УДК 550.42

ИЗОТОПНЫЙ СОСТАВ УГЛЕРОДА И КИСЛОРОДА В КАРБОНАТАХ ДОКЕМБРИЙСКИХ АПАТИТОНОСНЫХ КАРБОНАТНЫХ ПОРОД. АЛДАНСКИЙ ЩИТ

© 2004 г. В. Н. Гулий, Х. Вада*

Украинский государственный геологоразведочный институт Украина, 04114 Киев, ул. Автозаводская, 78 E-mail: vguliy@hotmail.com; E-mail:vgul@ukr.net * Институт геологических наук, Университет Шизуока 836 Oya Shizuoka, 422-8529 Japan Поступила в редакцию 10.04.2002 г.

Рассмотрены геолого-структурное положение, вещественный и изотопный состав различных пространственно разобщенных месторождений и апатитопроявлений Алданского щита, сложенных метаосадочными апатит-карбонатными породами докембрия. По изотопному составу углерода и кислорода карбонатов они отличаются от других типов карбонатных пород щита, включая карбонатиты и Ca-Mg метасоматиты, и подобны осадочным карбонатам фанерозоя и докембрия. Их образование происходило в окислительных условиях, а прямым свидетельством роли эвапоритовых процессов на разных стадиях их формирования, в дополнение к выявленному обогащению изотопом ¹³С карбонатов, является присутствие сульфатов. Установлено, что апатит-карбонатные породы представляют собой продукт сложного чередования процессов седиментогенеза при разных режимах солености бассейнов, иногда с разрушением уже образованных осадков в субаэральных условиях.

Первично-осадочные карбонатные породы являются обычными образованиями в метаморфических комплексах докембрия, хотя их доля в общем объеме докембрийских толщ невелика и, по данным различных исследователей, не превышает нескольких процентов. Они обычно используются как маркеры важных геоисторических рубежей, сопряженных с изменением положения динамического равновесия палеоокеана с осадками и атмосферой, с вариациями режима кислорода и углекислоты, соотношений кальция и магния и т.д. С карбонатными породами в пространственном и, иногда, генетическом отношении связана промышленная минерализация: к протоэвапоритовым карбонатным толщам Гренвиллской серии Канадского щита приурочены стратиформные свинцово-цинковые месторождения [Whelan et al., 1990], с доломитами Сино-Корейского щита ассоциируют магнезитовые месторождения [Со Вар Сон и др., 1989], в магнезитах и доломитах горанской свиты Памира локализованы месторождения лазурита, шпинели и рубина [Киселев, 1977], появление целого ряда неметаллических полезных ископаемых в Прибайкалье обусловлено карбонатным седиментогенезом [Вишняков и др., 1981].

Практически на всех докембрийских щитах в связи с карбонатными породами известна и апатитовая минерализация: в слюдянской серии Прибайкалья (месторождения Обруб и Слюдянское) [Юдин, Арсеньев, 1970], на Сино-Корейском щите [Маракушев, 1968], на Северо-Китайской платформе (месторождения группы Сасонг) [Sang, You, 1988], в Гренвиллской серии Канадского щита [Currie, 1951], в комплексе Караиба Бразилии [Signinolfi et al., 1980], в Оазис мраморе Австралии [McNaughton, Wilson, 1983] и т.д. Ĥa Алданском щите открыто и разведано месторождение апатита Селигдар и ряд аналогичных проявлений (участки Мустолаах, Нирянджа, Бирикээен и др.), которые приурочены к карбонатным и известково-силикатным породам, относимым к федоровской свите или к ее одновозрастным аналогам [Виноградов и др., 1975; Булах и др., 1990; Гулий, 1995]. С развитием апатитовой минерализации в карбонатных породах связаны представления некоторых исследователей о генетической связи карбонато- и фосфатонакопления [Юдин, 1981]. Вместе с тем, детальное изучение геологического положения и вещественного состава всех типов карбонатных пород Алданского щита показало, что они неоднородны, и только в части из них наблюдаются промышленные содержания фосфора. Богатые апатитом карбонатные породы щита отличаются от других высоким отношением окисного железа к закисному и наличием редких, а то и чуждых для карбонатных пород других типов, ассоциаций минералов, включая сульфаты, что заставляет полагать их образование в особых условиях [Гулий, 1994].

Проведенные нами ранее [Гулий, 1994, 1995] изотопные исследования карбонатов всех генети-

Рис. 1. Схема расположения месторождений Алданского щита.

I – Селигдар, 2 – Нирянджа, 3 – Дорожный, 4 – Мустолаах, 5 – Тагнарар, 6 – Левый Бурный, 7 – Бирикээн, 8 – Чукурдан.
1 – метаморфизм высокой ступени: а – промежуточная между гранат-кордиерит-биотитовой и гранат-кордиерит-ги-перстеновой фациями, б – гиперстен-силлиманитовая фация; 2 – переходные метаморфические фации; 3 – метаморфизм относительно низких ступеней: а – гранулитовая фация, б – амфиболитовая фация [Кицул и др., 1979].

ческих типов карбонатных пород Алданского щита показали, что апатит-карбонатные породы выделяются среди них как по изотопному составу углерода, так и кислорода. Особенно резко они отличаются от карбонатитов и Са-Мд метасоматитов [Кулешов, 1986]. В свою очередь, апатиткарбонатные породы тоже неоднородны и представлены несколькими разновидностями, минеральный состав и масштабы распространения которых варьируют в пространственно разобщенных участках. В настоящей статье, приведены результаты систематического изучения изотопного состава углерода и кислорода карбонатов из выделяемых типов апатит-карбонатных пород и руд большинства апатитовых месторождений и проявлений щита и сделаны выводы о возможных условиях их образования.

