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INTRODUCTION

A basic theoretical understanding of stable isotope fractionations can help researchers 
plan and interpret both laboratory experiments and measurements on natural samples. The 
goal of this chapter is to provide an introduction to stable isotope fractionation theory, 
particularly as it applies to mass-dependent fractionations of non-traditional elements and 
materials. Concepts are illustrated using a number of worked examples. For most elements, 
and typical terrestrial temperature and pressure conditions, equilibrium isotopic fractionations 
are caused by the sensitivities of molecular and condensed-phase vibrational frequencies to 
isotopic substitution. This is explained using the concepts of vibrational zero-point energy 
and the partition function, leading to Urey’s (1947) simplifi ed equation for calculating 
isotopic partition function ratios for molecules, and Kieffer’s (1982) extension to condensed 
phases. Discussion will focus on methods of obtaining the necessary input data (vibrational 
frequencies) for partition function calculations. Vibrational spectra have not been measured 
or are incomplete for most of the substances that Earth scientists are interested in studying, 
making it necessary to estimate unknown frequencies, or to measure them directly. Techniques 
for estimating unknown frequencies range from simple analogies to well-studied materials 
to more complex empirical force-fi eld calculations and ab initio quantum chemistry. 
Mössbauer spectroscopy has also been used to obtain the vibrational properties of some 
elements, particularly iron, in a variety of compounds. Some kinetic isotopic fractionations 
are controlled by molecular or atomic translational velocities; this class includes many 
diffusive and evaporative fractionations. These fractionations can be modeled using classical 
statistical mechanics. Other kinetic fractionations may result from the isotopic sensitivity of 
the activation energy required to achieve a transition state, a process that (in its simplest form) 
can be modeled using a modifi cation of Urey’s equation (Bigeleisen 1949).

Theoretical estimates of isotopic fractionations are particularly powerful in systems that 
are diffi cult to characterize experimentally, or when empirical data are scarce. The accuracy 
of a theoretical calculation is limited by uncertainty in input data, and by errors resulting from 
simplifi ed thermodynamic treatment of molecular motion. Typical uncertainties are larger than 
the nominal precision of a careful isotope ratio measurement, although ongoing improvements 
in the quality of spectroscopic data and molecular modeling methods are helping to close this 
gap. Nonetheless, the accuracy of relatively simple theoretical models is suffi cient to provide 
a quantitative framework for interpreting the results of a set of measurements. Theoretical 
calculations are easily extended to temperature conditions that are not easily accessed by 
experiments, which is especially relevant for low-temperature mineral-solution fractionations 
where isotopic exchange equilibrium often cannot be achieved on a reasonable laboratory 
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time scale. Qualitative rules of thumb based on theoretical concepts can be applied to systems 
that have not been explicitly studied. Complex fractionations, involving a combination of 
mechanisms, are common, and theoretical techniques can provide a unique perspective to 
help pick apart the underlying causes of an observed fractionation, and help understand and 
demonstrate its geochemical signifi cance.
Overview

The purpose of this chapter is to provide a brief, practical guide to the theory of stable 
isotope fractionations. This subject is particularly apt for inclusion in a volume dedicated to 
less studied and novel stable isotope systems, because these systems often lack an extensive 
record of measurements and empirical intuitions to guide the planning and interpretation of 
analytical campaigns. As technological advances like multiple collector inductively coupled 
plasma mass spectrometry (MC-ICP-MS) push stable isotope geochemistry into uncharted 
territory, it becomes increasingly necessary for analysts—as well as interested researchers 
outside of the fi eld of stable isotope geochemistry—to have an informed perspective on the 
basic mechanisms driving variations in isotopic abundances in natural samples.

This review will introduce basic techniques for calculating equilibrium and kinetic stable 
isotope fractionations in molecules, aqueous complexes, and solid phases, with a particular 
focus on the thermodynamic approach that has been most commonly applied to studies of 
equilibrium fractionations of well-studied elements (H, C, N, O, and S) (Urey 1947). Less 
direct methods for calculating equilibrium fractionations will be discussed briefl y, including 
techniques based on Mössbauer spectroscopy (Polyakov 1997; Polyakov and Mineev 2000).
History

The theory of stable isotope fractionation precedes the development of modern mass 
spectrometry, and includes a few very early studies (Lindemann and Aston 1919; Lindemann 
1919; Urey and Greiff 1935). The modern theoretical formulation for calculating equilibrium 
isotope fractionations can be credited to seminal work by Urey (1947) and Bigeleisen and 
Mayer (1947), which forms the basis for much of this chapter. Theoretical calculations in 
these papers successfully predicted the directions, magnitudes, and temperature sensitivities of 
isotopic fractionations. These calculations suggested the possibility of paleothermometry using 
18O/16O fractionation in the calcite-water system (Urey 1947), foreshadowing the creation of a 
major fi eld of geochemical research. Later the Urey formulation was extended to encompass 
crystals and some amorphous solids (e.g., Bottinga 1968; Kieffer 1982). A key point is that all 
of these theoretical treatments result from a simplifi ed thermodynamic model of the quantum 
mechanics of molecular vibration and rotation—making theoretical calculations feasible for 
many important substances—while retaining enough accuracy to be quantitatively useful. As 
we will see, limited or imprecise data on molecular or crystal vibrations are a major issue 
to be overcome in calculating accurate theoretical fractionations. Several excellent reviews 
of stable isotope fractionation theory applied to the commonly studied elements—H, C, N, 
O, and S—are available in the literature (Richet et al. 1977; O’Neil 1986; Criss 1991, 1999; 
Chacko et al. 2001). 

There have been relatively few theoretical studies of fractionations involving other 
elements. Lindemann (1919) probably performed the fi rst theoretical calculation of a stable 
isotope fractionation, estimating the vapor pressures of the isotopes of lead. Urey (1947) and 
Urey and Greiff (1935) modeled equilibrium isotope fractionations for several geochemically 
important molecules containing chlorine, bromine, and iodine. Bigeleisen and Mayer 
(1947) briefl y discuss possible fractionations involving the silicon and tin halides, focusing 
specifi cally on the effect of coordination number on fractionations. Later theoretical work 
was concentrated in the specialized literature of isotope separation. Of particular interest 
during this period was the development of force-fi eld and quantum-mechanical techniques 
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for estimating unknown vibrational frequencies of molecules containing rare isotopes (Kotaka 
and Kakihana 1977; Kotaka et al. 1978; Hanschmann 1984). In recent years, as the set of 
elements with detectable natural isotopic variations has expanded, theoretical estimates of 
isotopic fractionations for boron (Oi 2000; Oi and Yanase 2001), lithium (Yamaji et al. 2001), 
chlorine (Paneth 2003; Schauble et al. 2003), chromium (Schauble et al. in press) and iron 
(Polyakov 1997; Polyakov and Mineev 2000; Schauble et al. 2001, Anbar et al. in press) have 
been published.
General rules governing equilibrium stable isotope fractionations

It is clear, from an examination of both observed and theoretically calculated isotope 
fractionations, that there are a number of qualitative chemical rules that can be used to 
estimate which substances will tend to be enriched in heavy isotopes in a given geochemical 
system. O’Neil (1986) tabulated fi ve characteristics that are shared by the elements that show 
large variations in isotopic composition in nature. These include (i) low atomic mass, (ii) 
large relative mass differences between stable isotopes, (iii) tendency to form highly covalent 
bonds, (iv) multiple oxidation states or other chemical variability, and (v) availability of 
multiple isotopes with suffi cient abundance to make measurements feasible. The elements 
covered in the present volume, in general, fail to meet one or more of these criteria. They are 
heavy (i.e., Fe, Mo, and Cd), do not have large mass differences between the measured stable 
isotopes (Cr), form bonds that are predominantly ionic (Li, Mg, Ca) rather than covalent, or 
have homogenous chemistry and a single predominant oxidation state in nature (Li, Mg, Si, 
Ca). Nonetheless, these rules are strongly supported by theoretical considerations originally 
derived by Bigeleisen and Mayer (1947), and form the basis for a qualitative guide to stable 
isotope fractionations in all elements:

Qualitative Rules governing equilibrium stable isotope fractionations:
1. Equilibrium isotopic fractionations usually decrease as temperature increases, 

roughly in proportion to 1/T2 for most substances. Note that exceptions may occur, 
particularly if the fractionation is very small, or if the element of interest is bonded 
directly to hydrogen in one phase.

2. All else being equal, isotopic fractionations are largest for light elements and for 
isotopes with very different masses, scaling roughly as (mheavy – mlight)/(mlightmheavy)
(often simplifi ed to m/m2) where mlight and mheavy are the masses of two isotopes of 
an element, m is the difference between their masses, and m is the average atomic 
mass of the element.

3. At equilibrium, the heavy isotopes of an element will tend to be concentrated in 
substances where that element forms the stiffest bonds (i.e., bonds with high spring 
constants). The magnitude of the isotopic fractionation will be roughly proportional 
to the difference in bond stiffness between the equilibrated substances. Bond stiffness 
is greatest for short, strong chemical bonds; these properties correlate with:
a. high oxidation state in the element of interest
b. for anions like Cl  and Se2– (and O2–), high oxidation state in the atoms to which 

the element of interest is bonded
c. bonds involving elements near the top of the periodic table
d. the presence of highly covalent bonds between atoms with similar 

electronegativities
e. for transition elements, low-spin electronic confi gurations, also d3 or d8

electronic structure for octahedrally-coordinated atoms
f.  low coordination number
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4. Substances where the element of interest is directly bonded to hydrogen, or is part of 
a low-mass molecule, may not be as enriched in heavy isotopes as would be expected 
from rule (3). This phenomenon, usually of 2nd order importance, is most pronounced 
for substances with stiff bonds and at low temperatures.

Rules (2) and (3) imply that large equilibrium fractionations are most likely to occur at 
low temperatures between substances with markedly different oxidation states, bond partners, 
electronic confi gurations, or coordination numbers.

It is important to point out that these rules (particularly 3 and 4) are largely untested with 
respect to fractionations in the less-well studied elements (those other than H, C, N, O, and S) 
at the present time. Furthermore, within rule (3), it is not known which chemical properties 
are the most important determinants of bond stiffness. The order of listing refl ects a rough 
estimate of relative importance, based on experiments and theoretical studies in a variety of 
isotopic systems. However, this order is likely to vary somewhat from one system to another 
even if it is generally correct. What is known is that measurable isotopic fractionations are 
typically larger and more common in samples from low-temperature environments than in 
high-temperature (particularly igneous) environments for Ca (Russell et al. 1978; Skulan et al. 
1997), Fe (Beard et al. 2003), Mo (Barling et al. 2001), and Mg (Galy et al. 2002). 56Fe/54Fe
ratios are higher in aqueous Fe3+ than in coexisting aqueous Fe2+ (rule 3a) (Johnson et al. 2002), 
and Fe3+-Cl– complexes retained on ion-exchange resins appear to have lower 56Fe/54Fe ratios 
than Fe3+-OH2 complexes in solution (rules 3b and 3c) (Roe et al. 2003). Borate solutions with 
low pH, favoring the 3-coordinate B(OH)3 have a greater affi nity for heavy 11B than high pH 
solutions dominated by 4-coordinated [B(OH)4]– (rule 3f) (Kakihana et al. 1977). Clearly, 
more experiments are needed before a robust assessment of these rules can be made.

These rules suggest that stable isotope measurements of redox-active transition elements 
(e.g., Cr, Fe, Cu and Mo), and main group elements (Cl, Br, and Te) are likely to provide 
records of modern and ancient oxidation conditions. For chalcophile and siderophile elements 
like Fe, Cu, Zn, and Mo, low and moderate temperature partitioning between oxide, sulfi de, 
and/or metal phases is also likely to cause diagnostic isotopic fractionation. In contrast, isotopic 
fractionation of main group lithophile metals like Li, Mg, Si and Ca are more likely to refl ect 
changes in coordination number. Equilibrium fractionations in this last group (particularly for 
the heavier elements) are likely to be rather small, and may commonly be overwhelmed by 
kinetic fractionations in low-temperature and biological systems.

Kinetic isotope fractionations also show systematic behavior, although they are more 
diffi cult to describe with a list of widely applicable rules. Here the term kinetic is being used 
loosely to describe a host of basically one-directional processes occurring under conditions 
of incomplete isotopic exchange. This defi nition is useful in its simplicity, although it 
encompasses a number of distinct fractionation mechanisms, and in practice there is some 
ambiguity in dealing with “equilibrium-like” fractionations (like oxygen-isotope fractionation 
in biologically precipitated calcite). One common feature in many kinetic fractionations is 
that light isotopes, being more reactive, are concentrated in reaction products. This behavior 
is observed, for instance, in rapid precipitations of Fe3+ oxyhydroxide and oxide minerals 
from Fe3+-bearing solutions (Bullen et al. 2001; Skulan et al. 2002), in evaporation of many 
substances including silicate melts (Davis et al. 1990), and in numerous biological reactions. 
Diffusive and evaporative kinetic fractionations do not, in general, decrease in magnitude with 
increasing temperature in the same way that equilibrium fractionations do (although they may 
be sensitive to temperature). Kinetic fractionations are usually sensitive to a host of factors 
(such as reaction rates and the presence of exchange catalysts) in addition to temperature.
Fractionation factors

Before introducing the quantitative theory of isotope fractionations, it will be useful to 
review terms relevant to calculating fractionation factors.
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The isotope fractionation factor for isotopes lightX (light) and heavyX (heavy) between two 
substances XA and XB is usually expressed in terms of “ ”:
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fractionation. Readers of the primary theoretical literature on stable isotope fractionations 
will frequently encounter results tabulated in terms of -factors or equilibrium constants. For 
present purposes, we can think of XR as simply a theoretical fractionation calculated between 
some substance XR containing the element X, and dissociated, non-interacting atoms of X. In 
the present review the synonymous term XR X is used. This type of fractionation factor is a 
convenient way to tabulate theoretical fractionations relative to a common exchange partner 
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Conversions between equilibrium constants and fractionation factors are more 
complicated, as it is often necessary to account for molecular stoichiometry and symmetry. 
For a generic balanced isotopic exchange reaction,

 n•lightXmA + m•heavyXnB  n•heavyXmA + m•lightXnB
where m and n are stoichiometric coeffi cients, the equilibrium constant Keq is related to the 
fractionation factor XA-XB by the expression,
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are the molecular symmetry numbers 
for each reactant and product molecule. Unlike equilibrium constants, isotopic fractionation 
factors for the elements of interest here can be determined accurately without worrying about 
symmetry numbers, and are simply related to isotopic ratios, and are therefore better suited to 
an introductory discussion. To avoid confusion, the examples discussed below are deliberately 
chosen so that calculated fractionation factors and equilibrium constants are equivalent.

