7554(41)	3/4	0.2536(18)	0.038(6)						
014	-0.5332(35)	3/4	0.6948(15)	0.034(6)						
015	-0.6560(22)	0.6297(6)	0.0333(9)	0.018(4)						
016	-0.4460(22)	0.6325(6)	0.4665(9)	0.016(4)						
017	-0.1207(23)	0.6880(6)	-0.1051(9)	0.023(4)						
018	-0.5105(22)	0.5697(6)	0.3312(9)	0.016(4)						
019	-0.0716(29)	0.6329(8)	0.0291(11)	0.046(6)						
O20	-0.3925(27)	0.6514(8)	-0.0434(11)	0.042(5)						
021	-0.8293(20)	0.6331(5)	0.4682(8)	0.011(4)						
022	-0.1003(18)	0.6491(5)	0.5519(7)	0.010*						
023	-0.7397(28)	0.6862(7)	-0.1083(11)	0.039(5)						
O24	0.0144(23)	0.5659(6)	0.1678(9)	0.024(4)						
O25	-0.3915(18)	0.6801(5)	0.6046(7)	0.010*						
O26	0.4059(23)	0.5637(6)	0.1673(9)	0.022(4)						
027	-0.2740(18)	0.5594(4)	0.2416(8)	0.005(3)						
O28	0.0890(23)	0.5693(6)	0.3301(9)	0.025(4)						
029	0.0303(26)	3/4	-0.2011(10)	0.002(4)						
O30	-0.7571(20)	0.6820(5)	0.6058(7)	0.004(3)						
031	-0.1671(35)	3/4	0.4211(11)	0.010*						
032	0.2116(24)	0.6637(7)	0.1684(10)	0.027(4)						
033	-0.7124(23)	0.6635(7)	0.3297(9)	0.024(4)						
034	_0.4310(20)	0.6918(16)	0.2469(23)	0.119(10)						
	-0.0783(76)	0.6870(22)	0.2301(23)	0.100*						
H_2O35 ($H_2O_{0.59}$)	-0.349(12)	3/4	0.0981(49)	0.100*						
* Fixed all and a	0.0 10(12)	5/4	0.0701(77)	0.100						
" Fixed during ref	* Fixed during refinement.									

a rod via Ti1O₆ and Ti2O₆ octahedra and Si₂O₇ double tetrahedra formed by Si3 and Si7 atoms (Fig. 2e). Another Si₂O₇ group composed of two corner-sharing Si9O₄ tetrahedra is located within the rod and is oriented parallel to **b**. This group provides linkage of two opposite walls of the rod along the **b** axis (Fig. 2b). There are two different TiO₆ octahedra and both of them show