ОСОБЕННОСТИ ГЕОЛОГО-СТРУКТУРНОГО ПОЛОЖЕНИЯ И ВЕЩЕСТВЕННОГО СОСТАВА АПАТИТ-КАРБОНАТНЫХ ПОРОД АЛДАНСКОГО ЩИТА

Геолого-структурное положение апатит-карбонатных пород

Апатит-карбонатные породы Алданского щита распространены на месторождениях апатита селигдарского типа, где они часто ассоциируют с апатитоносными диопсидовыми и хлоритовыми породами, являющимися, в свою очередь, обычными рудами месторождений апатита ханинского типа [Гулий, 1989]. Апатит-карбонатные породы изучались нами на участках Селигдар, Нирянджа, Мустолаах, Тагнарар, Трубка, Дорожный, Усть-Чульман, Бирикээн, Чукурдан, Левый Бурный и Хаюмкан, схема расположения большинства из которых показана на рис. 1.

Наибольшие масштабы апатитового оруденения характерны для месторождения Селигдар, в пределах которого выделяется опрокинутая синклинальная складка [Булах, Золотарев, 1983], сложенная пачками многократного, согласного переслаивания гнейсов и кристаллических сланцев с кальцифирами, мраморами, диопсидовыми и апатит-карбонатными породами федоровской свиты. Мощность отдельных прослоев варьирует от первых сантиметров до нескольких десятков метров. В промышленном контуре месторождения число и мощность пластов апатит-карбонатных пород значительно возрастает, указывая на первичную мощность толщи переслаивания примерно в 600 м [Булах и др., 1990]. Балансовые запасы Р₂О₅ существенны и составляют 85.6 млн т, а прогнозные ресурсы месторождения на всю глубину разведки (до 1600 м) оцениваются в 200 млн т Р₂О₅ [Энтин и др., 1987].

К югу от Селигдарского месторождения в апатитоносной толще пород федоровской свиты выявлен целый ряд участков с апатитовой минерализацией, не имеющей промышленного значения, и месторождения Ниряджа и Нимгеркан (см. рис. 1), запасы P₂O₅ которых измеряются первыми млн тонн [Энтин и др., 1987]. Для них характе-

рен силикатный тип разреза с преобладанием гнейсов и кристаллических сланцев, согласно переслаивающихся с линзовидно-пластовыми телами апатит-карбонатных пород, мощностью от первых метров до первых десятков метров. На месторождении Нирянджа среди апатитоносных пород широко развиты кварц-карбонатные разновидности, бедные апатитом, а в собственно карбонатных разновидностях пород часто присутствует обломочный апатит [Гулий и др., 1999].

Еще южнее Селигдарского месторождения, в бассейне рек Б. Нимныр и Хардогас (см. рис. 1), в сохранившихся от эрозии участках количество отдельных рудных тел и мощности апатитоносных карбонатных, диопсидовых и гематит-хлоритовых пород возрастают, и в пределах участков Мустолаах и Дорожное они преобладают над переслаивающимися с ними гнейсами и кристаллическими сланцами федоровской свиты. Количественные соотношения типов апатитоносных пород в этих месторождениях варьируют: на участке Дорожное диопсидовых разновидностей нет, на месторождении Мустолаах они составляют до 20% от всего объема пород и преобладают на месторождении Тагнарар. Рудные тела месторождения Мустолаах имеют пластовую и линзовидную форму и мощность до 200 м. На месторождении Тагнарар мощность рудных тел не превышает 50 м. По общим запасам Р₂О₅ месторождения Мустолаах и Дорожный отнесены к мелким. Запасы Р₂О₅ на месторождении Тагнарар совсем незначительные.

Месторождения Бирикээн, Чукурдан и Левый Бурный по запасам Р2О5 являются также мелкими. Они расположены в бассейне р. Тимптон (см. рис. 1), где залегают в относящейся к горбыляхской свите [Реутов, 1981] толще согласного переслаивания гнейсов и кристаллических сланцев с апатитоносными силикатными и карбонатными породами. На глубине, так же как и по простиранию, от месторождения к месторождению наблюдается резкое колебание мощностей отдельных типов пород, варьирующих от нескольких метров до первых сотен метров [Гулий, 1995]. На месторождении Чукурдан апатитоносными являются карбонатные, диопсидовые и гематито-хлоритовые породы, а западнее, на месторождении Бирикээн, преимущественным развитием пользуются апатит-карбонатные породы с мощностью прослоев от нескольких десятков до первых сотен метров. Еще западнее от них, на месторождении Левый Бурный, распространены маломощные (метры и первые десятки метров) диопсидовые и карбонатные апатитоносные породы, которые часто сопровождаются участками обогащения обломочным апатитом [Гулий, Рид, 1999]. Расположенные в этом же направлении (в устье р. Усть-Чульман) и к югу от месторождения Левый Бурный крайние участки площади (участок Хаюмкан) представлены маломощными (до 2 м) телами карбонатных пород.

Согласное переслаивание апатит-карбонатных руд и силикатных метаморфических пород в пределах месторождения и его окружения показывает, что геологический возраст апатитоносных карбонатных пород одинаков с возрастом окружающих его гнейсов и кристаллических сланцев. Радиологические датировки по апатиту из апатит-доломитовых руд и по флогопиту из кристаллических сланцев Селигдарского месторождения примерно одинаковы – 1.8–2.0 млрд лет [Булах и др., 1990], что соответствует более ранним определениям [Тугаринов и др., 1977] возраста апатитового оруденения в целом для Алданского щита. Для апатита, извлеченного нами из апатиткарбонатных и апатит-силикатных пород различных месторождений щита, изохронным Pb-Pb методом получен аналогичный возраст [Пушкарев и др., 1989].