EQUILIBRIUM FRACTIONATION THEORY

Fractionation in molecules
Equilibrium stable isotope fractionation is a quantum-mechanical phenomenon, driven 

mainly by differences in the vibrational energies of molecules and crystals containing atoms 
of differing masses (Urey 1947). In fact, a list of vibrational frequencies for two isotopic 
forms of each substance of interest—along with a few fundamental constants—is suffi cient to 
calculate an equilibrium isotope fractionation with reasonable accuracy. A succinct derivation 
of Urey’s formulation follows. This theory has been reviewed many times in the geochemical 
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literature, (e.g., Urey 1947; O’Neil 1986; Criss 1991, 1999; Chacko et al. 2001), and it is 
whole-heartedly suggested that an interested reader look at several versions—digestion of 
thermodynamic concepts often requires more than one attempt. A thorough discussion of 
partition functions can be found in any statistical mechanics textbook, (e.g., Mayer and Mayer 
1940). In the present introduction, we will focus on one simple isotope exchange reaction in 
the Cl-isotope system.

Let us consider a simple isotope exchange reaction, where 35Cl and 37Cl swap between the 
diatomic gas ClO and an isolated Cl atom:
 35Cl16O + 37Cl 37Cl16O + 35Cl
This type of exchange (with an isolated atom as one exchange partner) is the basis of Urey’s 
treatment, because it facilitates a particularly convenient set of simplifi cations. The equilibrium 
constant for this exchange reaction,

Keq

37 16
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Cl O Cl

Cl O Cl
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is equivalent to the equilibrium isotopic fractionation factor “ ”:
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This equivalence is not universal—molecules with more than one atom of the element 
being exchanged may require a somewhat more complicated treatment. However, these 
complications have a negligible effect on the fi nal result, so we have chosen an example 
that simplifi es the mathematics as much as possible. As with any chemical reaction, the 
equilibrium constant can be determined from the free energies of the reactants and products, 
using the familiar expressions,

∆G T KRxn eqR0 = − ( )ln

K G
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where G0
Rxn is the Gibbs free energy of the reaction, R is the molar gas constant 

(approximately 8.314 J•mol/K), T is the absolute temperature, and Keq is the equilibrium 
constant. Isotope-exchange reactions are particularly simple because the bond structure and 
thus the potential energy of each molecule are essentially unchanged by isotopic substitution. 
For this reason, calculations only need to consider the contributions of dynamic energy 
associated with atomic motion. Isotopic exchange reactions also do not, in general, involve 
signifi cant pressure-volume work because the number of molecules on both sides of the 
reaction is the same, and because isotope substitution has a negligible effect on the molar 
volumes of condensed and non-ideal phases under normal conditions (see Gillet et al. 1996; 
Driesner and Seward 2000; Horita et al. 2002 for more thorough discussions of the infl uence 
of pressure on isotope fractionations of light elements). Under these conditions, the Gibbs free 
energy of the exchange reaction G0

Rxn is equivalent to the Helmholtz free energy ( FRxn)

 G = F + PV    and G F
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So that the basic energetic expression to be evaluated is:
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The energy associated with atomic motion is quantized into discrete levels. These motions 
can be divided into translations, rotations, and vibrations (Fig. 1). An isolated atom like Cl 
only has translational degrees of freedom. In a molecule there are three translational degrees 
of freedom, corresponding to motion of the molecule’s center of mass in three dimensional 
space. Most molecules have three rotational degrees of freedom as well, corresponding to 
the three orthogonal moments of inertia, but linear molecules (including ClO) have only two 
rotational degrees of freedom. Because the instantaneous motion of each atom in a molecule 
can be described with three parameters, corresponding to velocities in each of the Cartesian 
directions, there are three degrees of freedom of motion for each atom. So a molecule with 
N atoms must have a total of 3N  3  3 vibrational degrees of freedom (or 3N  3  2 for 
linear molecules). Only vibrational quanta are suffi ciently large relative to the ambient thermal 
energy (~1.5 RT/N0; N0 = Avogadro’s number, 6.022 1023) to drive chemical reactions at 
normal temperatures (T  100 K) (Fig. 2). In the simple case of a harmonic vibration, the 
energy levels are evenly spaced, with a half-quantum of energy present even in the lowest 
state,

 E(vib)i = (ni + ½)h i  (1)

where ni (= 0, 1, 2, …) is the quantum number for the ith vibrational degree of freedom, h is 
Planck’s constant (6.626 10 34 J•sec), and i is the oscillation frequency of the vibration. The 
half-quantum of vibrational energy present when ni = 0 is called the zero-point energy. The 
frequency of a vibration is determined by the masses of atoms that are in motion and the forces 
that oppose motion, and is therefore sensitive to isotopic substitution. For a diatomic molecule 
like ClO (with 1 vibration), the frequency can be expressed simply as:
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where ks is the effective spring constant of the Cl-O bond and  is the reduced mass of ClO. 
Substituting heavy 37Cl for the more common 35Cl isotope increases the reduced mass of the 
molecule while leaving the spring constant unchanged, thus lowering the vibrational frequency 
from 853.72 cm–1 (Burkholder et al. 1987) to 846.45 cm–1 and the zero-point energy from 
5,105 J/mole to 5,062 J/mole (cm–1 is a spectroscopic unit for frequency called a wavenumber, 
1 cm–1 = 2.9979 1010 sec–1). Vibrational frequencies typically range from ~100 cm–1 all the 
way up to 4000 cm–1, corresponding to effective force constants on the order of 50–2000 
Newtons/m. One could construct a crude quantitative model of stable isotope fractionations 
by simply adding up the zero-point energies of the molecules on the right side of the exchange 
equation, and subtracting the zero-point energies of the left side:

∆F v vMotion Products Reactantsh h≈ −∑ ∑1
2

1
2

(2)

which would correctly predict higher 37Cl/35Cl in ClO equilibrated with atomic Cl (Schauble 
et al. 2003). This comparison illustrates the basic principle that substances with large zero-
point energy shifts on isotopic substitution tend to be enriched in heavy isotopes. Of course, 
molecules are not always in their ground vibrational states, and it is necessary to include terms 
to account for the energies of those excited molecules, but it is still generally true that zero-
point energy shifts control equilibrium fractionations. The total energy of motion of a system 
of molecules is determined by means of partition functions. A partition function can be thought 
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Translation Rotation Vibration

3/2 kT

Figure 2. Relative sizes of translational (left), rotational (center), and vibrational (right) energy quanta for 
a typical diatomic molecule (ClO). The quantum energies of allowed states of motion are calculated using 
constants tabulated by Burkholder (1987). Presented at the same scale (lower right), rotational quanta are 
so small that low-lying rotational states are as closely spaced as the thickness of a line. Likewise, the lowest 
energy translational quanta (assuming a confi ning volume of 10–24 liters) are too small to see on the same 
scale as rotational energy levels (lower center). The classical thermal energy (3/2 kT) of a particle at 298 
K is shown as a gray bar at the same scale as the vibrational energy levels. Because the spacing between 
rotational and translational energy levels is so much smaller than the ambient thermal energy, it is usually 
not necessary to include a full quantum-mechanical treatment of these types of motion when calculating 
equilibrium stable isotope fractionation factors. Rotational and translational quanta become even smaller 
for larger, more massive molecules.

Figure 1. Translation, rotation, and vibration of a diatomic molecule. Every molecule has three translational 
degrees of freedom corresponding to motion of the center of mass of the molecule in the three Cartesian 
directions (left side). Diatomic and linear molecules also have two rotational degrees of freedom, about 
rotational axes perpendicular to the bond (center). Non-linear molecules have three rotational degrees of 
freedom. Vibrations involve no net momentum or angular momentum, instead corresponding to distortions 
of the internal structure of the molecule (right side). Diatomic molecules have one vibration, polyatomic 
linear molecules have 3N-5 vibrations, and nonlinear molecules have 3N-6 vibrations. Equilibrium stable 
isotope fractionations are driven mainly by the effects of isotopic substitution on vibrational frequencies.
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of as a sum, over all of the energy states of a molecule, of the probabilities that the molecule 
will occupy a particular state. For instance, the vibrational partition function, Q, of a molecule 
is defi ned as a sum over all of its vibrational energies En,

Q E Tnn= −( )∑ exp / k

where k is Boltzmann’s constant (1.381 10–23 J/K or 0.6951 cm–1/K). Partition functions are 
closely related to the Helmholtz free energy,

 F = RT ln(Q)
For harmonic vibrations, we can insert Equation (1) above,
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This rather awkward expression can be simplifi ed by recognizing the presence of a geometric 
series:
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leaving a fi nite sum over the harmonic vibrational frequencies of the molecule.
Energy quanta associated with molecular rotation and translation are so small that they 

can be treated approximately without an explicit sum over the quantum energies.
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where I is the moment of inertia of the molecule (which can be determined from the molecular 
structure), mmolecule is its mass, and V is the volume of the system. While these expressions 
look complicated, bear in mind that they will almost completely cancel out by the time we’re 
fi nished. The translational and rotational free energies, added to the vibrational energy, give 
the total energy of atomic motion,
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and thus the equilibrium constant for the exchange reaction,
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For our simple exchange equation, this expression becomes
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after plugging in the expressions for the different partition functions and simplifying. 
The last step in Urey’s derivation is the application of the Redlich-Teller product rule (e.g., 

Angus et al. 1936; Wilson et al. 1955), which relates the vibrational frequencies, moments of 
inertia, and molecular masses of isotopically substituted molecules. For ClO,
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Inserting this into the partition function ratio yields the fi nal result:
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A more general expression for the equilibrium fractionation of isotopes lightX and heavyX,
applicable to all diatomic and larger molecules is:
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where XR, containing n atoms of element X and N total atoms, is the molecule of interest, lightXR
is XR containing only the light isotope lightX, heavyXR contains only heavyX, and the product is over 
all 3N  6 or 3N  5 vibrational frequencies of XR. The exponent 1/n is a normalizing factor 
that accounts for multiple substitutions in molecules containing more than one atom of X.
Note that  is only affected by vibrational frequencies that change upon isotopic substitution, 
the vibrational partition function ratio for other frequencies will cancel to unity. The reader is 
cautioned that  is generally not equivalent to Keq if n > 1. The theoretical expression for  is 
often called the reduced partition function ratio because of the cancellations of the rotational 
and translational energy terms. In addition to its role in simplifying the fi nal expression for ,
the Redlich-Teller product rule is an important criterion for evaluating the accuracy of a set of 
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vibrational frequencies for a molecule—substantial deviations from the product rule indicate 
that measurement errors, unusually large anharmonic effects, and/or typographical mistakes 
are likely to degrade the accuracy of a calculated fractionation.

Equilibrium isotopic fractionations calculated using Urey’s approach assume harmonic 
vibrations and rigid-body rotation, and use a simplifi ed treatment of rotational energies. 
They also average intra-molecular isotopic fractionations over the entire molecule. These 
assumptions greatly simplify calculations, because the only inputs needed are vibrational 
frequencies for isotopically light and heavy molecules. The assumptions are generally 
reasonable over the typical temperature range of interest to geochemists (~1000 K > T > 100 
K) for isotope systems other than H, C, N, O, and S. Fractionations at higher temperatures 
are usually so small that the progressive breakdown of the fi rst two assumptions has little 
practical signifi cance. Fractionations calculated at cryogenic temperatures (<100 K) should 
include a full quantum-mechanical treatment of molecular rotation. Vibrational anharmonicity 
and vibrational-rotational interactions can be included in theoretical calculations, but are 
usually practical only for molecules that have been the subjects of extensive, highly precise 
spectroscopic studies (Richet et al. 1977). For many substances (including essentially all 
condensed phases), uncertainties associated with measured and/or modeled vibrational 
frequencies are likely to be larger than any anharmonic and vibrational-rotational effects, so in 
practice there is probably little reason to use the more complex models.
Fractionation in crystalline materials and solutions

Gas-phase molecules play a relatively minor role in the geochemistry of most elements 
other than H, C, N, O, and S, so it is important to consider extensions of the theory outlined in 
the preceding section to other types of materials, particularly aqueous solutions and crystals. 
In general, the same energetic concepts (especially zero-point energy) apply, but it is necessary 
to make additional assumptions to deal with the complexities and uncertainties that arise in 
dealing with condensed phases.

For solutions or crystals, it is apparent that the simple picture of an isolated molecule with 
a completely known, fi nite number of vibrational frequencies is impractical. A microscopic 
crystal 1 m across might contain 1011 or more atoms, implying 3 1011 or more vibrational 
modes! Similarly, an atom, ion or molecule dissolved in water will interact with water 
molecules and other dissolved species in a continuously changing arrangement of hydrogen 
bonds and ion pairs. However, these complications can be treated in a simplifi ed way or even 
ignored while still allowing calculations that are accurate enough to be useful.