 TABLE 1.
 Atomic coordinates, occupancies, and displacement

 parameters (Å²) for vuksporite

Ti1-O8	1.80(1)	Sr1-H ₂ O35	2.55(6)	Na3-OH10	2.22(2)			
Ti1-O15	1.96(2)	Sr1-019	2.63(2)	Na3-OH10	2.37(1)			
Ti1-032	1.97(2)	Sr1-015	2.64(2)	Na3-012	2.42(2)			
Ti1-024	1.99(2)	Sr1-027	2.67(1)	Na3-02	2.42(2)			
Ti1-026	2.02(2)	Sr1-034	2.78(4)	Na3-07	2.47(2)			
Ti1-019	2.09(2)	Sr1-OH9	2.80(2)	Na3-O28	2.54(2)			
<ti1-0></ti1-0>	1.97	Sr1-024	2.84(2)	Na3-O5	2.76(2)			
		Sr1-026	2.85(2)	< Na3-φ>	2.46			
Ti2-07	1.91(2)	Sr1-O20	2.88(2)					
Ti2-021	1.94(1)	Sr1-H₂O36	2.94(2)	Ca1-O6	2.30(2)			
Ti2-016	1.96(2)	<sr1-φ></sr1-φ>	2.76	Ca1-O4	2.31(2)			
Ti2-018	1.98(2)	-		Ca1-O3	2.34(2)			
Ti2-033	1.98(2)	Sr2-016	2.65(2)	Ca1-O5	2.37(2)			
Ti2-028	2.00(2)	Sr2-021	2.71(1)	Ca1-O1	2.39(2)			
<ti2-0></ti2-0>	1.96	Sr2-OH10	2.72(2)	Ca1-012	2.44(1)			
		Sr2-028	2.76(2)	<ca1-o></ca1-o>	2.36			
Si1-011	1.49(2)	Sr2-018	2.77(2)					
Si1-019	1.54(2)	Sr2-027	2.90(1)	Ca2-08	2.33(2)			
Si1-O20	1.63(2)	Sr2-034	2.90(4)	Ca2-08	2.34(2)			
Si1-017	1.72(2)	Sr2-022	2.98(1)	Ca2-06	2.45(2)			
<si1-0></si1-0>	1.60	Sr2-031	3.01(1)	Ca2-OH9	2.46(2)			
		Sr2-H ₂ O35	3.02(6)	Ca2-011	2.46(2)			
Si2-012	1.58(2)	<sr2-φ></sr2-φ>	2.84	Ca2-024	2 47(2)			
Si2-021	1.61(2)	νοι - φ/	2101	Ca2-05	2.61(2)			
Si2-021	1.61(2)	K1-029	2 68(2)	<ca2-05< td=""><td>2.01(2)</td></ca2-05<>	2.01(2)			
Si2_022	1.64(2)	K1-030	2.00(2)	<cu2 ψ=""></cu2>	2.45			
SI2-022	1.04(2)	K1-030	$2.00(2) \times 2$	C12 02	2 21(2)			
<312-02	1.01	K1-022	2.90(1) ×2	Ca3-02	2.31(2)			
612.05	1 55(2)	KI-025	2.92(1) ×2	Ca3-04	2.35(2)			
513-05	1.55(2)	KI-03	3.27(2) ×2	Ca3-03	2.38(2)			
SI3-024	1.57(2)	<k1-o></k1-o>	2.95	Ca3-01	2.41(2)			
Si3-O28	1.64(2)			Ca3-O5	2.45(2)			
513-027	1.80(1)	K2-017	2.73(2) ×2	Ca3-011	2.46(2)			
<si3-0></si3-0>	1.64	K2-O23	2.76(2) ×2	<ca3-o></ca3-o>	2.39			
		K2-O14	2.84(3)					
Si4-06	1.60(2)	K2-O20	2.90(2) ×2	Ca4-OH9	2.17(2)			
Si4-015	1.62(2)	<k2-o></k2-o>	2.80	Ca4-OH9	2.22(2)			
Si4-023	1.69(2)			Ca4-011	2.34(2)			
Si4-020	1.73(2)	K3-O32	2.97(2) ×2	Ca4-06	2.37(2)			
<si4-0></si4-0>	1.66	K3-O15	3.22(2) ×2	Ca4-08	2.37(2)			
		K3-H₂O36	3.22(9)	Ca4-O26	2.47(2)			
Si5-O3	1.57(2)	K3-O23	3.22(3) ×2	Ca4-01	2.86(2)			
Si5-O23	1.65(2)	<k3-φ></k3-φ>	3.15	<ca4-φ></ca4-φ>	2.40			
Si5-O29	1.67(1)							
Si5-017	1.69(2)	K4-O33	2.96(2) ×2	Ca5-07	2.19(2)			
< Si5-0>	1.65	K4-O16	3.23(2) ×2	Ca5-07	2.21(2)			
		K4-O21	3.24(2) ×2	Ca5-O2	2.31(2)			
Si6-O4	1.60(2)	K4-O13	3.30(3)	Ca5-OH10	2.36(2)			
Si6-014	1.61(1)	K4-O25	3.34(2) ×2	Ca5-O12	2.37(2)			
Si6-025	1.62(1)	K4-O30	3.38(2) ×2	Ca5-O18	2.57(2)			
Si6-O30	1.65(2)	<k4-o></k4-o>	3.24	Ca5-O1	2.63(2)			
<si6-0></si6-0>	1.62		512 1	<ca5-@></ca5-@>	2 38			
		K5-032	2 98(2) ~2	(cub q)	2.00			
Si7-027	1 50(1)	K5-019	3 13(3) 2					
Si7-026	1.50(1)	K5-017	3 13(3) ×2					
Si7-018	1.54(2)	<k5-0></k5-0>	3.08					
517-018	1.03(2)	<kj=0></kj=0>	3.08					
317-01	1.07(2)		211(4)					
<517-0>	1.59	Nat-OHIO	2.11(4)					
c:0.005	4 50(4)	Na1-018	2.48(3)					
518-025	1.58(1)	Na1-028	2.53(3)					
518-022	1.60(2)	Na1-016	2.62(3)					
Si8-016	1.62(2)	Na1-027	2.66(3)					
Si8-O2	1.72(2)	Na1-021	2.74(3)					
<si8-0></si8-0>	1.63	Na1-022	3.00(2)					
		<Νa1-φ>	2.59					
Si9-033	1.61(2)							
Si9-032	1.62(2)	Na2-OH9	2.10(3)					
Si9-034	1.64(2)	Na2-019	2.47(3)					
Si9-013	1.70(1)	Na2-O15	2.51(3)					
<si9-0></si9-0>	1.64	Na2-027	2.60(2)					
		Na2-O24	2.63(3)					
M-034	1.94(3) ×2	Na2-026	2.67(3)					
M-H ₂ O35	2.03(5) ×2	Na2-020	2.70(3)					
M-H_036	2 42(8)	<na2-020< td=""><td>2.53</td><td></td><td></td></na2-020<>	2.53					
<m-@></m-@>	2.07							
* \$ = 0 04	H-0							
$\phi = 0, 0H, H_2 U$								