Особенности вещественного состава апатит-карбонатных пород

Нами изучены апатит-карбонатные породы нескольких групп. Во-первых, это собственно апатит-карбонатные породы (руды), развитые в контуре рудного тела Селигдарского месторождения и других, подобных ему, пространственно разобщенных апатитопроявлений щита. Вторая группа представлена апатит-карбонатными и апатит-сульфат-карбонатными породами, подстилающими рудное тело месторождения Селигдар. Третью исследованную группу составляют переходные от апатит-карбонатных к апатит-силикатным типам апатит-силикат-карбонатные разновидности. Кроме того, для сравнения были использованы оригинальные результаты изучения изотопного состава более поздних жильных и гнездовидных карбонатных выделений, сопровождающих пластовые рудные тела, и доломитов юдомской свиты, перекрывающих апатитовые месторождения.

Собственно апатит-карбонатные породы выделяются внешне среди других пород характерной желтовато-розовой и темно-коричневой до бурой окраской, обусловленной их пигментацией тонкодисперсным гематитом. Обычно это неравномернозернистые породы, которые в зависимости от количества апатита и второстепенных минералов и характера их распределения отличаются массивной, пятнистой или полосчатой текстурами. Наиболее распространенными среди них являются массивные апатит-карбонатные разновидности, сложенные чаще всего апатитом и карбонатами (доломитом и/или кальцитом), с малой долей силикатов, мартита, кварца и сульфатов (табл. 1, 2). В участках пород с пятнистой текстурой количество второстепенных минералов боль-

	Апатитоносные карбонатные породы и руды						
Минералы	Доломитовые	Кальцитовые	Мартито-кварце- во-карбонатные	Сульфатно-кар- бонатные	Силикатно-кар- бонатные		
Апатит	5.1	10.6	21.2	4.7	24.9		
Карбонаты	87.9	73.2	49.0	73.4	20.3		
Слоистые гидросили- каты магния	_	2.1	6.2	2.0	36.6		
Флогопит и другие слюды	1.2	1.0	1.0	0.4	_		
Оксиды железа	1.9	3.3	8.8	1.8	12.4		
Кварц	1.3	7.2	8.4	_	3.1		
Сульфаты	-	1.5	2.5	17.0	0.5		
Полевой шпат	2.6	1.1	2.9	0.7	2.2		
Сумма	100	100	100	100	100		

Таблица 1. Минеральный состав природных геологических разновидностей апатитовых руд Селигдарского месторождения (об. %)

Примечание. Прочерк – минерал не обнаружен.

Таблица 2.	Минеральный с	остав апатитоносных	докембрийских в	карбонатных і	пород Алдансі	кого щита (об	5. %)
------------	---------------	---------------------	-----------------	---------------	---------------	---------------	-------

Участок Породы		№ проб	Минералы						
		J∿ npoo	Апатит	Карбонаты	Хлорит	Мартит	Кварц	Диопсид	
Нирянджа	Кварц-карбо-	3/2488	1.2	37.0	_	_	62.0	_	
	натные	3/3045	8.7	61.0	-	-	30.3	-	
	Карбонатные	3/2419	6.7	88.0	4.0	-	1.3	-	
		3/2775	23.3	70.0	6.7	-	-	-	
Дорожный		K-1	8.7	84.0	7.3	-	-	-	
		K-2	22.5	58.0	14.0	1.5	4.0	-	
Мустолаах		44348	36.0	64.0	-	-	-	-	
		44343	1.6	98.4	-	-	-	-	
		8	1.7	88.3	10.0	-	-	-	
	Силикат-кар-	10	72.2	6.4	13.4	_	8.0	_	
	бонатные	9	3.4	56.6	40.0	-	-	-	
		X-9A	8.5	10.0	81.5	-	-	-	
Тагнарар		500/18	18.3	54.5	-	-	-	27.2	
Бирикээн		T103-3	11.0	68.5	20.4	0.1	-	-	
Чукурдан		ЧуК-20	5.1	31.6	-	-	_	63.3	
	Карбонатные	ЧуК-10	19.2	77.7	3.1	-	-	_	

Примечание. См. табл. 1.

ше, что позволяет выделить, соответственно, силикат-карбонатные, кварц-доломитовые, мартитдоломитовые и сульфат-карбонатные разновидности [Булах, Золотарев, 1983; Булах и др., 1990; Гулий, 1995]. Названные в таком порядке они обычно отражают относительную геологическую последовательность образования и уменьшения в них содержания апатита. Все перечисленные разновидности одновременно проявлены на месторождении Селигдар (см. табл. 1), тогда как на других участках наиболее развиты только собственно апатит-карбонатные и богатые силикатами и кварцем вариететы (см. табл. 2). Кроме Селигдарского месторождения, богатые мартитом породы встречаются локально лишь на участках Бирикээнской площади [Гулий, 1995], а сульфаты

Marronomete	№ проб						
минералы	407/53515	407/53518	408/52861	410/1293	410/1959		
Апатит	47.5	20.0	46.5	1.4	3.7		
Доломит	15.0	58.6	45.0	_	1.4		
Кальцит	26.0	1.4	_	4.0	86.4		
Тремолит	-	_	-	66.3	-		
Хлорит	10.0	1.0	5.0	15.0	1.2		
Тальк	-	_	-	2.0	-		
Магнетит	-	5.4	3.5	11.3	-		
Пирит	1.5	_	-	_	4.1		
Шпинель	_	7.1	-	-	-		
Клиногумит	_	5.2	-	-	-		
Ангидрит	-	_	-	_	3.2		
Серпентин	-	0.9	-	_	-		
Эпидот	_	0.4	-	-	_		
Сумма	100.0	100.0	100.0	100.0	100.0		

Таблица 3. Минеральный состав апатитоносных карбонатных пород Верхнеселигдарского участка (об. %)

Примечание. См. табл. 1.