When dealing with dissolved molecules and molecular ions that remain more or less 
intact in solution (e.g., [ClO4]–, B(OH)3 and CCl4), or with aqueous complexes where intra-
complex bonds are probably much stronger than interactions with the bulk solvent (e.g., 
[Cr(H2O)6]3+, [FeCl4]–, and Mg2+ in chlorophyll), a reasonable if crude approximation is to 
treat each as though it actually were a gas-phase molecule. The only inputs needed in such a 
model are the intra-molecular vibrational frequencies (preferably measured in solution). This 
approach has been followed in numerous studies (Urey 1947; Kotaka and Kakihana 1977; 
Schauble et al. 2001), and has proven to be reliable under favorable conditions, at least as a 
semi-quantitative guide to real fractionations. This gas-in-solution approximation probably 
works best for molecules and complexes that are substantially heavier than a single atom of 
the element of interest (i.e., selenium in [SeO4]2– rather than H2Se), when those atoms are 
isolated from direct contact with the solvent (chlorine in [ClO4]– rather than [ClO]–), when 
solvent interactions are weak, and when intra-molecular bonds are strong. It is to be expected, 
however, that such calculations will not be as accurate as would be possible for a true gas—for 
instance, most gases exhibit measurable isotopic fractionations between the vapor phase and 
solution that is only crudely accounted for in this approximation. It is likely that theoretical 
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calculations could be improved by taking the solvent into account more explicitly, but in 
practice the spectroscopic data are not known, so it is necessary to create a vibrational model 
of the solution. These models will be introduced in a later section.

Crystals lack some of the dynamic complexity of solutions, but are still a challenging 
subject for theoretical modeling. Long-range order and forces in crystals cause their spectrum 
of vibrational frequencies to appear more like a continuum than a series of discrete modes. 
Reduced partition function ratios for a continuous vibrational spectrum can be calculated 
using an integral, rather than the fi nite product used in Equation (3) (Kieffer 1982),
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where gheavyX( ) and glightX( ) are the vibrational density of states of isotopically heavy and 
light forms of the crystal, respectively, n is the number of atoms of X in each unit cell of 
XR(crystal), and the integrals extend to the highest vibrational frequencies of the crystal. g( )
is proportional to the number of vibrational degrees of freedom in the infi nitesimal frequency 
interval  for a molecule g( ) takes the form of a series of delta functions centered 
at the discrete vibrational frequencies. Alternatively, the continuous vibrational spectrum 
can be approximated using a representative set of discrete frequencies—even a relatively 
small number of frequencies (~10 to 20 for a small unit cell) can be suffi cient (Elcombe and 
Pryor 1970). A small subset of the vibrational frequencies in the continuum—those with 
a phase wavelength much longer than a unit cell—can be measured using conventional 
infrared and Raman spectroscopy. Unfortunately, these vibrational modes are particularly 
unrepresentative of the total vibrational spectrum, but they may be suffi cient for crystals with 
~6 or more atoms per unit cell. In crystals the rotational and translational terms in the Redlich-
Teller product rule disappear, yielding the high-T product rule of Kieffer (1982). Crystal 
vibrational frequencies must obey the high-T product rule, or calculated fractionations will 
fail to converge to = 1 at high temperatures (see Chacko et al. 1991 and Bottinga 1968 for 
an example of the use of the high-T product rule in evaluating calculated C and O isotope 
fractionations in calcite).

For crystals with molecule-like constituents, like the BO3
3– and BO4

5– groups in some 
borates, semi-quantitative models of the molecular component as a gas-phase entity have been 
proposed (Oi et al. 1989). This is conceptually similar to the approximation made for species 
in solution, although in practice most studies of crystals consider additional frequencies 
that refl ect inter-molecular vibrations. The spectroscopic data on these vibrations (which 
typically have lower frequencies than the intra-molecular vibrations) are often available, at 
least approximately, from infrared and Raman spectroscopy and elastic properties. This type 
of hybrid molecule-in-crystal model has been applied to many minerals in theoretical studies 
of carbon and oxygen isotope fractionation, the most noteworthy being studies of calcite 
(Bottinga 1968; Chacko et al. 1991) and silicates (Kieffer 1982). Because spectroscopic data 
are always incomplete (especially for substances substituted with rare isotopes), some amount 
of vibrational modeling is necessary.
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The chemistry of stable isotope fractionation
Bigeleisen and Mayer (1947) simplifi ed the reduced partition function by observing that 

vibrational frequency shifts caused by isotope substitution are relatively small (except when 
deuterium is substituted for normal hydrogen). When the dimensionless quantity h /kT is of 
the order 5 or less (corresponding to a typical 1000 cm–1 vibration at 288 K)—a condition 
applicable to most geochemical situations,
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− ≈ +
−∑1
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224 k2
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This relation correctly predicts that most equilibrium stable isotope fractionations are inversely 
proportional to the square of absolute temperature, and is the basis of equilibrium fractionation 
rule (1). A detailed derivation of the Bigeleisen and Mayer model has been presented in an 
earlier review (Criss 1991).

Using a sum-of-squares rule from theoretical vibrational spectroscopy, Bigeleisen and 
Mayer (1947) then showed that, under the conditions relevant to Equation (4),

ν ν
π

light heavy
heavy light

light heavy
XRi XR

X X

X X

m m
m m

A2 2
2

1
4∑ − ≈

− (5)

where A is the sum of all force constants acting on an atom of X, averaged over the molecule. 
This relation is the origin of rules (2) and (3).

Note that when h /kT is of order 10 or more, either at low temperatures or for molecules 
with high-frequency vibrations, essentially all molecules are in the vibrational ground state. 
Under these circumstances the free energy of the exchange reaction is only sparingly sensitive 
to temperature, and fractionations more closely approximate Arrhenius-like 1/T behavior. 
Bonds between a heavier atom and hydrogen usually lead to high-frequency bond-stretching 
vibrations that are somewhat sensitive to isotope substitution of the heavy atom. For this 
reason, the Bigeleisen and Mayer (1947) analysis tends to break down in molecules where 
the element of interest in bonded directly to hydrogen. Under these circumstances, heavy 
isotopes will be less concentrated in the substance than the force-constant analysis might 
suggest, leading to rule (4) and a special exception to rule (1). The chlorine isotope system 
(37Cl-35Cl) provides a good example of this behavior (Fig. 3), with HCl-Cl displaying marked 
concave-down curvature when plotted against 1/T2. This phenomenon also contributes to the 
high temperature-sensitivity of oxygen isotope fractionations between anhydrous minerals 
(lacking O-H bonds) and water.
Other causes of equilibrium isotopic fractionation

A handful of non-vibrational mechanisms responsible for equilibrium fractionations 
have been proposed, including effects of nuclear spin or shape on electronic energies 
(Bigeleisen 1998). These non-vibrational phenomena are distinguishable from conventional 
fractionations, at least in principle, because they are not expected to be mass dependent, and 
geochemists should be careful not to automatically dismiss data that do not conform to mass-
dependent behavior. These effects may be restricted to very heavy elements (i.e., uranium). 
Claims of non-vibrational fractionations (Fujii et al. 2002) in lighter elements have not been 
substantiated using modern analytical techniques, to my knowledge, and it is not yet clear 
how important these unconventional mechanisms are in natural systems. For this reason, the 
present review focuses on the well established vibrational model (Bigeleisen and Mayer 1947; 
Urey 1947).
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APPLYING STABLE ISOTOPE FRACTIONATION THEORY

Estimating unknown vibrational frequencies
The theory of stable isotope fractionation described by Urey (1947) and Bigeleisen and 

Mayer (1947) has been repeatedly confi rmed by comparison of theoretical predictions with 
laboratory experiments and measurements on carefully chosen suites of natural samples. 
However, there are a number of hurdles that can make it diffi cult to apply the theory to 
novel substances and isotopic systems. Paramount among these diffi culties is the limited 
availability of highly accurate and complete vibrational frequencies in the spectroscopic 
literature, a problem that is particularly acute for materials containing rare isotopes and for 
most condensed phases. To get a sense of the diffi culty, let us consider a 1 cm–1 error in the 
isotopic shift of one 500 cm–1 vibrational frequency. The error is chosen arbitrarily here, but is 
reasonable for condensed-phase materials and all but the smallest molecules. Using Equation 
(4), this propagates to a 1.0 per mil error in  at 298 K. This error is much larger than the 
typical uncertainty of a modern mass-spectrometric measurement, and will tend to increase as 
the size of a molecule (and thus the number of vibrations) increases. Accurate and complete 
spectroscopic data are available for many small gas-phase molecules that are likely to be of 
interest in geochemical studies, both in the primary research literature and in spectroscopy 
reviews and databases. For more complex materials, however, it is usually necessary to 
approximate unknown vibrational frequencies using some type of model. A number of 
excellent introductory vibrational analysis texts have been published. The present introduction 
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Figure 3. Theoretical 37Cl-35Cl fractionation factors for Cl-bearing molecules, adapted from (Schauble 
et al. 2003). Typically, stable isotope fractionation factors are nearly linear when plotted against 1/T2,
as can be seen for CCl3F, CCl4, ClO, and Cl2 in this example (gray lines). This behavior is predicted 
by eq. 4 (Bigeleisen and Mayer 1947). However, molecules in which the atom of interest is bonded 
directly to hydrogen (such as HCl, dark line) often show signifi cant concave-down curvature on the same 
axes, because hνHCl/kT is too high (  14.4 at room temperature) for the Bigeleisen and Mayer (1947) 
simplifi cation to apply. At room temperature, HCl is predicted to have lower 37Cl/35Cl than Cl2, even though 
the spring constant for the H-Cl bond is considerably higher (530 N/m) than the Cl-Cl spring constant (330 
N/m). This anomalous affi nity of H-X compounds for light isotopes is the origin of rule 4 and the special 
exception to rule 1.
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borrows heavily from two recommended texts—Wilson et al. (1955) and Nakamoto (1997)—
the former text contains detailed derivations of basic principles and mathematical techniques, 
while Nakamoto (1997) provides a concise introduction along with copious data tables, 
appendices, and references to relevant primary literature.

The simplest type of vibrational model consists of one or more simple rules used to 
estimate frequencies of isotopically substituted substances from known vibrational frequencies 
for the common isotopic form. An example is the model developed by Kieffer (1982) to 
calculate vibrational frequencies in 18O-bearing silicates. This approach is most likely to 
be effective in systems where spectroscopic data on the dominant isotopic form of a set of 
related substances is known—as is the case with natural 16O-dominated silicate minerals—and 
when data bearing on isotopic substitution effects in similar materials is also known. For 
instance, Kieffer (1982) used results from 18O-substituted silica glass to estimate frequencies 
in 18O-quartz. Furthermore, the technique is mostly limited to instances where a more-or-less 
discrete molecule (such as SiO4

4–) with distinctive vibrational properties can be recognized. 
In fact, Kieffer’s results for other silicates were extrapolated from a force-fi eld model of the 
SiO4

4– “molecule.” In heavy element stable isotope systems, the rules-based approach is 
unlikely to be widely applicable because these fractionations are much more dependent on the 
low-frequency vibrations that are most sensitive to heavy-element isotopic substitution. These 
frequencies are more diffi cult to assign to a particular type of atomic motion, and generally 
have not been measured with as much accuracy.

A potentially much more adaptable technique is force-fi eld vibrational modeling. In 
this method, the effective force constants related to distortions of a molecule (such as bond 
stretching) are used to estimate unknown vibrational frequencies. The great advantage of this 
approach is that it can be applied to any material, provided a suitable set of force constants 
is known. For small molecules and complexes, approximate force constants can often be 
determined using known (if incomplete) vibrational spectra. These empirical force-fi eld 
models, in effect, represent a more sophisticated way of extrapolating known frequencies than 
the rule-based method. A simple type of empirical molecular force fi eld, the modifi ed Urey-
Bradley force fi eld (MUBFF), is introduced below.

Another way to determine force constants is through ab initio quantum mechanical 
calculations. In this approach, the electronic structure of a molecule is determined through 
an approximate solution of the Schrödinger equation, and force constants are determined 
from the 2nd derivatives of the electronic energy of the molecule with respect to atomic 
displacements. Although quantum mechanical calculations are computationally intensive, 
advances in processor speed and memory size and performance have made relatively accurate 
calculations feasible on many desktop computers using well-documented, freely available 
software (i.e., GAMESS; Schmidt 1993). The independence of ab initio force fi elds from 
empirical vibrational frequency data means that partial and imprecise spectra can be used to 
independently verify the accuracy of each force fi eld model. The downside is that it can be 
tricky to accommodate complicating factors like molecule-solvent interactions (see Anbar 
et al., in press, for an example calculation that attempts to overcome this diffi culty), and to 
model materials with complex electronic structures. In principle, crystals can also be modeled 
with both empirical and ab initio force fi elds, although the range of suitable materials is more 
restricted.
Vibrational force-fi eld modeling

In any force-fi eld model, the molecule to be analyzed is treated as a set of masses 
connected by springs. Calculating vibrational frequencies for a particular set of coupled 
masses and springs is essentially a problem of matrix algebra, and the summary presented 
below is more mathematically intense than preceding sections. The equations may appear 



Schauble80

daunting at fi rst, but remember that calculations for real molecules can be largely automated 
using computers, and greatly simplifi ed by taking advantage of molecular symmetries. The 
geometry of a molecule may be determined from structural measurements (typically X-ray or 
neutron diffractometry and/or rotational spectroscopy), or from ab initio structural relaxation. 
Given a set of force-constant parameters, the vibrational spectrum of a molecule can then be 
determined by solving a set of differential equations,
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where KE and PE are the potential and kinetic energies of the molecule, respectively, and qj
are small, mass-weighted displacements of each atom from the equilibrium position in each of 
the three Cartesian directions:
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Once a set of force constants is established, isotopic substitution is modeled by simply 
changing the relevant mass terms while leaving all other parameters unchanged. In ab initio
models the force constants can all be determined directly by calculating energies and forces 
acting on atoms in systematically distorted molecules—in some ab initio methods it is even 
possible to calculate force constants analytically in the minimum-energy confi guration of the 
molecule. In empirical force-fi eld calculations, however, the force constants are solved using 
a limited set of constraints. The most common constraints are known vibrational frequencies. 
The number of Cartesian force constants increases roughly as the square of the number of 
atoms, while the number of vibrations increases linearly. Because of this scaling, it is not 
generally possible to solve for all of the Cartesian force constants of large molecules (i.e., 
molecules containing more than three atoms) independently unless vibrational frequencies for 
two or more isotopic forms of the molecule are known.

