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Modelling of crust and mantle heterogeneity effects in
the theory of Earth tides

S. M. Molodensky

Schmidt United Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, Russia

Abstract. General relations are obtained for the determination of radial and tangential
components of displacements and gravitational potential variations at the Earth’s surface
due to tidal forces for a model with a horizontally inhomogeneous distributions of elastic
moduli. Model calculations are performed to estimate the effects of local and regional
inhomogeneities of elastic moduli specified in regions of simple configurations on tidal
variations in gravity, tilts and deformations. As distinct from gravity data, data on tidal
tilts and deformations can provide significant constraints on local inhomogeneities of elastic
moduli in the immediate vicinity of an observation point. Results of model calculations
show that the phases and amplitudes of tidal tilts and deformations change by 10–15% in
the vicinity of a soft inclusion in which the shear modulus is smaller than its value in the
surrounding medium by 20–30%. Anomalies of such a contrast can be detected over several
months of continuous tidal observations.

Introduction

The study of local heterogeneities in the crust and up-
per mantle by traditional seismic methods is largely compli-
cated due to uncertainties in the parameters of earthquake
sources. The method of controlled vibratory sounding is
free from this problem, but its application requires expen-
sive sources of seismic signals, and their effective application
is often inappropriate. The lunisolar tides are excited by nat-
ural sources of tidal forces, whose values are known with a
reasonably good accuracy at all time moments. Therefore,
in many cases the use of data on the material response to
tidal forces seems quite advantageous for the study of me-
chanical properties of the medium. We should also note that
tidal data differ from seismic evidence in that they provide
information on the properties of the medium in the range of
much lower frequencies (diurnal and semidiurnal periods).
Because of this distinction, comparison of seismic and tidal
data can provide constraints on both the elastic moduli and
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rheological properties in the vicinity of an observation point.
In recent years, the most significant anomalies of tidal tilt

and strain factors have been discovered in the vicinity of the
Orenburg gas-condensate field and in the Baksan Gorge at
the foot of the Elbrus Mountain. In both cases, this appears
to be related to the presence of a cavity (possibly contain-
ing a rigid skeleton) significantly differing in average shear
modulus from the surrounding medium. Analysis of the re-
sponse of this cavity to tidal forces allows one to estimate
(1) the sizes of this cavity and mechanical properties of its
upper dome and, based on the estimated thickness of the
dome and its effective rigidity, (2) the criteria of its stability
(this problem is very important in relation to the possible
collapse of the dome due to the pumping-out of gas).

Along with the detection of local heterogeneities, there
also exists the problem of identifying global lateral hetero-
geneities in the mantle, which should primarily give rise to
anomalies in the tidal gravity factor δ (its value is mainly
dependent on mechanical properties of the lower mantle and
nearly insensitive to local heterogeneities in the vicinity of
an observation point).

Below, we derive general relations for the determination of
radial and tangential components of displacements and vari-
ations in the gravity potential at the Earth’s surface with
laterally inhomogeneous distributions of elastic moduli. Nu-
merical estimates are presented for the effect of local inho-
mogeneities of elastic moduli on tidal tilts and deformations.
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1. Initial Equations

Partial differential equations in a general form govern-
ing the elastic-gravitational conditions of the Earth under
the action of tidal forces are based on the assumption of an
initial (nondeformed) hydrostatic equilibrium of the mantle
and crust, implying that the pressure gradient ∇p0 is com-
pensated for by gravity:

∇p0 − ρ∇W = 0 , (1)

where ρ is density; W is the unperturbed gravitational
potential, satisfying the Poisson equation

∆W = −4πGρ , (2)

and G is the gravitational constant.
Elastic tidal deformations displace an element of the

medium from a point determined by the radius vector r to
the point r+u and compresses this element, with the relative

change in volume being
δτ

τ
= ∇ · u. Then, the density ρ′,

potential W ′ and stress tensor σ′ik in the deformed medium
can be expressed as

ρ′(r) = ρ(r− u)− ρ∇ · u = ρ(r)−∇ · (ρu) , (3)

W ′(r) = W (r) + R(r) , (4)

s′ik(r) = −p0(r)δik + sik(r)

= [−p0(r) + (u,∇p)]δik + sik ,
(5)

where δik is the Kronecker delta and sik is the tensor of elas-
tic stresses connected with the displacement vector through
the Hooke law

sik = λ(∇ · u)δik + µ
(

∂ui

∂xk
+

∂uk

∂xi

)
. (6)

Substituting (3–6) into the equation of elastic equilibrium
and subtracting, respectively, (1) and (2) from the results,
we obtain

ρ∇R− (∇ · ρu)∇W +∇
(
ρ(u,∇W )

)
= 0 . (7a)

∆R = 4πG∇ · (ρu) . (7b)

Applying the curl operator to the left- and right-hand sides
of (1) yields

∇W ×∇ρ = 0 .