обнаружены спорадически на глубинах более ста метров в керне скважин на месторождениях Мустолаах и Чукурдан.

Апатит-доломитовые и апатит-сульфат-карбонатные породы второй группы имеют серовато-зеленый цвет и массивную или пятнистую текстуру. Они вскрыты вне контура рудного тела месторождения Селигдар скважинами № 407–410. Как и руды, эти породы сложены апатитом, карбонатами, часто сульфатами, но отличаются от них наличием шпинели, хондродита, флогопита и др. (табл. 3) и отсутствием тонкодисперсного гематита.

Апатит-силикат-карбонатные породы вскрыты в нескольких местах (скв. № 23, СИГ2 и др.) на месторождении Селигдар и встречаются постоянно на месторождениях Тагнарар и Чукурдан. В отличие от апатит-карбонатных пород в них присутствует магнетит, обусловивший низкое отношение Fe³⁺/Fe²⁺, свидетельствующее об относительно более восстановительной среде их образования.

ИЗОТОПНЫЕ ИССЛЕДОВАНИЯ И ИНТЕРПРЕТАЦИЯ РЕЗУЛЬТАТОВ

Методика изотопных исследований

Анализ изотопов кислорода и углерода в валовых пробах карбонатов выполнен в Лаборатории стабильных изотопов Института литосферы (Москва). Для выделения CO₂ из карбонатов применен PbCl₂ метод [Борщевский и др., 1974]. Измерения относительной разности изотопных отношений кислорода и углерода в $CO_2(газ)$ выполнены на изотопном масс-спектрометре Varian MAT-250. При масс-спектрометрических измерениях в качестве рабочего стандарта использовался лабораторный стандарт CO_2 . Точность измерения $\delta^{13}C$ в валовых пробах составляла $\pm 0.1\%$, а $\delta^{18}O - \pm 0.2\%$. При расчетном определении значений $\delta^{13}C_{oбp}$ /PDB и $\delta^{18}O_{oбp}$ /SMOW учтена "поправка Крейга" и кислородная поправка при определении $\delta^{13}C_{oбp}$ /PDB.

Определения изотопного состава углерода и кислорода в отдельных зернах карбонатов выполнены в Университете г. Шизуока с использованием специального метода для микропроб [Wada, 1988] на масс-спектрометре Finnigan MAT-250, оборудованном дополнительной системой напуска микроколичеств пробы с трактом охлаждения (п-пентан/жидкий азот) для вымораживания паров воды. Рабочий стандарт был калиброван относительно NBS-20 кальцитового стандарта. Воспроизводимость измерений δ¹³С составляла 0.03‰, а δ¹⁸О – 0.05‰.

Из доломита, анкерита и других карбонатов, относительно устойчивых к фосфорной кислоте, $CO_2(газ)$ извлекался в ходе реакции карбонатов с концентрированной фосфорной кислотой в 9 мм пирексной вакуумированной трубке, погруженной в масляную баню при температуре 100°С [Nagai, Wada, 1993]. Граничный объем порошковых проб, использованных при такой методике, определен предварительным анализом двух стандартов кальцита и доломита. Установлено [Nagai, Wada, 1993], что анализ более чем 10 мкл $CO_2(газ)$ может иметь такую же точность, как пробы

обычного объема, но при меньших количествах CO₂(газа) ошибки определений увеличиваются.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Результаты изотопных исследований карбонатов из валовых проб приведены в значениях δ относительно стандарта PDB для углерода и стандарта SMOW для кислорода (табл. 4 и 5). На диаграмме $\delta^{13}C-\delta^{18}O$ (см. рис. 2), построенной по данным валовых и микрообъемных проб, фигуративные точки изотопного состава карбонатов из апатит-карбонатных пород всех месторождений апатита образуют довольно обширное поле с разбросом значений δ^{13} С от -0.5% до +5.5%, δ^{18} О от +13.6% до +22.2%, отчетливо выделяясь на фоне полей фигуративных точек изотопного состава карбонатов из лишенных апатита пород фундамента (мраморов и кальцифиров) и известняков юдомской свиты. Значительный разброс величин $\delta^{13}C$ и $\delta^{18}O$ в карбонатах из апатит-карбонатных пород связан с заметными вариациями минерального и химического состава их отдельных разновидностей в пространственно разобщенных месторождениях.

Значения δ^{13} С в карбонатах из пластовых тел карбонатных пород месторождения Селигдар и его окружения положительные, тогда как в карбонатах из сопровождающих их прожилков и гнезд чаще всего выявлены отрицательные величины δ^{13} С.

Для карбонатов из апатитоносных кальцифиров и мраморов, подстилающих рудное тело Селигдарского месторождения (участок Верхний Селигдар), отмечаются обычно положительные значения δ^{13} С, чем они отличаются от мраморов и кальцифиров, развитых вне апатитовых месторождений. Карбонаты из кальцифиров Селигдарского месторождения по сравнению с карбонатами из руд заметно беднее тяжелым изотопом кислорода (δ^{18} O = 9.6–14.8‰, SMOW).