TABLE 2. Selected bond lengths (Å) in the structure of yuksporite

FIGURE 1. The crystal structure of yuksporite (**a**) and arrangement of titanosilicate nanorods along **a** (**b**). Legend: TiO_6 octahedra = crosshatched; SiO_4 tetrahedra = lined; $Ca\phi_n$ polyhedra = shaded; K, Sr, and Na cations are shown as white circles; H_2O groups are shown as gray circles.

an out-of-center distortion of octahedral geometry typical for the d^0 transitional metal cations (Kunz and Brown 1995). These octahedra are predominantly occupied by Ti, however, some admixture of Nb into this site should also be taken into account. Of the six O atoms coordinating the Ti⁴⁺ cations, five are shared with silicate tetrahedra, and one is not. The O atoms of this type form a shortened Ti-O bond. The total composition of a rod is {(Ti,Nb)₄(O,OH)₄[Si₆O₁₇]₂[Si₂O₇]₃}. Note that the titanosilicate rod is negatively charged; thus the structure contains additional cations for charge balance.

The { $(Ti,Nb)_4(O,OH)_4[Si_6O_{17}]_2[Si_2O_7]_3$ } nanorods are porous. The internal pores are defined by eight-membered rings (8MR) oriented perpendicular to (100). Their free diameter estimated as the distance between O atoms across the ring minus 2.7 Å (two oxygen radii taken as 1.35 Å) is 3.2 Å. These 8MRs consist of two octahedra and six tetrahedra each (Fig. 2b). Within the rod, the 8MRs are arranged in two parallel internal channels separated by the Si₂O₇ groups formed by Si9O₄ tetrahedra. From the

FIGURE 2. Structure of titanosilicate nanorods in yuksporite: view from the side (**a**) and from the top (**b**); two xonotlite-like [Si₆O₁₇] chains (**c**, **d**) form walls of nanorods perpendicular to **c**; TiO₆ octahedra, Si₂O₇ groups and halves of the xonotlite chains form walls of nanorods perpendicular to **b** (**e**). Legend: TiO₆ octahedra = crosshatched; SiO₄ tetrahedra = lined. The numbers in circles correspond to the numbers of Ti and Si atoms in Table 1.

outside, the rods are bounded by 8MRs formed solely by silicate tetrahedra (Fig. 2c). The plane of these rings is parallel to (001); their apertures have an elliptical section with free diameters of 2.3×4.4 Å. Other outside rings are 6MRs as shown in Figure 2e. These rings consist of two octahedra and four tetrahedra and have a free diameter of ca. 2.3 Å.

The interior of the titanosilicate nanorods is occupied by alkali metal cations (Na1, Na2, K1-K5) and H₂O molecules. In addition, there is a low-occupancy M site located within the rod between two Si₂O₇ groups formed by Si9 atoms. This position has a square pyramidal coordination and provides additional blockage between the two internal channels parallel to **a**. In the structure, the {(Ti,Nb)₄(O,OH)₄[Si₆O₁₇]₂[Si₂O₇]₃} rods are separated by walls composed of Ca coordination polyhedra. The walls are parallel to (010) and provide linkage of the rods into a three-dimensional structure.