When constructing a vibrational model it is important to take note of possible 
simplifying procedures, particularly for complex phases. Many of the substances that are 
most interesting from the point of view of isotope geochemistry are complex solutions, 
crystals, large molecules, and amorphous phases that may be impossible to model in detail. 
Practical application of theoretical techniques often requires compromising detail and a 
certain amount of accuracy in order to fi nd a tractable path to useful results. Choosing an 
appropriate compromise is important, as is seeking out corroborating data that can be used to 
justify a particular simplifi cation. In studying aqueous molecules and complexes, for instance, 
the common procedure of ignoring solvent effects seems to yield reasonable, if only semi-
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quantitative estimates of isotopic fractionations (e.g., Kakihana and Kotaka 1977; Schauble 
et al. 2001; Johnson et al. 2002). The validity of the simplifi ed treatment can be justifi ed by 
noticing that vibrational frequencies in many strongly-bonded molecule-like species are not 
very sensitive to the details of the phase in which they occur. Schauble et al (2001) observed, 
for instance, that measured vibrational frequencies for many aqueous iron chloride and iron-
aquo complexes changed by ~5% or less in solutions of varying chemical composition, and 
even in crystals held together by weak ionic- or hydrogen-bonding networks.
Empirical force fi elds

Empirical force fi eld models have long been used to estimate unknown vibrational 
frequencies in theoretical stable isotope studies (Urey and Greiff 1935; Urey 1947). For small, 
symmetric molecules and molecule-like aqueous and crystalline species force-fi eld calculations 
can be easily implemented in typical spreadsheet software or with scientifi c computation 
packages. The major diffi culty in implementing an empirical force fi eld model is obtaining 
accurate, well-constrained force constants from known vibrational frequencies – the number 
of independent force constants to be constrained must be smaller than the number of known 
frequencies. Numerous schemes have been developed that require a minimal number of force 
constants, including the valence force fi eld (VFF) (e.g, Wilson et al. 1955), orbital valence 
force fi eld (OVFF) (Heath and Linnett 1948), and modifi ed Urey-Bradley force fi eld (MUBFF) 
(Simanouti (Shimanouchi) 1949). These force fi eld methods share more similarities than 
differences, and we will focus on the MUBFF, which has been applied in numerous theoretical 
studies (Kotaka and Kakihana 1977; Kotaka et al. 1978; Schauble et al. 2001). The MUBFF 
accounts for only three types of molecular distortions: bond stretching, bond-angle bending, 
and repulsion between adjacent, non-bonded atoms (Fig. 4), with the consequence that most 
of the Cartesian force constants cease to be independent. The choice of force-constant types 
follows from chemical intuition, as these types of distortion affect the basic structural properties 
of a molecule. The effectiveness of the MUBFF in calculating frequencies has been reviewed 
for tetrahedral (XY4) and octahedral (XY6) complexes (Basile et al. 1973; Krynauw 1990). More 
complex force fi elds, including additional inter-atomic interactions and/or anharmonic potential 
parameters, can be applied to well-studied molecules, but not in the most common situation 
where frequencies have only been measured in one isotopic form (or a natural mixture of 
isotopes that is dominated by one isotope of each element in the molecule).

As is common with empirical force fi elds, MUBFF calculations are carried out using 
internal molecular coordinates rather than Cartesian coordinates. Internal coordinates describe 
the structure of a molecule in terms of bond lengths and angles between bonds. As an example, 
for a bent tri-atomic molecule ABC the three internal coordinates include the lengths of bonds 
AB (rAB) and BC (rBC), as well as the angle between them ( ABC). Larger molecules may also 

Cr

O

O

O

O

FNB

H

K

Figure 4. Schematic illustration of force-constant 
parameters used in Modifi ed Urey-Bradley Force-
Field (MUBFF) vibrational modeling (Simanouti 
(Shimanouchi) 1949). The MUBFF is a simplifi ed 
empirical force fi eld that has been used to estimate 
unknown vibrational frequencies of molecules and 
molecule-like aqueous and crystalline substances. Here, 
three force constants (K, H, and FNB) describe distortions 
of a tetrahedral XY4 molecule, [CrO4]2– due to bond 
stretching (Cr-O), bond-angle bending (  O-Cr-O), and 
repulsion between adjacent non-bonded atoms (O..O). 
Less symmetric molecules with more than one type of 
bond or unequal bond angles require more parameters, 
but they will belong to the same basic types.
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have additional types of internal coordinates, such as torsional or dihedral angles. Any small 
perturbation of these coordinates can be described in terms of a vector R, which for the 
example molecule ABC looks like this:

R
r
r
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ABC

=
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



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
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∆
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The potential energy of a molecule can then be described in terms of the internal 
coordinates, i.e.,

 2PE = Rt FR
where Rt is the transpose of R and F is a matrix of mass-independent internal-coordinate force 
constants. The kinetic energy can also be written in terms of R, albeit with a few intermediate 
steps. The matrix describing perturbations of the Cartesian coordinates of each atom (with the 
center of mass as the origin) is defi ned,

X

x
y
z
x

zN

=



























∆
∆
∆
∆

∆

1

1

1

2

···

along with an isotope-sensitive diagonal matrix M–1 consisting of the reciprocal masses of each 
atom repeated three times,
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Then a third matrix B relating the internal and Cartesian coordinates is determined,

R = BX
Finally we can write out a kinetic energy matrix G,

G = BM 1Bt

such that

2 1KE dR
dt

G dR
dt

t
= −

where G–1 is the reciprocal of the special matrix G. Each eigenvalue of the product matrix 
GF is equal to 4 2 2, where  is a vibrational frequency of the molecule. This procedure for 
calculating vibrational frequencies in terms of internal molecular coordinates is often referred 
to as the GF method.

The eigenvector corresponding to each eigenvalue determines the characteristic motion of 
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each atom in the vibration. The characteristic atomic motions associated with each frequency 
(called normal modes) are closely related to the problem of determining how vibrational 
frequencies change when one isotope of an element is substituted for another. Specifi cally, 
isotopic sensitivity scales with the intensity of atomic motion: if an atom remains stationary 
in a particular normal mode, the frequency of that mode will not be affected by isotopic 
substitution of that atom; if the atom exhibits high-amplitude motion, the frequency of the 
mode will be highly sensitive to isotopic substitution.

Of course, before the atomic motions and unknown frequencies can be determined it is 
necessary to constrain the force constants from known frequencies. From the derivation shown 
above it is not clear how to distinguish one mode from another—how to determine which 
calculated frequency corresponds to a known measured frequency. This is done by classifying 
each normal mode according to its symmetry properties. A detailed introduction to the use 
of molecular symmetry in vibrational analysis is beyond the scope of the present review, 
several comprehensive reviews have been published elsewhere (Herzberg 1945; Wilson et al. 
1955; Cotton 1971; McMillan and Hess 1988; Nakamoto 1997). Of immediate relevance is 
the fact that molecular symmetries can be used to block-diagonalize the G and F matrices, so 
that eigenvalues can be determined from the products of submatrices corresponding to each 
irreducible representation of the point group of the molecule. Since the Raman and infrared 
selection rules that determine whether a particular vibrational mode can be observed are also 
determined by the irreducible representation of each mode, it is usually possible to match 
calculated and observed frequencies in small groups if not strictly on a one-to-one basis.

Optimized MUBFF models typically reproduce the input frequencies within ~10% or 
better. In order to reap the maximum possible benefi t from the known frequencies, the model 
ratio of frequencies for isotopically substituted molecules can be multiplied by the measured 
frequency to give a normalized isotopic frequency, i.e.,

ν
ν
νrare isotope calc

rare isotope

major isotope MUBFF

( ) =








.

×× ( )νmajor isotope measured
 (6)

GF method calculations are simplifi ed by the systematic behavior of the G matrix 
elements (Decius 1948). MUBFF calculations, however, are somewhat complicated by the 
force constants representing interactions between non-bonded atoms—these can be tedious 
to express in terms of internal coordinates. Computer programs have been written to partially 
automate calculations, thereby reducing the necessary effort and minimizing opportunities for 
errors (e.g., Schachtschneider 1964; Gale and Rohl 2003).

In addition, G and F matrix elements have been tabulated (see Appendix VII in Nakamoto 
1997) for many simple molecular structure types (including bent triatomic, pyramidal and 
planar tetratomic, tetrahedral and square-planar 5-atom, and octahedral 7-atom molecules) in 
block-diagonalized form. MUBFF G and F matrices for tetrahedral XY4 and octahedral XY6
molecules are reproduced in Table 1. Tabulated matrices greatly facilitate calculations, and 
can easily be applied to vibrational modeling of isotopically substituted molecules. Matrix 
elements change, however, if the symmetry of the substituted molecule is lowered by isotopic 
substitution, and the tabulated matrices will not work in these circumstances. For instance, 
12C35Cl4, 13C35Cl4, and 12C37Cl4 all share full XY4 tetrahedral symmetry (point group Td), but 
12C35Cl37Cl3 and other partially 37Cl-substituted forms do not, and cannot be modeled with the 
tabulated matrices. The practical signifi cance of this restriction is negligible, however, because 
one corollary of the rule the mean for isotopic substitution (Bigeleisen 1955) is that calculated 
fractionation factors are almost completely insensitive to the number of substituted atoms.

Example calculation: 53Cr 50Cr substitution in the chromate anion. An example 
calculation on the chromate anion [CrO4]2– makes use of tabulated G and F matrix elements. 
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The chromate anion is a highly soluble, toxic tetrahedral complex (point group Td) that occurs 
in oxidized, neutral-basic solutions. It is also one of a small number of aqueous complexes 
that have been thoroughly characterized by spectroscopic measurements on numerous isotopic 
compositions (Müller and Königer 1974), so it will be possible to check the vibrational model 
against real data. Here the MUBFF is applied under the assumption that aqueous chromate can 
be approximately modeled as a gas-phase molecule.

Due to numerous symmetries in the Td point group, most of the nine vibrational modes 
of tetrahedral XY4 molecules and complexes like the chromate anion are degenerate (meaning 
that two or more modes have the same frequency), and there are only four distinct frequencies. 
These frequencies are all observable with Raman spectroscopy, which is particularly suited 
to studies of dissolved substances. There is one frequency belonging to the A1 irreducible 
representation, one belonging to the doubly degenerate E irreducible representation, and 
two to the triply-degenerate F2 irreducible representation. F2 frequencies are also observable 
with infrared spectroscopy, although water is such a strong infrared absorber that this can be 
diffi cult in solution. For the natural isotopic mixture in chromate (dominantly [52Cr16O4]2–) the 
four distinct frequencies are (Müller and Königer 1974):

1(A1), 846 cm–1
2(E), 347 cm–1

3(F2), 891 cm–1
4(F2), 368 cm–1

Table 1. Block diagonalized G and F matrices for tetrahedral XY4 and octahedral XY6 molecules,
using the modifi ed Urey-Bradley force fi eld. Adapted from Nakmoto (1997). mX and mY are the 
masses of atoms of X and Y, and r is the length of the X-Y bond. K, H, and FNB are force constants 
for bond stretching, bond-angle bending, and non-bonded repulsion, respectively.

XY4 molecules, point group Td

A1 ( 1) – Raman active
G(A1) = 1/mY  F(A1) = (K + 4FNB)

E ( 2) – doubly degenerate, Raman active
G(E) = 3/(r2mY) F(E) = (H + 0.4FNB)

F2 ( 3, 4) – triply degenerate, Raman and infrared active
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XY6 molecules, point group Oh

A1g ( 1) – Raman active
G(A1) = 1/mY  F(A1) = (K + 4FNB)

Eg ( 2) – doubly degenerate, Raman active
G(Eg) = 1/mY F(Eg) = (K + 0.7FNB)

F1u ( 3, 4) – triply degenerate, infrared active
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F2g ( 5) – triply degenerate, Raman active
G(F2g) = 4/(r2mY) F(F2g) = (H + 0.55FNB)

F2u ( 6) – triply degenerate, neither Raman nor infrared active
G(F2u) = 2/(r2mY) F(F2u) = (H + 0.55FNB)
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The symmetrized G and F matrices for [CrO4]2– molecules are:
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where K, H, and FNB are force constants for Cr-O bond stretching, O-Cr-O bond-angle bending, 
and O-O repulsion, respectively, and r is the equilibrium Cr-O bond length. The fi rst two terms 
on the diagonals correspond to the A1 and E vibrations, while the 2 2 submatrix at lower right 
corresponds to the F2 vibrations—each can be solved separately:
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Here there are four measured frequencies with which to constrain three independent force 
constants, so the best-fi tting force constants can be determined through an iterative least 
squares fi t, minimizing meas calc . Assuming average atomic masses of 51.996 and 
15.9994 for chromium and oxygen, respectively, the best-fi t force constants are K = 495.2 
Newtons/m, H = 21.3 Newtons/m, and FNB = 44.7 Newtons/m. These force constants show the 
typical relationship K >> H,FNB. Calculated frequencies are:

1(A1), 845.6 cm–1
2(E), 353.1 cm–1

3(F2), 891.3 cm–1
4(F2), 362.5 cm–1

with a total squared misfi t of 68 cm–2. If the masses of 50Cr and 53Cr are inserted for mCr,
it is found that only the F2 frequencies 3 and 4 change, falling by 7.4 cm–1 and 2.8 cm–1,
respectively, upon substitution of the heavier isotope. The chromium-isotope sensitivity 
of the F2 vibrations occurs because these are the only ones in which the chromium atom 
moves (Fig. 5). A1 and E modes, by contrast, consist only of motion of oxygen atoms. 
Infrared measurements on sulfate salts doped with [50CrO4]2– and [53Cr16O4]2– show that the F2
frequencies actually change by 8.5±0.3 cm–1 and 2.2±0.3 cm–1, respectively. We can use both 
calculated and observed isotopic frequencies to calculate reduced partition function ratios for 
53Cr-50Cr exchange in chromates. Chromate–Cr = 1.0365 and 1.0393 at 298 K, respectively, a 
difference of 2.8 per mil. Published measurements have reported variations in 53Cr/52Cr ratios 
rather than 53Cr/50Cr (Ellis et al. 2002); so it is useful calculate analogous fractionation factors 
for the 53Cr-52Cr exchange reaction. These are 1.0120 and 1.0129, respectively, suggesting 
that the MUBFF model introduces an error of ~1 per mil in a room temperature calculation of 
53Cr/52Cr fractionation.
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Transferable empirical force fi elds (interatomic potentials)
Other types of models have occasionally been used to calculate unknown vibrational 

frequencies. One promising approach has been the use of transferable empirical force fi elds. 
Transferable force fi elds are designed to be applicable to a range of compounds, rather than 
a single molecule, and consequently include parameters that account explicitly for properties 
like equilibrium bond lengths, ionic charges, and coordination number that change from 
one substance to another. This fl exibility means that transferable force fi elds (often called 
interatomic potentials) can also be used to calculate binding, surface and defect energies, 
and to estimate unknown crystal structures and elastic properties. Interatomic potentials 
have been developed for numerous oxide, silicate, and carbonate materials (Catlow et al. 
1988; Dove et al. 1992; Le Roux and Glasser 1997; Demiralp et al. 1999; Cygan et al. 2002). 
Much like MUBFF force constants, transferable potentials are determined using experimental 
measurements of molecular structures, mineral lattice constants and elastic properties, 
and known vibrational frequencies; they may also be constrained by ab initio calculations 
(Harrison and Leslie 1992). Free and commercial software packages such as GULP (Gale 
and Rohl 2003) and Cerius 2 (Accelrys) can be used to model vibrational spectra of minerals, 
molecules, and solutions based on these transferable potentials. The author is not aware of 
any published theoretical stable isotope studies of non-traditional elements that have taken 
advantage of transferable force fi elds, but they have been used in calculations of oxygen and 
carbon isotope fractionations in silicates (Patel et al. 1991) and carbonate minerals (Dove et 
al. 1992). An introduction to the construction and use of interatomic potentials was presented 
in a previous Reviews in Mineralogy and Geochemistry volume (Gale 2001).
Ab initio force-fi eld modeling

Over the last decade, ab initio quantum-mechanical force fi elds have begun to be applied 
in theoretical stable isotope studies of molecules and dissolved species (Bochkarev et al. 2003; 
Driesner et al. 2000; Oi 2000; Oi and Yanase 2001). This method shows great promise for 
future studies, because ab initio calculations accurately describe chemical properties such as 
force constants without the necessity of assuming allowed force-constant types (which may 
not be universally applicable). Ab initio calculations are also ideally suited to molecules with 
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Figure 5. Normal modes for vibration 
of tetrahedral [CrO4]2– (chromate). There 
are four distinct vibrational frequencies, 
including one doubly-degenerate vibration 
(E symmetry) and two triply-degenerate 
vibrations (F2 symmetry), for a total of 
nine vibrational modes. Arrows show the 
characteristic motions of each atom during 
vibration, and the length of each arrow is 
proportional to the magnitude of atomic 
motion. Only F2 modes involve motion of 
the central chromium atom, and as a result 
their vibrational frequencies are affected by 
Cr-isotope substitution. The normal modes 
shown here were calculated with an ab initio
quantum mechanical model, using hybrid 
Hartree-Fock/Density Functional Theory 
(B3LYP) and the 6-31G(d) basis set—other 
ab initio and empirical force-fi eld models 
give very similar results. 
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relatively few known vibrational frequencies because there are no empirical parameters that 
require fi tting. Because the minimum-energy molecular structure is typically also calculated, 
measured structures can be used to verify the appropriateness of a particular model. Numerous 
reviews of quantum mechanical calculations (e.g., Foresman and Frisch 1996; Thijssen 1999) 
and their applications in Earth science (Cygan and Kubicki 2001) have been published.

The central problem in any quantum mechanical model is fi nding accurate solutions to the 
time independent form of the Schrödinger equation,

H  = E
where  is the wavefunction describing the electronic structure of the molecule, H is the
Hamiltonian describing the potential fi eld and kinetic energy of electrons and atomic nuclei 
(nuclei are generally assumed to be fi xed in space), and E are the allowed electronic energies 
of the molecule. For all but the simplest systems, it is not possible to solve the Schrödinger 
equation exactly. However, reasonably accurate approximate solutions are possible using 
simplifi ed descriptions of the electronic potentials and wavefunctions. Regardless of the 
method chosen, determination of the ground state electronic structure of a molecule involves 
the optimization of a large number of variables, which are usually determined via an iterative 
procedure to yield a minimum-energy, self-consistent set of electronic wavefunctions. 
Numerous free and commercial software packages such as Jaguar (Schrödinger, Inc.), Gaussian 
(Gaussian, Inc.), and GAMESS (Schmidt et al. 1993) have been developed to make it possible 
for non-specialists to create quantum-mechanical models of molecules and crystals.

Two common approximation methods are the Hartree-Fock (HF) method (Roothaan 1951) 
and density functional theory (DFT) (Hohenberg and Kohn 1964; Kohn and Sham 1965). In 
Hartree-Fock theory, the interactions between different electrons in a molecule are treated in a 
simplifi ed way. Each electron “sees” other electrons as a time-averaged distribution, ignoring 
correlations between the positions of electrons in interacting orbitals. More accurate methods 
that take account of electron correlation have also been developed (Pople et al. 1976). HF 
calculations are much faster than correlation methods, however, and are often able to provide 
reasonably accurate descriptions of molecular structures and vibrational properties. HF 
methods work best for molecules with simple bond structures made up of low atomic-number 
atoms, and less well for molecules with exotic electronic structures (like O3) and transition 
elements. DFT methods are distinguished from HF and correlated methods in their focus on 
determining electronic energies from the electron density. DFT methods are particularly well 
suited to crystals and solutions, and often provide a better description of transition-element 
bearing molecules than HF theory. Hybrid DFT-HF calculations such as the Becke three-
parameter Lee-Yang-Parr (B3LYP) method (Becke 1993) are possible, and are commonly 
used to model molecular structures and vibrational frequencies. In fact B3LYP has become 
the method of choice for studying large molecules and atomic clusters in chemistry and earth 
science. Although the HF and DFT methods were developed separately and have different 
strengths and weaknesses, they have been implemented together in numerous commercial 
and open-source software packages, i.e. Jaguar (Schrödinger, Inc.), Gaussian (Gaussian, Inc.), 
and GAMESS (Schmidt et al. 1993), and it is natural to group them together in describing 
vibrational models. Note that some DFT methods are not strictly ab initio because a few 
empirical parameters (other than fundamental constants like the charge and mass of an 
electron and the speed of light) are used; these parameters are fi xed within a given method 
however, and are so far removed from the user that the practical distinction is minor. In all of 
these methods, molecular electronic wavefunctions are typically built up using a set of orbital-
like basis functions called a basis set. As with electronic correlation, the choice of basis set is 
governed by a compromise between accuracy and computational expense. Commonly used 
basis sets include 6-31G(d) (Francl et al. 1982) and 6-311G(d,p) (Krishnan et al. 1980).
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Density functional theory has been extensively used to calculate vibrational properties of 
minerals and other crystalline phases in addition to molecules and molecule-like substances. 
This method has recently begun to be used to calculate isotope fractionation factors (Schauble 
et al. in press; Anbar et al. in press), and shows great potential for future research. Programs 
such as ABINIT (Gonze et al. 2002), pwSCF (Baroni et al. 2001)—both freely available—and 
the commercial package CASTEP (Accelrys, Inc.) can be used to calculate vibrational 
properties of crystals.

The Schrödinger equation can also be solved semi-empirically, with much less 
computational effort than ab initio methods. Prominent semi-empirical methods include 
MNDO, AM1, and PM3 (Dewar 1977; Dewar et al. 1985; Stewart 1989a; Stewart 1989b). The 
relative computational simplicity of these methods is accompanied, however, by a substantial 
loss of accuracy (Scott and Radom 1996), which has limited their use in geochemical 
simulations. Historically, semi-empirical calculations have also been limited by the elements 
that could be modeled, excluding many transition elements, for example. Semi-empirical 
calculations have been used to predict Si, S, and Cl isotopic fractionations in molecules 
(Hanschmann 1984), and these results are in qualitative agreement with other theoretical 
approaches and experimental results.

There are typically three steps in creating an ab initio quantum-mechanical model of a 
molecule. In the fi rst step, the minimum-energy static structure of the molecule is determined 
via geometric relaxation. From an initial guess geometry, often the experimentally determined 
structure of the molecule, the forces on each atom are calculated, and a refi ned guess structure 
is determined. This procedure continues iteratively until the residual forces acting on each 
atom are suffi ciently small—typically on the order of 10–10 Newtons or less. HF, DFT, and 
hybrid HF-DFT ab initio methods can be expected to reproduce experimental bond lengths 
and angles to within approximately 2 pm (0.02 Å) and 1º–2º, respectively, when the chosen 
method and basis set are appropriate. Once the minimum-energy confi guration has been 
calculated, the second step is the determination of force constants for displacements of 
the atomic nuclei from their minimum energy positions. Finally, unknown frequencies are 
determined by a calculation with the appropriate isotopic masses. Since the force constants are 
not affected by isotopic substitution, this fi nal step involves much less computational effort 
than the preceding two. Vibrational frequencies for numerous isotopic confi gurations of a 
molecule can be calculated quickly once the matrix of force constants has been determined, 
even for relatively complex substances.

It important to note that ab initio force fi elds of all types tend to make systematic errors 
in calculating vibrational frequencies (Pople et al. 1993; Scott and Radom 1996; Wong 1996). 
With HF calculations using the 6-31G(d) basis set, for instance, vibrational frequencies of gas-
phase molecules are typically overestimated by about 12%, with both high- and low-frequency 
vibrations off by roughly the same scale factor (Scott and Radom 1996). Some gas-phase 
scale factors for other ab initio methods are given in Table 2. In cases where the ab initio
molecular structure is close to the observed structure (angles within 1–2º, bond lengths within 
2 pm) and calculated vibrational frequencies are related to observed frequencies by a uniform 
scaling factor, the ratios of frequencies of isotopic molecules should be accurately predicted 
(Schauble et al. 2003). For substances with relatively well-known vibrational spectra, model 
frequency ratios can be normalized to observed frequencies in the same way as MUBFF model 
frequencies.

Example calculation: 37Cl 35Cl substitution in methyl chloride. Here we will create an
ab initio vibrational model of CH3Cl, a tetrahedral molecule with a less symmetric structure 
(point group C3v) than chromate. Low-symmetry molecules can be tedious and diffi cult to 
model with empirical methods because of the large number of force-constant parameters 
that need to be constrained (although methyl chloride is small enough that such calculations 
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are feasible). Low-symmetry molecules are ideal candidates for ab initio modeling, which 
eliminates the time-consuming and error-prone process of fi tting empirical parameters to 
measured frequencies. Calculations in this example are made using the open-source software 
package GAMESS (Schmidt et al. 1993), which can be downloaded without cost by academic 
and commercial users (http://www.msg.ameslab.gov/GAMESS/GAMESS.html). Hartree-
Fock calculations appear to provide reasonably accurate models of the effects of isotopic 
substitution on vibrational frequencies of chlorocarbons and hydrochlorocarbons (Schauble et 
al. 2003), and are computationally fast. Here we will perform a Hartree-Fock calculation using 
the medium-accuracy 6-31G(d) basis set. As an initial guess for the structural relaxation step 
we can take the experimentally determined structure (Fig. 6), which has a C-Cl bond length 
of 177.6 pm, C-H bond lengths of l08.5 pm, and H-C-H bond angles of 110.4º (Jensen 1981). 
Geometry optimization takes <1 minute on a Macintosh desktop computer with a 400 MHz G4 
processor, and yields a structure very close to what is observed: r(C-Cl) = 178.5 pm, r(C-H) 
= 107.8 pm, and (H-C-H) = 110.5º. The total calculated electronic energy is –499.093153 
Hartrees (–1,310,367.75 kJoules/mole).

Using the optimized structure, the vibrational frequencies are calculated. By default, 
GAMESS assumes that the dominant isotopic form of CH3Cl (12C1H3

35Cl) is present. 
GAMESS does not automatically classify vibrations by symmetry. However, this task can be 
accomplished by visual inspection using molecule animation software like MacMolPlt (Bode 

Table 2. Scale factors for ab initio model vibrational frequencies adapted from 
(Scott and Radom 1996). Please note that these scale factors are determined by 
comparing model and measured frequencies on a set gas-phase molecules dominated 
by molecules containing low atomic-number elements (H-Cl). These scale factors 
may not be appropriate for dissolved species and molecules containing heavier 
elements, and it is always a good idea to directly compare calculated and measured 
frequencies for each molecule studied. The root-mean-squared (rms) deviation of 
scaled model frequencies relative to measured frequencies is also shown, giving an 
indication of how reliable each scale factor is.