Изотопный состав углерода и кислорода карбонатов из отдельных разновидностей апатиткарбонатных пород Седигдарского месторождения в целом близок (см. табл. 4), но среди них выделяются апатит-силикат-карбонатные разновидности, карбонат которых обычно богаче изотопом ¹³C ($\delta^{13}C_{cp.} = +2.3\%$, PDB), но обеднен изотопом ¹⁸O (проба ИК-21 – $\delta^{18}O = 13.6\%$, SMOW), чем он близок к величинам $\delta^{18}O$ в карбонатах из развитых здесь кальцифиров. Изотопные микромасштабные исследования анкерита одного из наиболее ранних карбонатов апатит-силикат-карбонатных пород показали (рис. 3а) еще более высокие значения $\delta^{13}C$ (до + 3.78‰, PDB) при обычных для других разновидностей апатитоносных пород величинах $\delta^{18}O$. Таблица 4. Изотопный состав углерода и кислорода карбонатов из различных типов апатит-карбонатных пород Селигдарского апатитового месторождения

	Морфоло-	No	Изотопный состав		
Породы	оды гический тип		δ ¹³ C, %0 PDB	δ ¹⁸ O, % <i>o</i> SMOW	
Апатит-кварц-	Пласто-	ИК 19	+1.6	+20.4	
карбонатные	вые тела	ИК 20	+1.1	+20.0	
Апатит-сили-	»	ИК 21	+2.9	+13.6	
кат-карбонат-	»	ИС 70	+1.8	+19.3	
ные	»	ИК 31	+3.1	+19.1	
Апатит-карбо-	»	ИК 22	+1.7	+20.8	
натные	»	ИК 24	+0.7	+18.1	
	»	ИК 26	+2.3	+19.4	
	»	ИК 28	+2.4	+16.2	
Кальцифиры	»	ИК 34	+1.5	+12.5	
	»	ИК 15	+1.0	+14.8	
	»	ИК 32	+1.7	+9.6	
Мраморы	»	ИС 40	-0.3	+20.1	
	»	ИС 38	+0.6	+21.1	
	»	ИК 16	-1.4	+17.6	
	»	ИК 18	+0.1	+19.9	
	»	ИК 17	+0.5	+18.8	
Поздние	Прожилок	ИК 30	-1.5	+17.0	
карбонаты	»	ИК 29	+1.9	+18.1	
	Гнездо	ИК 27	-2.6	+11.5	
	»	ИК 25	-0.5	+22.5	
	»	ИК 23	-1.1	+16.4	
	»	ИC 15	-1.2	+19.2	

Микромасштабными изотопными исследованиями анкерита из апатит-сульфат-карбонатных разновидностей выявлены на 1–2‰ меньшие значения δ^{13} С (см. рис. 3б) по сравнению с анкеритом из силикат-карбонатных разновидностей, и на 1– 2‰ большие величины δ^{18} О. Доломит и кальцит из сульфатсодержащих минеральных ассоциаций в мраморах отличаются от анкерита из сульфаткарбонатных руд Селигдара более низкими (на 1–2‰) значениями δ^{13} С (см. табл. 4).

Фигуративные точки изотопного состава карбонатов из пластовых тел апатит-карбонатных пород различных месторождений на диаграмме δ^{13} C– δ^{18} O (рис. 4) образуют отдельные поля, частично или полностью перекрывающие друг друга. При этом наиболее высокие значения δ^{13} C (+4.4‰, PDB) выявлены в валовых пробах карбонатов месторождения Чукурдан, а наиболее низкие (–0.5‰, PDB) – в доломите из месторождения Мустолаах (см. табл. 5). Тяжелым изотопом ¹³C богаты также карбонаты из месторождения Би-

Maamanauura	Пороли	Морфологический	M HROF	Изотопный состав		
месторождения	породы	тип	n₀ uboo	δ^{13} C, % PDB	$\delta^{18}O, \% o \text{ SMOW}$	
Мустолаах	Апатит-карбонатные	Пластовое тело	ИК 7	+0.6	+20.2	
			ИК 10	-0.5	+18.6	
		»	ИК 11	+0.5	+20.8	
		»	ИК 12	+1.7	+20.1	
		»	ИК 13	+0.7	+19.9	
		»	ИС 61	+1.4	+20.0	
		»	ИС 66	+0.8	+20.8	
		»	ИС 67	+1.0	+19.8	
	Поздние карбонаты	Гнездо	ИК 8	-0.7	+20.1	
		»	ИК 9	-2.6	+11.8	
		Прожилок	ИК 14	0.0	+18.2	
		»	ИС 24	+5.3	+11.8	
Нирянджа	Апатит-карбонатные	Пластовое тело	ИК 1	+1.9	+22.2	
			ИК 2	+1.8	+21.5	
		»	ИК 3	+2.1	+21.6	
	Поздние карбонаты	Прожилок	ИК 4	-4.4	+17.9	
		»	ИК 5	-2.9	+17.6	
		»	ИК 6	-1.5	+17.6	
Бирикээн		Гнездо	ИК 52	+0.2	+17.3	
	Апатит-карбонатные	Пластовое тело	ИК 42	+1.9	+16.5	
			ИС 26	+4.0	+16.3	
		»	ИС 58	+3.0	+19.0	
		»	ИК 43	+1.1	+16.7	
		»	ИК 53	+2.6	+16.4	
Чукурдан		»	CO 29	+4.4	+18.0	
	Поздние карбонаты	Прожилок	CO 28	-5.1	+19.9	
Усть-Чульман		»	ИС 60	-4.8	+17.6	
Хаюмкан		»	CO 30	-5.2	+20.0	
Тагнарар	Апатит-силикат-кар- бонатные	Пластовое тело	ИС 69	+2.3	+14.9	
Левый	Доломиты	»	ИК 49	-8.0	+21.7	
Бурный	юдомской	»	ИК 55	-5.3	+22.6	
Селигдар	свиты	»	ИК 56	-4.4	+24.5	

Таблица 5. Изотопный состав углерода и кислорода карбонатов из различных типов апатитоносных карбонатных пород Алданского щита

рикээн (δ^{13} С до +4.0‰, PDB). Фигуративные точки изотопного состава карбонатов месторождений Селигдар и Мустолаах частично перекрываются, но для карбонатов последнего чаще всего характерны низкие содержания изотопа ¹³С (δ^{13} С_{ср.} = +0.8‰, PDB).