Taking into account all atomic positions, the structural formula of yuksporite should be written as Sr_{1.40}Ba_{0.65}K_{3.75}Ca_{8.50} $Na_{5.50}Mn_{0.15}Fe_{0.10} \{ (Ti,Nb)_4(O,OH)_4 [Si_6O_{17}]_2 [Si_2O_7]_3 \} (H_2O,OH)_3.$ A simplified formula may be written as $(Sr,Ba)_2K_4(Ca,Na)_{14}(\Box,$ Mn,Fe){ $(Ti,Nb)_4(O,OH)_4[Si_6O_{17}]_2[Si_2O_7]_3$ } $(H_2O,OH)_n$, where n ~ 3 (\Box = vacancy). This formula is in good agreement with the results of the chemical analysis given above. Moreover, it is in general agreement with the chemical data reported by Konev et al. (1985) for Yakutian yuksporite. On the basis Si + Al = 18, the empirical chemical formula for the sample studied by Konev et al. (1985) can be written as $(Na_{3.48}K_{3.67}Ba_{1.58})_{\Sigma=8.73}(Ca_{9.47}Sr_{1.59})_{\Sigma=11.06}$ $(Ti_{3.88}Mn_{0.11}Fe_{0.26})_{\Sigma=4.25}Si_{17.96}Al_{0.04}O_{60.39}F_{4.51}Cl_{0.63}nH_2$. This formula has many similarities with the formula of the Khibiny sample studied in this work: (1) the amount of K is about 4 atoms per formula units (apfu), (2) Ca + Na \approx 14, and (3) the amount of Ti is about 4 apfu. However, there are important differences as well: (1) Ba + Sr \approx 3, instead of 2 in our yuksporite and (2) there is a considerable amount of F in the Yakutian yuksporite. The latter allows us to identify yuksporite from the Murun massif (Yakutia) as an F-bearing variety that can potentially be considered as a different mineral species. However, more detailed investigations of the type material of the Yakutian yuksporite are necessary before making final conclusion.

DISCUSSION

The discovery of titanosilicate nanorods in the structure of yuksporite provides important new information for understanding the structural diversity of titanosilicates and related materials. The structures of natural and synthetic titanosilicates usually consist of either frameworks or layers of corner-sharing TiO₆ octahedra (or TiO₅ square pyramids) and SiO₄ tetrahedra (Rocha and Anderson 2000; Krivovichev et al. 2003; Krivovichev and Armbruster 2004). Thus, structures of ETS-4 (Philippou and Anderson 1996; Braunbarth et al. 2000; Nair et al. 2001) and ETS-10 (Anderson et al. 1994; Wang and Jacobson 1999) are based upon chains of TiO₆ octahedra interlinked by silicate anions, whereas structures of a titanosilicate catalyst JDF-L1 (Roberts et al. 1996) and fresnoite Ba₂(TiO)(Si₂O₇) (Moore and Louisnathan 1967) consist of layers of TiO₅ square pyramids and SiO₄ tetrahedra. The structure of jonesite, Ba₂(K,Na)[Ti₂(Si₅Al)O₁₈(H₂O)](H₂O)_n (Krivovichev and Armbruster 2004) is based upon porous double layers consisting of TiO₆ octahedra and SiO₄ tetrahedra. The structure of ohmilite, Sr₃(Ti,Fe³⁺)(O,OH)(Si₂O₆)₂·2-3H₂O (Mizota et al. 1983) contains complex chains of Ti(O,OH)₆ octahedra and SiO4 tetrahedra. The titanosilicate nanorods in yuksporite demonstrate new and unusual possibilities in the class of titanosilicate materials, especially in the field of synthesis of titanosilicatebased oxide nanorods with potential technological applications (Patzke et al. 2002).

Titanium phyllosilicate minerals have recently attracted attention due to their interesting modular crystal chemistry (Ferraris 1997; Ferraris et al. 2004). Men'shikov et al. (2003) suggested that yuksporite and the related mineral eveslogite belong to the astrophyllite-group minerals and that their structures contain titanosilicate heteropolyhedral layers. This study has demonstrated that, at least for yuksporite, this hypothesis could not be confirmed.