Method Basis set Scale factor rms deviation 
(cm–1)

HF 3-21G 0.9085 87
HF 6-31G(d) 0.8953 50
HF 6-31G(d,p) 0.8992 53
HF 6-311G(d,p) 0.9051 54

B3LYP 6-31G(d) 0.9614 34

177.6 pm

Cl

C

H
H

H

108.5 pm
110.4º

Figure 6. Measured molecular structure 
of methyl chloride (CH3Cl), taken from 
Jensen (1981). CH3Cl is a nearly tetrahedral 
molecule with C3v, symmetry. All C-H bond 
lengths, H-C-H angles and H-C-Cl angles are 
identical.
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and Gordon 1998) and symmetry character tables found in many spectroscopy and inorganic 
chemistry textbooks (e.g., Nakamoto 1997; Shriver 1999). Methyl chloride is particularly 
simple because all doubly degenerate vibrations have E symmetry, and all remaining vibrations 
have A1 symmetry. Calculated and measured frequencies are compared in Table 3. Measured 
frequencies are consistently ~10% lower than ab initio frequencies, in good agreement with 
the standard HF/6-31G(d) scale factor (Scott and Radom 1996).

37Cl is suffi ciently common that some vibrational frequencies of isotopically heavy 
methyl chloride have been measured spectroscopically, so it is possible to compare measured 
and model frequency shifts. It is found that 3 and 6 are the only frequencies that shift 
signifi cantly when 37Cl is substituted for 35Cl; the model estimates that the ratio of 3 in 
12C1H3

37Cl divided by the frequency in 12C1H3
35Cl is 0.9919, for 6 the ratio is 0.9996. These 

ratios are in excellent agreement with measured ratios of 0.9920 and 0.9996, respectively. 
Using normalized model frequencies (Eqn. 6), Methyl Chloride–Cl = 1.0088 at 298 K.

Theoretical applications of Mössbauer spectroscopy
The fi rst theoretical calculations of stable isotope fractionation factors in the iron isotope 

system were based on Mössbauer spectroscopy rather than traditional vibrational spectroscopy 
(Polyakov 1997; Polyakov and Mineev 2000). These early studies successfully predicted 
that measurable equilibrium fractionations occur between different iron-bearing minerals, 
and that Fe3+-bearing phases will tend to have higher 57Fe/54Fe than coexisting Fe2+-bearing
phases (Beard et al. 2003). However, predicted fractionations between different Fe2+-bearing
oxides appear to be larger than is observed in experimentally equilibrated phases and suites of 
natural samples. The source of disagreement between predicted Fe-isotope fractionations and 
experimental results has not yet been identifi ed, but may lie in the extensive data modeling and 
processing required to predict fractionations from measured Mössbauer spectra.

Mössbauer spectroscopy involves the measurement of minute frequency shifts in the 
resonant gamma-ray absorption cross-section of a target nucleus (most commonly 57Fe;
occasionally 119Sn, 197Au, and a few others) embedded in a solid material. Because Mössbauer 
spectroscopy directly probes the chemical properties of the target nucleus, it is ideally suited 
to studies of complex materials and Fe-poor solid solutions. Mössbauer studies are commonly 
used to infer properties like oxidation states and coordination number at the site occupied 
by the target atom (Hawthorne 1988). Mössbauer-based fractionation models are based on 
an extension of Equations (4) and (5) (Bigeleisen and Mayer 1947), which relate  to either 
sums of squares of vibrational frequencies or a sum of force constants. In the Polyakov (1997) 

Table 3. Measured (Black and Law 2001) and ab initio vibrational frequencies for 
methyl chloride, 12C1H3

35Cl. Ab initio frequencies are calculated with GAMESS, using 
the Hartree-Fock method and 6-31G(d) basis set. The ratio of each measured and 
model frequency is also shown.

Vibration Measured
frequency (cm–1)

Ab initio
frequency (cm–1)

Meas./Ab init.
Ratio

ν37/ν35

(ab initio)

1 (A1) 2953.9 3267.33 0.9041 1.00000

2 (A1) 1354.88 1538.08 0.8809 0.99991

3 (A1) 732.84 782.60 0.9364 0.99194

4 (E) 3039.29 3371.02 0.9016 1.00000

5 (E) 1452.18 1628.96 0.8915 0.99999

6 (E) 1018.07 1138.36 0.8943 0.99961
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formulation, the fractionation factor is related directly to the average vibrational kinetic 
energy, <KE>, of atoms of the element of interest (the brackets indicate an averaged atomic 
thermodynamic quantity):
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where the fi gure of 3/2 in parentheses represents classical thermal kinetic energy. Mössbauer 
spectroscopy can be used to estimate <KEX> via the second-order Doppler shift (SOD), an 
extremely small but measurable shift of the observed resonant frequency. Unlike conventional 
Doppler shifts, which are caused by line-of-sight motion, SOD results from the relativistic 
time dilation of the Mössbauer nucleus as it vibrates perpendicular to the line of sight between 
the gamma-ray source and the absorbing atom. In any iron-bearing crystal, 57Fe atoms bound 
in the crystal lattice vibrate about their equilibrium positions, each with a fi nite velocity, v. 
Because it is moving, special relativity dictates that each atom has a slightly slower internal 
clock than an observer at rest. A photon that appears to a 57Fe nucleus to have a frequency 
will appear to the observer as a photon with a frequency equal to , where
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So by measuring the second-order Doppler shift of the Mössbauer nuclei in a material it is 
possible to determine their average velocity <v2> and thus their average vibrational kinetic 
energy, <KEX> = mMossbauerX <v2>/2, where mMossbauerX is the mass of the Mössbauer nucleus. The 
magnitude S of a measured SOD is typically reported in terms of an equivalent conventional 
Doppler shift (relative velocity between gamma-ray source and absorber), 

S c= δν
ν

Using this convention, the Mössbauer model expression for equilibrium isotopic fractionation 
becomes:
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(Polyakov 1997). Because the second-order Doppler shift is not the only factor controlling 
Mössbauer absorption frequencies, it is generally necessary to process data taken at a variety 
of temperatures, and to make a number of assumptions about the invariance of other factors 
with temperature and the form and properties of the vibrational density of states of the 
Mössbauer atom. Principles involved in analyzing temperature dependencies in Mössbauer 
spectra are extensively discussed in the primary literature (Hazony 1966; Housley and Hess 
1966; Housley and Hess 1967) and reviews (e.g., Heberle 1971).
Integrating theoretically estimated fractionations with measurements

It should be clear from the preceding discussions that practical application of equilibrium 
stable isotope fractionation theory often requires a certain amount of simplifi cation of 
complex and poorly studied systems. Given this reality, one should not be surprised to fi nd 
that theoretically determined equilibrium fractionations rarely achieve accuracies approaching 
the nominal precisions of measurements made with modern analytical techniques. It should 
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noted that future developments in vibrational modeling, particularly in ab initio force-fi eld 
calculations and the evaluation of solvent effects, are likely to narrow the accuracy gap. The 
most important point, however, is that even simplifi ed theoretical calculations have a number 
of powerful advantages. For instance, rough estimates can be particularly useful in developing 
a wide-ranging theoretical framework to help guide initial experimental investigations. In 
addition, theoretical calculations can greatly enhance the impact of limited experimental data, 
even when the former is much less accurate. They help constrain fractionation mechanisms in 
natural samples and experimental run products where it may not be clear that equilibrium has 
been attained (Fig. 7)—qualitative agreement between theoretical and observed fractionations, 
particularly when observed over a range of temperatures, constitutes a powerful argument in 
favor of the experimental attainment of equilibrium. Finally, theoretical calculations can be 
used to extend experimentally calibrated fractionations to low temperatures where isotopic 
exchange is too slow to reach equilibrium on a reasonable laboratory timescale (Clayton and 
Kieffer 1991).

BASIC KINETIC STABLE ISOTOPE FRACTIONATION THEORY

Kinetic fractionations can occur when there is incomplete isotopic exchange between 
the different phases present in a system. A thorough introduction to kinetic stable isotope 
fractionation theory is unfortunately beyond the scope of the present review. However, it 
is useful to include a brief discussion of some basic aspects, particularly in comparison to 
equilibrium fractionation theory. A simple example of kinetic fractionation is the evaporation 
of a liquid water droplet into a vacuum, in this example H2O molecules entering the gas phase 
are physically removed from the vicinity of the droplet, so there is no chance for isotopic 
equilibration between vapor-phase molecules and the residual liquid. Isotopic fractionation in 
this case is determined by a one-way reaction path, and will not, in general, be the same as the 
fractionation in a system where vapor-phase molecules are able to equilibrate and exchange 
with the liquid. In other reactions, isotopic exchange is limited by an energy barrier—an 

T (K)

a M
in

.-
S
o
l.

X

X

X

Figure 7. Using a theoretically determined equilibrium fractionation to interpret measured isotopic fractiona-
tions in a hypothetical mineral-solution system. Three sets of data are shown. The theoretical equilibrium 
fractionation for this system is indicated by the gray arrow. The fi rst set of data, indicated by circles, closely 
follow the calculated fractionation, suggesting a batch equilibrium fractionation mechanism. The second set 
of data (stars) is displaced from the theoretical curve. This may either indicate a temperature-independent 
kinetic fractionation superimposed on an equilibrium-like fractionation, or that the theoretical calculation 
is somewhat inaccurate. The third set of data (crosses) shows much greater temperature sensitivity than the 
equilibrium calculation; this provides evidence for a dominantly non-equilibrium fractionation mechanism. 
For the fi rst data set, the theoretical fractionation curve can be used to extrapolate beyond the measured 
temperature range. The second data set can also be extrapolated along a scaled theoretical curve (Clayton 
and Kieffer 1991).
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exchange activation energy—that must be surmounted in order for two atoms with different 
masses to swap positions (Fig. 8).

The size of the activation energy for isotopic exchange refl ects the need to break bonds and 
rearrange atoms in order to effect exchange. The rate at which atoms are exchanged decreases 
with increasing height of the energy barrier, increases with temperature, and also depends 
on geometric constraints. In natural systems, and particularly at low temperatures, kinetic 
stable isotope fractionations are common. With non-traditional stable isotope systems we are 
typically interested in heavier elements and condensed phases; for these the most common 
types of kinetic fractionations are likely to be those driven by the effects of isotopic mass on 
molecular and atomic velocities and diffusivity, and by isotopic effects on activation energies. 
Other mechanisms can be important in gas-phase and very low-temperature reactions, but are 
largely beyond the scope of the present work.
Effects of isotopic mass on molecular and atomic velocities and diffusivity

In a gas with a well defi ned temperature, the translational kinetic energies of all molecules 
are the same, on average,

KE T m= =3
2

1
2

2k v

where m here is the mass of the molecule and v is its velocity. It is apparent that molecules 
having different isotopic compositions will have different average velocities,
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For fractionation processes that are chiefl y dependent on molecular velocity, this 
relationship can be rearranged into a simple translational isotopic fractionation factor,
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Figure 8. Schematic diagram of the potential energy trajectory of an isotope exchange reaction. In general, 
isotopic exchange requires the rearrangement or breaking of chemical bonds, which involves an increase 
in the potential energy of the molecule. This activation energy limits the rate at which exchange can take 
place, particularly at low temperatures. Equilibrium isotopic fractionation requires isotopic exchange, 
kinetic fractionations can occur if molecules are unable to surmount the exchange energy barrier. For 
simplicity isotopic effects on exchange energy are ignored.
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A good example of translational fractionation is one-way diffusion through an orifi ce that is 
smaller than the mean-free path of the gas. Related, but somewhat more complex velocity-
dependent fractionations occur during diffusion through a host gas, liquid, or solid. In these 
fractionations the isotopic masses in the translational fractionation factor are often replaced 
by some kind of effective reduced mass. For instance, in diffusion of a trace gas XR through a 
medium, Y, consisting of molecules with mass mY,

D
D

m m

m

light

heavy

heavy

light

light Y

heavy

XR

XR

XR Y

XR Y

XR= =
+

−

−

µ
µ

1 1

1

XXR
mY

+ 1

where DlightXR and DheavyXR are the diffusivities of the isotopically light and heavy forms of XR,
respectively (Reid et al. 1977). Such diffusivity ratios will always be closer to unity than the 
simple translational fractionation factor.
Effects of isotopic mass on rates of activation

In many chemical processes the rate of reaction depends chiefl y on one particular 
transformative step. Under conditions where reaction products are not able to back-exchange 
with the reactants, this rate-limiting step also can control the isotopic fractionation between 
reactants and products. For simple reactions where one molecule dissociates, a transition state 
theory of isotopic fractionation has been developed (Eyring 1935; Bigeleisen 1949). In this 
simplifi ed method of calculating isotopic effects on reaction rates, only the energy barrier 
between the reactants and a single rate-limiting transition-state is considered. A reaction 
coordinate, defi ned as the lowest-energy path from the ground states of the reactants to 
the transition state, describes the mechanical and electronic distortions necessary before a 
reaction can take place (Fig. 9). In this theory, the rate at which reactant molecules achieve the 
transition-state (and thus react to form products) is determined by the statistical probability of 
a molecule possessing enough energy to reach the summit of the energy barrier, 
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In theory, EA is the activation energy (the height of the rate-limiting energy barrier in Joules/
molecule). This probability is then multiplied by the rate at which reactant molecules sample 
the reaction coordinate. At the top of the energy barrier, the potential energy curve becomes fl at, 
so that motion across the summit is rather similar to a free translation, rather than a vibrational 
mode. As a result, the activated molecule has three translational degrees of freedom, one 
reactive translational degree of freedom, and 3N–7 vibrational degrees of freedom (3N–6 for a 
linear molecule). The energies of the reactants and the activated molecules can be determined 
by evaluating partition functions, using a translational partition function to evaluate the 
reaction coordinate in the activated molecule. Instead of using the molecular masses, however, 
an effective reduced mass of molecular motion along the coordinate is used,
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For a simple decomposition reaction of a diatomic molecule, AB  A + B, Rxn is simply

µRxn
A B

A B

m m
m m

=
+

In more complex reactions, it may not be as straightforward to determine the reduced mass 
along the reaction coordinate because the exact reaction mechanism is poorly known. This 
task can be facilitated by ab initio and empirical force-fi eld software packages with built-in 
capacities to predict and evaluate reaction coordinates (Schmidt et al. 1993; Gale and Rohl 
2003). Once the relevant reduced masses are known, a derivation similar to Urey’s (1947) 
equation for equilibrium isotopic fractionation can be followed, obtaining:
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where transition XR is the ratio of reaction rates of heavyXR and lightXR, heavyXR(Rxn) and lightXR(Rxn)
are the effective reduced masses for motion along the reaction coordinate for the two isotopic 
forms of XR, XR-X for the reactant is calculated using Equation (3), and XR(activated) for the 
activated molecule is calculated using Equation (3) using the 3N 7 vibrational modes of 
the activated complex. This method has been applied in theoretical studies of isotopic 
fractionations in non-traditional systems (e.g., Krouse and Thode 1962; Paneth 2003). The 
Paneth (2003) study predicts kinetic chlorine-isotope fractionations in reasonable agreement 
with experimental measurements.