Микромасштабные изотопные исследования карбонатов из руд месторождения Чукурдан также показали высокие значения δ^{13} C (до +5.45‰, PDB) (рис. 5). Кальцит из апатит-силикат-карбонатных пород этого месторождения, как и Селиг-

дарского, обогащен изотопом ¹³С (до +4.42‰, PDB), но в нем, в отличие от бессиликатных разновидностей, значения δ^{18} О низкие и сильно варьируют (табл. 6). В обособленных жильных выделениях карбонатов в апатит-диопсид-карбонатной породе наибольшие значения δ^{13} С (+4.42‰, PDB) и δ^{18} О (18.39‰, SMOW) выявлены в непосредственно примыкающем к диопсиду карбонате, тогда как в карбонатах, удаленных от контакта, значения δ^{18} О существенно ниже (до 11.54‰, SMOW).

1 – руды из пластовых тел, 2 – руды участка Верхний Селигдар, 3 – карбонатные жилы и гнезда, 4 – мраморы и кальцифиры, 5 – известняки Юдомской свиты.

Подобным изотопным составом углерода и кислорода характеризуются и карбонаты из месторождения Тагнарар ($\delta^{13}C = +2.3\%$, PDB, $\delta^{18}O = +14.9\%$, SMOW), что также сближает их с карбонатами из кальцифиров и апатит-силикат-карбонатных пород Селигдара.

Наиболее богаты изотопом ¹⁸О карбонаты месторождения Нирянджа (до 22.2‰, SMOW), тогда как низкие значения δ^{18} О обычны для карбонатов из месторождения Чукурдан (см. табл. 6). При этом карбонаты месторождения Нирянджа характеризуются наиболее кучным расположением фигуративных точек изотопного состава на диаграмме (см. рис. 2). Богатые и бедные обломочным апатитом прослои карбонатных породах этого месторождения мало отличаются друг от друга по составу изотопов углерода и кислорода карбонатов (рис. 6).

Карбонаты из участков Усть-Чульман и Хаюмкан существенно обогащены легким изотопом углерода. Подобный изотопный состав углерода определен в карбонатах из прожилков и гнезд – образований относительно более поздних по отношению к собственно апатит-карбонатным породам.

Подобие минерального состава апатит-карбонатных пород в пределах различных участков позволяет предположить их формирование в прошлом либо в едином обширном палеобассейне и представляющими собой сейчас лишь уцелевшие от эрозии реликты сплошной толщи, либо – в серии пространственно разобщенных и изолированных друг от друга небольших палеобассейнах с различными режимами солености.

Как показывают результаты изотопных исследований карбонатообразования в различных типах бассейнов, изотопно-обменные процессы по углероду и кислороду протекают в условиях закрытости или открытости физико-химической системы [Фейцер, 1987; Кулешов, 2001; Hudson, 1977; Talbot, 1990]. В карбонатных отложениях гидрологически замкнутых бассейнов (озерные водоемы) [Talbot, 1990] коэффициент корреляции между δ^{13} С и δ^{18} О карбонатов превышает 0.8, тогда как в открытых и частично замкнутых (лагун-

Рис. 3. Изотопный состав отдельных зерен карбонатов из апатит-силикат-карбонатных (а) и апатит-сульфат-карбонатных (б) руд месторождения Селигдар (зарисовка).

Рис. 4. Диаграмма изотопного состава δ^{13} C- δ^{18} O карбонатов из различных апатитовых месторождений Алданского щита.

ных) морских бассейнах [Фейцер, 1987; Hudson, 1977] он гораздо ниже. Совокупность карбонатов всех разновидностей апатит-карбонатных пород Алданского щита характеризуется значениями δ^{13} С и δ^{18} О, не связанными линейной зависимостью (коэффициент регрессии R = 0.07; n = 55), которая бы проявлялась в случае их кристаллизации в едином бассейне гидрологически замкнутого типа. Подобная картина наблюдается и для изотопных составов углерода и кислорода в карбонатах из собственно апатит-карбонатных пород всех месторождений в целом (R = 0.10; n = 22) и Селигдара в частности (R = 0.07; n = 6). Высокая неоднородность изотопных значений характерна и для карбонатов из апатит-карбонатных пород месторождения Бирикээн (R < 0.01; n = 6).

ОСНОВНЫЕ ЧЕРТЫ ПРОИСХОЖДЕНИЯ АПАТИТ-КАРБОНАТНЫХ ПОРОД АЛДАНСКОГО ЩИТА

Апатит-карбонатные породы по изотопному соству углерода и кислорода карбонатов, с одной

Таблица 6. Изотопный состав С и О в карбонатах из апатит-диопсид-карбонатной породы месторождения Чукурдан (обр. 2850/10) по результатам микромасштабных исследований

Nº	Объем газа	Изотопный состав			
пробы	пробы, мкл	δ^{13} C, % PDB	$\delta^{18}O, \% o \text{ SMOW}$		
1	2.67	3.66	11.70		
2	6.84	3.58	11.54		
3	10.98	3.76	11.87		
4	4.16	3.17	11.88		
5	6.57	4.42	18.39		

Рис. 5. Изотопный состав отдельных зерен карбонатов из апатит-карбонатной породы месторождения Чукурдан.

Светлое поле – карбонат, темное – апатит (зарисовка).

стороны, подобны в целом осадочным карбонатам фанерозоя и докембрия [Фейцер, 1987; Schidlowski et al., 1975; Hudson, 1977], а с другой – они отличаются от других типов карбонатных пород Алданского щита более высокими значениями δ^{13} С и δ^{18} О. Как уже ранее указывалось [Гулий, 1994], их образование происходило в более окислительных условиях по сравнению с мраморами и кальцифирами при наличии свободного кислорода, а прямым свидетельством возможной роли эвапоритовых процессов на разных стадиях их формирования является частое присутствие сульфатов в апатит-карбонатных породах, что отмечается в других регионах развития докембрия [Schidlowski et al., 1975; McNauth, Wilson, 1983].