ACKNOWLEDGMENTS

We are grateful to P. Burns, G. Ferraris, and R. Downs for useful comments on the manuscript. S.V.K. thanks the Alexander von Humboldt Foundation and the Swiss National Science Foundation (grant 20-65084.01 to T.A., Crystal Chemistry of Minerals) for financial support.

1564

REFERENCES CITED

- Anderson, M.W., Terasaki, O., Ohsuna, T., Philippou, A., MacKay, S.P., Ferreira, A., Rocha, J., and Lidin, S. (1994) Structure of the microporous titanosilicate ETS-10. Nature, 367, 347–351.
- Attar, L.A. and Dyer, A. (2001) Sorption of uranium onto titanosilicate materials. Journal of Radioanalytical and Nuclear Chemistry, 247, 121–128.
- Banfield, J. and Navrotsky, A., Eds. (2002) Nanoparticles and the Environment. vol. 44. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, Washington, D.C.
- Braunbarth, C., Hillhouse, H.W., Nair, S., Tsapatis, M., Burton, A., Lobo, R.F., Jacubinas, R.M., and Kuznicki, S.M. (2000) Structure of strontium ionexchanged ETS-4 microporous molecular sieves. Chemistry of Materials, 12, 1857–1865.
- Brown, G.E., Jr. and Sturchio, N.C. (2002) An overview of synchrotron radiation applications to low temperature geochemistry and environmental science. In P. Fenter, M. Rivers, N. Sturchio, and S. Sutton, Eds., Applications of synchrotron radiation in low-temperature geochemistry and environmental science, 49, 1–115. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, Washington, D.C.
- Burns, P.C., Pluth, J.J., Smith, J.V., Eng, P., Steele, I.M., and Housley, R.M. (2000) Quetzalcoatlite: a new octahedral-tetrahedral structure from a 2 x 2 x 40 µm³ crystal at the Advanced Photon Source-GSE-CARS facility. American Mineralogist, 85, 604–607.
- Cahill, C.L., Krivovichev, S.V., Burns, P.C., Bekenova, G.K., Shabanova, and T.A. (2001) The crystal structure of mitryaevaite, Al₅(PO₄)₂{(P,S)O₃(O,OH))}₂F₂(O H)₂(H₂O)₈]6.56H₂O, determined from a microcrystal by means of synchrotron radiation. Canadian Mineralogist, 39, 179–186.
- Ferraris, G. (1997) Polysomatism as a tool for correlating properties and structure. EMU Notes in Mineralogy, 1, 275–295.
- Ferraris, G., Mackovicky, E., and Merlino, S. (2004) Crystallography of Modular Materials. Oxford University Press, U.K.
- Fersman, A.E. (1923) Minerals of the Khibina and Lovozero tundras. Transactions of the Northern Scientific Economic Expedition, 16, 16–73.
- Hochella, M.F., Jr. (2002) There's plenty of room at the bottom: nanoscience in geochemistry. Geochimica et Cosmochimica Acta, 66, 735–743.
- Khomyakov, A.P. (1995) Mineralogy of Hyperagpaitic Alkaline Rocks. Clarendon, Oxford, U.K.
- Konev, A.A., Vorob'ev, E.I., Sapozhnikov, A.N., Malyushonok, Y.U., Paradina, L.F., and Lapides, I.L. (1985) New data on yuksporite. Mineralogicheskiy Zhurnal, 7, 74–78.
- Krivovichev, S.V. and Armbruster, T. (2004) The crystal structure of jonesite, Ba₂(K,Na)[Ti₂(Si₃Al)O₁₈(H₂O)](H₂O)_n: a first example of titanosilicate with porous double layers. American Mineralogist, 89, 314–318.
- Krivovichev, S.V., Yakovenchuk, V.N., Armbruster, T., Pakhomovsky, Ya.A., and Depmeier, W. (2003) Crystal structure of Ti analogue of ilimaussite-(Ce), (Ba,K,Na)₁₁₋₁₂(Ce,La,Th,Nd)₄(Ti,Nb,Fe³⁺)₆(Si₆O₁₈)₄(OH)₆6H₂O: revision of structural model and structural formula. Zeitschrift für Kristallographie, 218, 392–396.
- Kunz, M. and Brown, I.D. (1995) Out-of-center distortions around octahedrally coordinated d⁰ transition metals. Journal of Solid State Chemistry, 112, 395–406.