Figure 9. Schematic diagram of the potential energy trajectory of a molecular dissociation reaction. As 
with the isotopic exchange reaction, the molecule must acquire enough energy in the reaction coordinate to 
surmount an energy barrier. In this case the dissociating molecule, ZYX, splits into two fragments ZY and 
X, and the reaction coordinate is roughly equivalent to the length of the X-Y bond. Typically, the size of this 
activation energy barrier is slightly affected by isotopic substitution due to differences between the zero-
point vibrational energies in the reactant molecule in the ground state and activated state. Here the potential 
energy curve for a molecule containing the light isotope of element X (lightX) is shown in black, and the 
corresponding curve for a molecule containing a heavier isotope of element X (heavyX) is shown in grey. For 
clarity, both trajectories are set so that the potential energies of the reactant molecules are the same. In this 
simple example, the activation energy for the isotopically light molecule is smaller than for the isotopically 
heavy molecule. In addition, the isotopically light molecule will tend to sample the trajectory faster than 
the isotopically heavy molecule. For both reasons, the lightX-bearing molecule will tend to react faster than 
the heavyX-bearing molecule.
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MASS-DEPENDENCE OF EQUILIBRIUM
AND KINETIC ISOTOPE FRACTIONATIONS

Recent discoveries of oxygen and sulfur fractionations (e.g., Farquhar et al. 2000; 
Thiemens et al. 2001) that appear to have unusual mass dependence has renewed interest in 
variations in the mass dependence of different fractionation mechanisms (Gao and Marcus 
2002; Young et al. 2002). Usually, mass-dependent fractionations scale in proportion to 
differences in isotopic mass:

i k

j k
i k

j k

X X

X X

X X

X X

m m
m m

( )

( )
−
−

≈
−
−

α
α

1
1

where (iX/kX)   is the fractionation factor separating isotopes iX and kX in some reaction or 
process, (jX/kX)  is the fractionation factor for isotopes jX and kX in the same reaction, and miX,
mjX , and mkX are the masses of isotopes iX, jX, and kX respectively. Recent measurements in non-
traditional stable isotope systems, including those described in this volume, appear to confi rm 
that mass-dependent fractionation is the norm in geochemical processes and typical chemical 
reactions. Accurate mass-scaling laws can help to verify whether an observed fractionation 
has a mass-independent component. In addition, theoretical calculations suggest that different 
mass-dependent fractionation mechanisms will follow slightly different mass-scaling laws, 
so that it may be possible, for instance, to distinguish kinetic and equilibrium fractionations 
(Young et al. 2002). Young et al. (2002) derived and tabulated mass-scaling laws for several 
types of kinetic and equilibrium fractionations. For equilibrium fractionations, 
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This equation follows from the Bigeleisen and Mayer (1947) expression for equilibrium 
fractionation (Eqn. 4), and is appropriate at high temperatures (h /kT  5). This relation may 
not be accurate at low temperatures, especially near “crossovers” where fractionations switch 
direction (Matsuhisa et al. 1978; Deines 2003). As the equilibrium fractionation between two 
substances becomes small near a crossover, the mass-scaling law becomes strongly temperature 
dependent, and reduced partition function ratios calculated using Equation (3) should be used 
to estimate mass scaling. For elements other than H, C, N, and O, however, high atomic mass 
and relatively low vibrational frequencies are expected to make the high-temperature mass-
scaling law accurate under most conditions. Anomalous equilibrium mass scaling has never 
been defi nitively observed, it may be most likely to occur when one equilibrated phase is a 
small, highly covalent molecule (e.g., SiC, SeO3).

For translational kinetic fractionations dependent on molecular velocities, a slightly 
different relation holds (Young et al. 2002),
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where mkXR, etc. are the masses of isotopically substituted molecules. Using the simplifi ed 
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transition state theory of Bigeleisen (1949), a somewhat more complex expression is obtained 
for fractionations controlled by activation rates,
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where XR(Rxn), jXR(Rxn) and kXR(Rxn) are the isotopic reduced masses along the relevant reaction 
coordinate. This formulation assumes that the activation energy is not signifi cantly affected 
by isotopic substitution.

CONCLUSIONS

The purpose of this chapter is to provide a concise, comprehensible introduction to the 
theory of stable isotope fractionations. While many of the fundamental principles discussed 
here have been understood for decades, applications have been limited by incomplete 
knowledge of the vibrational properties and reaction mechanisms for all but the simplest 
gas-phase molecules. Recent developments in theoretical chemistry and spectroscopy are 
widening the scope of materials and processes that can be studied, however. In particular, 
ab initio methods and transferable empirical potentials are now routinely used to model 
the vibrational properties of molecules, crystals, and aqueous species with ever increasing 
precision and reliability; these methods hold great promise for estimating unknown vibrational 
frequencies of isotopically substituted materials, and for determining potential energy surfaces 
relevant to chemical reactions. At present these developments are just beginning to be used 
to full advantage, so that there is a major gap between our ability to measure stable isotope 
fractionations and our understanding of the processes that cause fractionations to occur. New 
studies are particularly important now, as novel measurement techniques rapidly expand the 
scope of stable isotope geochemistry.
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APPENDIX: ANNOTATED BIBLIOGRAPHY OF THEORETICAL 
EQUILIBRIUM FRACTIONATIONS

A number of theoretical studies of equilibrium stable isotope fractionations in non-
traditional systems have been published, including several in journals that may be less 
familiar to interested geochemists. Here I present an annotated bibliography, which is no 
doubt incomplete but should provide a good start. To maintain some consistency in the face 
of the many formats that have been used over the years in reporting theoretically calculated 
fractionations, most results have been converted to fractionation factors in XR—X form. One 
study does not contain tabulated results (Hanschmann 1984), but is worth mentioning because 
of the quantum-mechanical force-fi eld method used to estimate vibrational frequencies. Most 
of the theoretical results reproduced here are tabulated at a few representative temperatures. 
Since fractionation factors are typically nearly linear vs. 1/T2, interpolations and extrapolations 
to higher temperatures made on this basis should be reasonably accurate. In some cases only 
a selection of the published results are given here, focusing on what appear to be the most 
relevant substances studied. Although these studies cited here use reasonable methods and 
appear to be carefully executed, critical evaluation of possible procedural, numerical, and 
typographical errors is encouraged.

GENERAL STUDIES

Urey and Greiff (1935)
This study is one of the earliest attempts to calculate equilibrium fractionation factors 

using measured vibrational spectra and simple reduced-mass calculations for diatomic 
molecules. For the sake of consistency I have converted reported single-molecule partition 
function ratios to XR-X units.

αXR-X

273.1 K 298.1 K 600 K
7Li-6Li
     LiH 1.0284 1.0251 1.0084
     Li(g) 1.0000 1.0000 1.0000

37Cl-35Cl
     Cl2 1.0088 1.0075 1.0020
     HCl 1.0050 1.0046 1.0019
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Bigeleisen and Mayer (1947)
 In this study the authors develop simplifi ed equations relating equilibrium fractionations 

to mass-scaling factors and molecular force constants. Equilibrium isotopic fractionations 
of heavy elements (Si and Sn) are predicted to be small, based on highly simplifi ed, one-
parameter empirical force-fi eld models (bond-stretching only) of SiF4, [SiF6]2–, SnCl4, and 
[SnCl6]2–.

Urey (1947)
Fractionation factors are calculated using measured vibrational spectra supplemented 

by simplifi ed empirical force-fi eld modeling (bond-stretching and bond-angle bending force 
constants only).

αXR-X

273.1 K 298.1 K 400 K 500 K 600 K
7Li-6Li
    LiH 1.0281 1.0249 1.0161 1.0113 1.0083
    Li(g) 1.0000 1.0000 1.0000 1.0000 1.0000

37Cl-35Cl
    [ClO4]– 1.0972 1.0847 1.0521 1.0353 1.0253
    [ClO3]– 1.0551 1.0478 1.0291 1.0196 1.0140
    ClO2 1.0360 1.0313 1.0185 1.0130 1.0094
    Cl2 1.0086 1.0074 1.0043 1.0028 1.0019
    HCl 1.0050 1.0046 1.0032 1.0024 1.0019

81Br-79Br
    [BrO3]– 1.0093 1.0080 1.0048 1.0032 1.0022
    Br2 1.0014 1.0012 1.0007 1.0004 1.0003
    HBr 1.0009 1.0008 1.0006 1.0004 1.0003

αXR-X

300 K
30Si-28Si
    SiF4 1.111
    [SiF6]2– 1.109

120Sn-118Sn
    SnCl4 1.00256
    [SnCl6]2– 1.0028



Schauble104

Kotaka and Kakihana (1977)
 Fractionation factors are calculated for a large variety of trigonal-planar (XY3) and 

tetrahedral (XY4) molecules and molecule-like complexes, with a particular focus on metal 
halides. Empirical force-fi eld models (MUBFF) are used to estimate vibrational frequencies 
for the rarer isotopic forms of the substances studied, and aqueous and crystalline molecule-
like species are modeled as gas-phase molecules. In the tabulation below the original 
equilibrium constants have been converted to fractionation factors ( XR-X).

αXR-X

200 K 300 K 400 K 500 K 700 K 1000 K
30Si-28Si
    [Si16O4]4– 1.1469 1.0760 1.0459 1.0305 1.0161 1.0081
    SiF4 1.1675 1.0886 1.0544 1.0365 1.0195 1.0098
    Si35Cl4 1.0930 1.0455 1.0266 1.0174 1.0090 1.0045
    Si79Br4 1.0755 1.0359 1.0207 1.0134 1.0069 1.0034
    Si127I4 1.0577 1.0270 1.0155 1.0100 1.0051 1.0025

37Cl-35Cl
11BCl3 1.0201 1.0100 1.0060 1.0039 1.0021 1.0010

   [11BCl4]– 1.0158 1.0074 1.0043 1.0028 1.0014 1.0007
12CCl4 1.0204 1.0097 1.0057 1.0037 1.0019 1.0009
28SiCl4 1.0178 1.0085 1.0050 1.0032 1.0017 1.0008
76GeCl4 1.0162 1.0076 1.0044 1.0028 1.0015 1.0007

76Ge-70Ge
   GeF4 1.0744 1.0381 1.0229 1.0151 1.0080 1.0040
   Ge35Cl4 1.0447 1.0211 1.0122 1.0079 1.0041 1.0020
   Ge79Br4 1.0352 1.0162 1.0092 1.0059 1.0030 1.0015
   Ge127I4 1.0271 1.0123 1.0070 1.0045 1.0023 1.0011

81Br-79Br
11BBr3 1.0036 1.0017 1.0010 1.0007 1.0003 1.0002

   [11BBr4]– 1.0028 1.0013 1.0007 1.0005 1.0002 1.0001
12CBr4 1.0034 1.0016 1.0009 1.0006 1.0003 1.0001
28SiBr4 1.0030 1.0014 1.0008 1.0005 1.0003 1.0001
76GeBr4 1.0027 1.0012 1.0007 1.0004 1.0002 1.0001
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Kotaka et al. (1978)
 This study uses empirical force-fi eld methods similar to those used by Kotaka and 

Kakihana (1977), with a focus on octahedral (XY6) molecules and molecule-like complexes. 
The reader is cautioned that there appear to be typographical errors in the original tabulation.

αXR-X

200 K 300 K 400 K 500 K 700 K 1000K
30Si-28Si
    [SiF6]2– 1.1432 1.0719 1.0427 1.0281 1.0147 1.0073

50Ti-46Ti
    [Ti35Cl6]2– 1.0170 1.0078 1.0043 1.0028 1.0014 1.0007
    [Ti79Br6]2– 1.0194 1.0088 1.0050 1.0032 1.0016 1.0008

76Ge-70Ge
    [GeF6]2– 1.0895 1.0438 1.0256 1.0167 1.0087 1.0043
    [Ge35Cl6]2– 1.0358 1.0164 1.0093 1.0060 1.0031 1.0015

104Ru-96Ru
    RuF6 1.0731 1.0369 1.0220 1.0145 1.0000 1.0067

130Te-120Te
    TeF6 1.0598 1.0301 1.0179 1.0117 1.0062 1.0031
    [Te35Cl6]2– 1.0093 1.0042 1.0024 1.0015 1.0008 1.0004
    [Te79Br6]2– 1.0122 1.0055 1.0031 1.0020 1.0010 1.0005

180Hf-174Hf
    [Hf35Cl6]2– 1.0031 1.0014 1.0008 1.0005 1.0003 1.0001
    [Hf79Br6]2– 1.0022 1.0001 1.0005 1.0003 1.0002 1.0001

192Os-186Os
    OsF6 1.0158 1.0080 1.0047 1.0031 1.0016 1.0008
    [Os35Cl6]2– 1.0076 1.0035 1.0020 1.0013 1.0006 1.0003

193Ir-191Ir
    IrF6 1.0062 1.0031 1.0019 1.0012 1.0006 1.0003
    [Ir35Cl6]2– 1.0017 1.0008 1.0004 1.0003 1.0002 1.0001

198Pt-192Pt
    PtF6 1.0208 1.0106 1.0063 1.0042 1.0022 1.0011
    [PtF6]2– 1.0092 1.0044 1.0026 1.0017 1.0009 1.0004
    [Pt35Cl6]2– 1.0049 1.0023 1.0013 1.0008 1.0004 1.0002
    [Pt79Br6]2– 1.0054 1.0024 1.0014 1.0009 1.0004 1.0002
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Hanschmann (1984)
S, Cl and Si-isotope fractionations for gas-phase molecules and aqueous molecule-

like complexes (using the gas-phase approximation) are calculated using semi-empirical 
quantum-mechanical force-fi eld vibrational modeling. Model vibrational frequencies are 
not normalized to measured frequencies, so calculated fractionation factors are somewhat 
different from fractionations calculated using normalized or spectroscopically determined 
frequencies. There is no table of results in the original publication.