Периодические воздымания отдельных участков способствовали формированию палеокарстовых образований и появлению внутриформационных апатитоносных конгломератов [Гулий, 1995; Гулий, Рид, 1999]. Таким образом, апатит-карбонатные породы являются продуктом сложного чередования процессов седиментогенеза при разных режимах солености бассейнов, иногда с разрушением уже образованных осадков в субаэральных условиях.

Все изученные месторождения и апатитопроявления щита характеризуются сходным геологоструктурным положением, но с резко варьирующими от места к месту мощностями рудных тел и общими запасами P_2O_5 . Они сложены однотипными апатитоносными породами с изменяющимися количественными соотношениями их друг с другом и с бедными фосфором силикатными породами, что обусловлено различными фациальными условиями формирования первично-осадочных пород каждого из месторождений. Единообразная пластовая и линзовидная форма тел апатиткарбонатных пород в первичном залегании указывает на плоскодонный и мелководный про-

Рис. 6. Изотопный состав карбонатов в богатых (крап) и бедных (белое) обломочным апатитом участках апатит-карбонатных пород месторождения Нирянджа (зарисовка).

филь палеобассейнов, но из-за дифференцированной интенсивности тектонических движений в пределах отдельных участков размеры их были разными, что и, в конечном итоге, определило различные масштабы фосфороносности.

Как следует из неоднородного, послойного характера распределения фосфора в породах месторождений и отсутствия усреднения его содержаний при региональном метаморфизме [Гулий, 1989], фосфатообразование происходило лишь в определенных фациях палеобассейнов. Это согласуется с мнением о литологическом контроле апатитового [Виноградов и др., 1975] и магнетитового [Павлов и др., 1987] оруденения в докембрийских толщах Алданского щита и позволяет прогнозировать возможные масштабы оруденения в зависимости от типа геологического разреза района.

При смене геологически относительно наиболее ранних, существенно богатых фосфором апатит-силикат-карбонатных разновидностей апатитоносных пород щита, завершающими процесс формирования апатитовых руд, апатит-сульфаткарбонатными разновидностями бедными фосфором [Булах и др., 1990] карбонаты постепенно обедняются тяжелыми изотопами ¹³С и ¹⁸О, которые достигают минимальных значений в поздних гнездовидных и жильных выделениях. Такая последовательность указывает на ограниченные объемы порций растворов, обогащенных фосфором, и постепенное их истощение к концу процесса кристаллизации карбонатного протолита. Для практических целей важно, с одной стороны, что богатые легкими изотопами углерода и кислорода участки карбонатных пород существенно бедны апатитом, а с другой – что карбонато- и фосфатообразование в подобных бассейнах являют-

Рис. 7. Диаграмма δ¹³C-δ¹⁸O для первичных и поздних карбонатов из апатит-карбонатных пород и руд.

ся самостоятельными, хотя в некоторые моменты и синхронными процессами. Синхронность их обусловлена близостью физико-химических условий, относительно в равной мере благоприятных для образования стабильных кристаллических фаз и карбонатов, и фосфатов, но количество последних определялось общим содержанием фосфора в палеобассейнах.

Вероятным объяснением относительной близости изотопных составов углерода и кислорода карбонатов из отдельных разновидностей апатитоносных пород может быть относительная устойчивость парциального давления углекислоты, знаменующая единую природу источника карбонатов. Это особенно относится к пробам из пород массивной или пятнистой текстуры, где отсутствуют жильные и гнездовидные карбонатные выделения, обладающие резким несоответствием значений изотопов в исходном участке и новообразованном минерале или агрегате минералов.

После выделения апатита и сосуществующих карбонатов кристаллизация последующих фаз происходит при изменившихся концентрациях катионов и в обедненной изотопом углерода ¹³С и кислорода ¹⁸О минералообразующей среде. Ранний доломит всегда более богат изотопом ¹³С (рис. 7) при незначительных вариациях от участка к участку. Обогащение легкими изотопами углерода и кислорода карбонатов из более поздних выделений свидетельствует о возможной роли пресноводных углекислотно-водных систем [Кулешов, 2001]. Показательным при этом является изменение изотопного состава углерода и кислорода в доломите, позднем доломите и кальците [Гулий, 1994], отражая в одном образце общую схему кристаллизации апатита, гематита и карбонатов. Судя по небольшому общему объему поздних карбонатных выделений по сравнению с подавляющей массой более ранних карбонатов, масштабы завершающих преобразований под воздействием растворов, богатых легкими изотопами углерода и кислорода, были незначительными.

Авторы признательны Ю.А. Борщевскому и Н.И. Медведовской за помощь в проведении изотопных анализов валовых проб карбонатов и благодарят Y. Nagai за техническую помощь в отборе порошковых проб для микроанализа и его проведение.

СПИСОК ЛИТЕРАТУРЫ

Борщевский Ю.А., Борисова С.Л., Попова Н.К. Новый метод выделения кислорода и углерода из карбонатов и карбонатно-силикатных пород для изотопного анализа // V Всесоюзный симпозиум по геохимии стабильных изотопов. М.: Наука, 1974. С. 207–209.

Булах А.Г., Золотарев А.А. Геологическая природа Селигдарского поля апатитоносных карбонатных пород (Алданский щит) // Сов. геология. 1983. № 6. С. 96–101.

Булах А.Г., Гулий В.Н., Золотарев А.А. Фосфорные руды докембрийских толщ Алдана. Л.: Изд-во ЛГУ, 1990. 220 с.

Виноградов В.И., Егин В.И., Кичигин Л.И. и др. Значение литологического контроля апатитоносности архейских образований Алданского щита (по данным изотопного состава серы) // Литология и полез. ископаемые. 1975. № 5. С. 117–127.