Kuznicki, S.M. (1989) Large-pored crystalline titanium molecular sieve zeolites.

U.S. Patent No. 4853202.

- Kuznicki, S.M., Bell, V.A., Nair, S., Hillhouse, H.W., Jacubinas, R.M., Braunbarth, C.M., Toby, B.H., and Tsapatis, M. (2001) A titanosilicate molecular sieve with adjustable pores for size-selective adsorption of molecules. Nature, 412, 720–724.
- Lamberti, C. (1999) Electron-hole reduced effective mass in monoatomic -O-Ti-O-Ti-O- quantum wires embedded in the siliceous crystalline matrix of ETS-10. Microporous and Mesoporous Materials, 30, 155–163.
- Liebau, F. (1985) Structural Chemistry of Silicates. Structure, Bonding and Classification. Springer-Verlag, Berlin.
- Men'shikov, Yu.P., Khomyakov, A.P., Ferraris, G., Belluso, E., Gula, A., and Kul'chitskaya, E.A. (2003) Eveslogite, (Ca,K,Na,Sr,Ba)₄₈[(Ti,Nb,Fe,Mn)₁₂ (OH)₁₂Si₄₈Ol₄₄](F,OH,Cl)₁₄, a new mineral from the Khibiny alkaline massif, Kola peninsula, Russia. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 122, 59–67.
- Mer'kov, A.N., Bussen, I.V., Goiko, E.A., Kul'chitskaya, E.A., Men'shikov, Yu.P., and Nedorezova, A.P. (1973) Raite and zorite, new minerals from the Lovozero tundra. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 102, 54–62.
- Mizota, T., Komatsu, M., and Chihara, K. (1983) A refinement of the crystal structure of ohmilite, Sr₃(Ti,Fe³⁺)(O,OH)(Si₂O₆)₂×2-3H₂O. American Mineralogist, 68, 811–817.
- Moore, P.B. and Louisnathan, S.J. (1967) Fresnoite: unusual titanium coordination. Science, 156, 1361–1362.
- Nair, S., Jeong, H.-K., Chandrasekaran, A., Braunbarth, C., Tsapatis, M., and Kuznicki, S.M. (2001) Synthesis and structure determination of ETS-4 single crystals. Chemistry of Materials, 13, 4247–4254.
- Patzke, G.R., Krumeich, F., and Nesper, R. (2002) Oxidic nanotubes and nanorods - anisotropic modules for a future nanotechnology. Angewandte Chemie, International Edition, 41, 2446–2461.
- Philippou, A. and Anderson, M.W. (1996) Structural investigation of ETS-4. Zeolites, 16, 98–107.
- Pluth, J.J., Smith, J.V., Pushcharovsky, D.Yu., Semenov, E.I., Bram, A., Riekel, C., Weber, H.-P., and Broach, R.W. (1997) Third-generation synchrotron X-ray diffraction of 6-µm crystal of raite, ~Na₃Mn₃Tn_{0.25}Si₈O₂₀(OH)₂:10H₂O, opens up new chemistry and physics of low-temperature minerals. Proceedings of the National Academy of Sciences U.S.A., 94, 12263–12267.
- Roberts, M.A., Sankar, G., Thomas, J.M., Jones, R.H., Du, H., Chen, J., Pang, W., and Xu, R. (1996) Synthesis and structure of a layered titanosilicate catalyst with five-coordinated titanium. Nature, 381, 401–404.
- Rocha, J. and Anderson, M.W. (2000) Microporous titanosilicates and other novel mixed octahedral-tetrahedral framework oxides. European Journal of Inorganic Chemistry, 2000, 801–818.
- Sandomirskii, P.A. and Belov, N.V. (1979) The OD structure of zorite. Soviet Physics Crystallography, 24, 686–693.
- Wang, X. and Jacobson, A.J. (1999) Crystal structure of the microporous titanosilicate ETS-10 refined from single crystal X-ray diffraction data. Chemical Communications, 11, 973–974.

MANUSCRIPT RECEIVED FEBRUARY 6, 2004

MANUSCRIPT ACCEPTED MAY 25, 2004

MANUSCRIPT HANDLED BY KEVIN ROSSO