Bochkarev et al. (2003)
Li, Mg and Cl-isotope fractionations for gas-phase molecules and aqueous molecule-

like complexes (using the gas-phase approximation) are calculated using ab initio vibrational 
modeling. The results below are calculated using Hartree-Fock quantum mechanical modeling. 
Model frequencies have not been normalized to spectroscopically measured frequencies, 
resulting in a probable overestimate of fractionation factors—compared for instance with 
Urey (1947). For consistency, results have been converted from the original format (ln ) to 

XR-X.

αXR-X

300 K
7Li-6Li
    LiH 1.0252
    LiF 1.0761

26Mg-24Mg
    MgO 1.0164
    MgH 1.0041
    MgF 1.0148

37Cl-35Cl
    [ClO4]– 1.0934
    [ClO3]– 1.0637
    ClO2 1.0423
    Cl2 1.0087
    HCl 1.0050
    NaCl    1.0024
    LiCl 1.0030
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ELEMENT-SPECIFIC STUDIES

Lithium
Yamaji et al. (2001)
Fractionation factors for Li-H2O clusters are calculated using ab initio vibrational models, 

in the gas-phase approximation. Vibrational frequencies in this system are largely unknown, 
and the few that have been measured are contentious. In the absence of reliable experimental 
constraints, Hartree-Fock model ab initio vibrational frequencies are normalized using a 
scaling factor of 0.8964. It is generally thought that aqueous lithium is coordinated to four 
water molecules (Rudolph et al. 1995). The authors speculate that 6-coordinate lithium in 
adsorbed or solid phases will have lower 7Li/6Li than coexisting aqueous Li+.

Chromium 
Schauble et al. (in press)
Fractionations ( -factors) calculated for aqueous molecule-like complexes and anhydrous 

crystalline Cr-metal and Cr2O3, using multiple empirical and ab initio force-fi eld vibrational 
models as well as measured vibrational spectra of isotopically substituted species. Only 
best-estimate results are listed here. The authors predict high 53Cr/52Cr ratios in oxidized 
[CrO4]2– relative to Cr3+-bearing species like [Cr(H2O)6]3+ and Cr2O3, and lower 53Cr/52Cr in 
species with Cr-N or Cr-Cl bonds than in structurally similar species with Cr-O bonds. The 
results also suggest a strong correlation between short bond lengths and high 53Cr/52Cr ratios 
at equilibrium.

αXR-X

273.15 K 298.15 K 373.15 K 573.15 K
53Cr-52Cr
    [CrCl6]3– 1.0040 1.0034 1.0022 1.0009
    [Cr(NH3)6]3+ 1.0061 1.0052 1.0034 1.0015
    [Cr(H2O)6]3+ 1.0080 1.0069 1.0045 1.0020
    [CrO4]2– 1.0156 1.0135 1.0092 1.0042
    Cr-Metal 1.0041 1.0034 1.0022 1.0009
    Cr2O3 1.0076 1.0065 1.0043 1.0019

αXR-X

298 K
7Li-6Li
    [Li(H2O)4]+ 1.064
    [Li(H2O)4]+•2H2O 1.072
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Chlorine
Schauble et al. (2003)
Fractionations for gas-phase molecules and aqueous perchlorate (gas-phase 

approximation) calculated using ab initio force-fi eld vibrational models normalized to 
measured frequencies. Fractionation factors are also calculated for crystalline chlorides using 
empirical force fi elds. Includes an indirect model of aqueous Cl– ( Cl–(aq)-Cl  1.0021–1.0030 
at 295K) based on measured NaCl–Cl–(aq) and KCl–Cl–(aq) fractionations (Eggenkamp et al. 
1995) and the theoretically estimated XR-X for NaCl and KCl.

αXR-X

153 K 173 K 193 K 233 K 273 K 298 K 373 K 473 K 673 K 1273 K
37Cl-35Cl Molecules
Cl2 1.0227 1.0187 1.0157 1.0114 1.0087 1.0074 1.0049 1.0031 1.0016 1.0005
HCl 1.0099 1.0087 1.0077 1.0062 1.0052 1.0047 1.0036 1.0027 1.0017 1.0006
C2Cl4 1.0334 1.0273 1.0227 1.0164 1.0124 1.0106 1.0070 1.0045 1.0023 1.0007
C2HCl3 1.0310 1.0254 1.0213 1.0154 1.0117 1.0100 1.0067 1.0043 1.0022 1.0006
CCl3F 1.0337 1.0274 1.0228 1.0163 1.0123 1.0104 1.0069 1.0044 1.0022 1.0006
CCl4 1.0325 1.0264 1.0218 1.0156 1.0117 1.0099 1.0065 1.0041 1.0021 1.0006
CHCl3 1.0294 1.0241 1.0201 1.0146 1.0110 1.0094 1.0063 1.0040 1.0020 1.0006
CH2Cl2 1.0267 1.0221 1.0187 1.0138 1.0106 1.0091 1.0061 1.0040 1.0020 1.0006
CH3Cl 1.0243 1.0205 1.0175 1.0131 1.0102 1.0088 1.0060 1.0039 1.0020 1.0006

273 K 298 K 373 K 573 K
Crystals
NaCl 1.0039 1.0033 1.0021 1.0009
KCl 1.0030 1.0025 1.0016 1.0007
RbCl 1.0028 1.0023 1.0015 1.0006
FeCl2 1.0067 1.0056 1.0036 1.0015
MnCl2 1.0062 1.0052 1.0034 1.0014
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Iron
Polyakov (1997), Polyakov and Mineev (2000)
57Fe/54Fe fractionations ( -factors) are calculated for a range of iron-bearing minerals and 

crystal phases by modeling Mössbauer spectroscopic data. The ability of Mössbauer methods 
to characterize trace amounts of iron allows modeling of solid-solution effects and complex 
mineral species. The authors predict measurable fractionations between common mineral 
species, including a general enrichment of heavy iron isotopes in Fe3+ bearing minerals. 
Selected results from the more recent paper are reproduced here—these appear to recapitulate 
the earlier results. Results are tabulated in the form of a polynomial expansion vs. inverse 
temperature,

 1000•ln XR-R = B1x – B2x2 + B3x3, x = 106/T2

57Fe-54Fe B1 B2 B3

Iron metal 0.69964 0.001476 0.000004845
Hematite Fe2O3 0.98684 0.002937 0.000013597
Magnetite Fe3O4  (A site) 1.74563 0.009190 0.000075260
                            (B site) 1.28250 0.004961 0.000029846
Goethite FeOOH 0.78168 0.001843 0.000006758
Akaganeite FeOOH  (A site) 1.35089 0.005504 0.000034880
                                  (B site) 0.94776 0.002709 0.000012050
Lepidocrocite FeOOH 0.72987 0.001607 0.000005501
Spinel Mg0.9Fe0.1Al2O4 0.45632 0.000628 0.000001344
Ilmenite FeTiO3 0.37934 0.000434 0.000000772
Ferrochromite FeCr2O4 0.42987 0.000557 0.000001124
Periclase MgO:Fe 0.60395 0.001087 0.000003062
Diopside Ca1.03Mg0.64Fe0.31Si1.94O6   (A site) 1.17247 0.004146 0.000022804
                                                        (B site) 0.48355 0.000705 0.000001560
Hedenbergite CaMg0.15Mn0.03Fe0.76Al0.03Si3O6 0.46984 0.000666 0.000001467
Aegirine NaFeSi2O6 1.15105 0.003996 0.000021577
Enstatite Mg1.95Fe0.05Al0.05Si1.96O6   (A site) 0.49747 0.000746 0.000017420
                                                       (B site) 0.49747 0.000746 0.000017420
Enstatite Mg1.65Fe0.27Al0.03Si2.02O6   (A site) 0.42987 0.000557 0.000001124
                                                       (B site) 0.66355 0.001328 0.000004134
Olivine (Mg,Fe)2SiO4 0.57000 0.000980 0.000002620
Monoclinic Chloritoid Al1.98Fe0.94Mn0.10SiO5(OH)2 0.42987 0.000557 0.000001124
Triclinic Chloritoid Al1.95Fe0.75Mn0.23Mg0.13SiO5(OH)2 0.45632 0.000628 0.000001344
Pyrite FeS2 1.46882 0.006506 0.000044835
Nickel Sulfi de Ni1-xFexS2 1.23789 0.004621 0.000026839
Ankerite CaFe0.5Mg0.5(CO3)2 0.35526 0.000381 0.000000634
Ankerite Ca1.1Fe0.3Mg0.5Mn0.1(CO3)2 0.48355 0.000705 0.000001560
Siderite FeCO3 0.55510 0.000929 0.000002420



Schauble110

Schauble et al. (2001)
56Fe/54Fe fractionations ( -factors) are calculated for aqueous molecule-like complexes, 

using empirical force-fi eld (MUBFF) vibrational models. Materials studied include Fe-H2O
and Fe-Halide complexes with tetrahedral and octahedral geometries, cyano-complexes, and 
iron metal. These calculations predict measurable fractionations between aqueous species, 
governed by the oxidation state of iron (Fe3+ – high 56Fe/54Fe, Fe2+ – low 56Fe/54Fe), and covalent 
bonding strength of bond partners (CN–, H2O – high 56Fe/54Fe, Cl–, Br– – low 56Fe/54Fe). The 
calculations also suggested signifi cant coordination-number effects (4-fold coordination 
– high 56Fe/54Fe, 6-fold coordination – low 56Fe/54Fe). Results for Fe-metal and ferrocyanide 
complexes (not shown here) generally agree with earlier Mössbauer-based models (Polyakov 
1997; Polyakov and Mineev 2001).

αXR-X

273.15 K 298.15 K 373.15 K 473.15 K 573.15 K
56Fe-54Fe
    [Fe(H2O)6]3+ 1.0137 1.0117 1.0076 1.0048 1.0033
    [FeCl4]– 1.0085 1.0072 1.0047 1.0029 1.0020
    [FeBr4]– 1.0076 1.0064 1.0041 1.0026 1.0018
    [Fe(H2O)6]2+ 1.0073 1.0062 1.0040 1.0025 1.0017
    Fe-metal 1.0063 1.0053 1.0034 1.0021 1.0015
    [FeCl4]2– 1.0048 1.0040 1.0026 1.0016 1.0011
    [FeCl6]3– 1.0046 1.0038 1.0025 1.0015 1.0011
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Anbar et al. (in press)
56Fe/54Fe fractionations ( -factors) are calculated for the aqueous Fe2+ and Fe3+ complexes 

[Fe(H2O)6]2+ and [Fe(H2O)6]3+, using hybrid density functional theory (DFT). Ab initio model 
frequencies are not scaled. The high electric charge of these complexes and the strong tendency 
of bonded water molecules to form hydrogen bonds can make gas-phase models of aquo-
complexes like these inaccurate. Anbar et al. correct for these effects using an implicit model 
of the bulk solvent. In the implicit solvation models, the solvent (i.e., water not directly bonded 
to the central metal cations) is treated as a polarizable, dielectric continuum. This polarizable 
continuum model (PCM) improves the match between model and experimental molecular 
structures and vibrational frequencies, and probably yields more reliable fractionation 
estimates. However, there is still substantial disagreement (>100 cm–1) with measured O-Fe-O 
bending frequencies in [Fe(H2O)6]3+, possibly suggesting an error in the original spectroscopic 
interpretation. Calculated fractionations involving [Fe(H2O)6]3+ appear to agree more closely 
with experiments than the MUBFF-based calculation of Schauble et al. (2001), mainly 
because of the different O-Fe-O vibrational frequencies used by these authors.

αXR-X

273 K 283 K 298 K 323 K 373 K 473 K 573 K
56Fe-54Fe
DFT (PCM solvent)
    [Fe(H2O)6]3+ 1.0108 1.0101 1.0092 1.0079 1.0060 1.0038 1.0026
    [Fe(H2O)6]2+ 1.0079 1.0074 1.0067 1.0058 1.0044 1.0028 1.0019
DFT (gas phase)
    [Fe(H2O)6]3+ 1.0112 1.0104 1.0095 1.0082 1.0062 1.0040 1.0028
    [Fe(H2O)6]2+ 1.0077 1.0072 1.0066 1.0057 1.0043 1.0028 1.0019

Selenium
Krouse and Thode (1962)
Fractionations are calculated for a number of gas-phase molecules and aqueous ions 

(treated as gases) using measured vibrational spectra and empirical force fi eld calculations.

αXR-X

273.15 K 298.15 K 373.15 K 523.15 K
82Se-76Se
    SeF6 1.059 1.051 1.034 1.019
    [SeO4]2– 1.044 1.038 1.023 1.014
    Se2 1.012 1.011 1.007 1.004
    SeO(g) 1.009 1.008 1.005 1.003
    H2Se(g) 1.005 1.005 1.003 1.002
    PbSe(g) 1.005 1.004 1.003 1.001
    Se–(g) 1.000 1.000 1.000 1.000