Вишняков В.Н., Васильев Е.П., Резницкий Л.З., Некрасова Е.А. Карбонатный седиментогенез и связанные с ним полезные ископаемые в докембрии Южного Прибайкалья // Проблемы осадочной геологии докембрия. Вып. 6. Карбонатное осадконакопление в докембрии. М.: Наука, 1981. С. 158–165.

Гулий В.Н. Основные черты минералогии и генезиса апатитопроявлений Алданского кристаллического щита // Геология руд. месторождений. 1989. № 4. С. 117–127.

Гулий В.Н. Особенности минерального состава и рудоносность докембрийских карбонатных пород Алданского щита // Тихоокеан. геология. 1994. № 2. С. 45–54.

Гулий В.Н. Метаосадочные месторождения апатита Бирикээнской площади (Алданский щит) // Литология и полез. ископаемые. 1995. № 6. С. 602–614.

Гулий В.Н., Рид С. Апатитоносные конгломераты Алданского щита // Литология и полез. ископаемые. 1999. № 2. С. 186–197.

Киселев В.И. О перспективах Юго-Западного Памира как новой провинции неметаллических полезных ископаемых // Докл. АН ТаджССР. 1977. Т. 20. № 5. С. 45–47.

Кицул В.И., Богомолова Л.М., Дук В.Л. Отражение тектонической структуры фундамента Алданского щита в метаморфических и минеральных фациях // Метаморфизм горных пород Урала. Свердловск, 1979. С. 41–46. *Кулешов В.Н.* Изотопный состав и происхождение глубинных карбонатов. М.: Наука, 1986. 126 с.

Кулешов В.Н. Эволюция изотопных углекислотноводных систем в литогенезе. Сообщение 1. Седиментогенез и диагенез // Литология и полез. ископаемые. 2001. № 5. С. 491–508.

Маракушев А.А. О генезисе апатитовых месторождений в докембрийских толщах мраморов // Апатиты. М.: Наука, 1968. С. 339–347.

Павлов В.А., Чердаков В.И., Комаров П.В. Минералого-геохимические особенности пород и руд железорудных месторождений Южного Алдана // Геология руд. месторождений. 1987. № 5. С. 75–83.

Пушкарев Ю.Д., Гулий В.Н., Кравченко М.П., Рюнгенен Г.И. Изотопный состав Рb и Sr в месторождениях апатит-силикатных и апатит-карбонатных руд Алданского щита // XII Всесоюзный симпозиум по стабильным изотопам в геохимии. М., 1989. С. 10–11.

Реутов Л.М. Докембрий Алданского щита. Новосибирск: Наука, 1981. 184 с.

Со Вар Сон, Ким Ён Хен, Ко Тар Сок. Генезис магнезитовых месторождений Кореи по изотопным составам углерода и кислорода // Геология и география. 1989. № 4. С. 2–6.

Тугаринов А.И., Бибикова Е.В., Грачева В.Б. О возрасте апатитового оруденения Алданского щита // Геохимия. 1977. № 6. С. 847–855.

Фейцер Я. Элементы-примеси и изотопы в осадочных карбонатах // Карбонаты. Минералогия и химия. М.: Мир, 1987. С. 329–370.

Энтин А.Р., Сучков В.Н., Тыллар А.Г., Боярко Г.Ю., Ятлукова Н.Г. Геолого-экономические проблемы освоения апатитовых руд Южной Якутии. Якутск: ЯФ СО АН СССР, 1987. 128 с.

Юдин Н.И. О генетической связи карбонато- и фосфатонакопления в докембрии // Проблемы осадочной геологии докембрия. Вып. 6. Карбонатное осадконакопление в докембрии. М.: Наука, 1981. С. 150–154.

Юдин Н.И., Арсеньев А.А. Фосфатоносность древних толщ юга Восточной Сибири. М.: Наука, 1970. 123 с.

Currie J.B. The occurence and relationships of some mica and apatite deposits in South – Eastern Ontario // Econom. Geology. 1951. V. 46. № 2. P. 765–778.

Hudson J.D. Stable isotopes and limestone lithification // Journal of the Geological Society. 1977. V. 133. Part 6. P. 637–660.

McNaughton N.J., *Wilson A.F.* ¹³C- rich marbles from the Proterozoic Einasleigh Metamorphics, northern Queensland // Journal of the Geological Society of Australia. 1983. V. 30. P. 175–178.

Nagai Y., Wada H. Development and applications of microscale analyses for metamorphic dolomites // Geosci. Rept. of Shizuoka Univ. 1993. № 19. P. 25–34.

Sang L., You Z. The metamorphic petrology of the Susong Group and the origin of the Susong phosphorite deposits, Anhui Province // Precambrian Res. 1988. V. 39. № 1–2. P. 65–76.

Schidlowski M., Eichmann R., Junge C. E. Precambrian sedimentary carbonates: carbon and oxygen isotope geochemis-

try and implications for the terrestrial oxygen budget // Precambrian Research. 1975. V. 2. P. 1–69.

Sighinolfi G.P., Kronberg B.I., Gorgoni C., Fyfe W.S. Geochemistry and genesis of sulphide-anhydrite-bearing Archean carbonate rocks from Bahia (Brazil) // Chemical Geology. 1980. V. 29. P. 323–331.

Talbot M.R. A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates // Chemical Geology (Isotope Geoscience Section). 1990. V. 80. P. 261–279.

Wada H. Microscale isotopic zoning in calcite and graphite crystals in marble // Nature. 1988. V. 331. № 6151. P. 61–63.

Whelan J.F., Rye R.O., deLorraine W., Ohnoto H. Isotopic geochemistry of a Mid-Proterozoic evaporite basin: Balmat, New York // Amer. Journ. of Science. 1990. V. 290. P. 396–424.