Adding the identically zero term

u× (∇W ×∇ρ) = (∇ρ,u)∇W − (∇W,u)∇ρ ,

to the left-hand part of Equation (7a), this equation takes
the form

Li(u, R)

= ρ
(

∂

∂xi

(
R + (u,∇W )

)
−(∇ · u)

∂W

∂xi

)
+

∂sik

∂xk
= 0

(8)

(henceforward, summation is assumed under repeated
indexes and no distinction is drawn between covariant and
contravariant components of vectors and tensors, i.e. all cal-
culations relate to a Cartesian system of coordinates).

2. Generalization of the Betti Theorem
of Reciprocity to the Case of Tidal
Deformations of a Medium.
Green Function

To describe tidal deformations in a radially and laterally
heterogeneous medium, we use Equations (8) and (7b) with
the inhomogeneous boundary conditions

σ · n
∣∣
Σ

= 0 , (9a)

(
(∂R/∂n)int

∣∣
Σ
−(∂R/∂n)out

)∣∣
Σ

= 5(νt(a)/a)y2(ϑ, φ, t) ,
(9b)

where Σ and n are the Earth’s surface and its outer normal;
νt is the amplitude of the tide-generating potential; a is the
average radius of the Earth; y2(ϑ, ϕ, t) is the spherical func-
tion of the 2nd order; ϑ, ϕ and t are colatitude, longitude and
time, respectively; and the indexes “int” and “out” indicate,
respectively, inner and outer normal derivatives.

To calculate the Green function for the boundary problem
(8), (7b), (9a), (9b), we will write relations generalizing the
Betti theorem of reciprocity to the case of tidal deformations
of a gravitating medium with a hydrostatic distribution of
initial stresses.

In order to solve an inhomogeneous equation of the form

L
(
u(1), R(1)

)
= F(r) , (10a)

∆R(1) = 4πG∇ ·
(
ρu(1)

)
, (10b)

where F(r) is a known function of spatial coordinates, we
introduce the following system of auxiliary solutions
(u(j), R(j)) of homogeneous equations (8) and (7b):

L
(
u(j), R(j)

)
= 0 , (10c)

∆R(j) = 4πG∇ ·
(
ρu(j)

)
, (10d)

which satisfy the boundary conditions
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s(j) · n
∣∣
Σ
= c1ery

m
n (ϑ, φ) ;

D(j) = 0 at j = 1 ;
(11a)

s(j) · n
∣∣
Σ
= 0 ;

D(j) = c2y
m
n (ϑ, φ) at j = 2 ;

(11b)

s(j) · n
∣∣
Σ
= c3er∇ym

n (ϑ, φ) ;

D(j) = 0 at j = 3 ;
(11c)

s(j) · n
∣∣
Σ
= c4er ×∇ym

n (ϑ, φ) ;

D(j) = 0 at j = 4 .
(11d)

Here

D(j) =
(
(∂R(j)/∂n)int

∣∣
Σ
−(∂R(j)/∂n)out

∣∣
Σ

)
/(4πG) (12)

is the density of the single layer on the Earth’s surface, er

is the unit radius vector and ym
n are normalized spherical

functions.
Taking into account the explicit form of the operator L

(8), it is easy to show that this operator is Hermitean, i.e.
the volume integral of scalar product

I =

∫
τ

(
(u(j),L(u1, R1)

)
−
(
u(1),L(u(j), R(j))

))
dτ (13a)

reduces to the surface integral

I =

∫
Σ

[(
(s1 · n),u(j)

)
−
(
(s(j) · n),u1

)
+ D1R

(j) −D(j)R1

]
dσ ,

(13b)

where the density of the single layer D1 is determined by a
relation similar to (12):

D1 =
(
(∂R1/∂n)int

∣∣
Σ
−(∂R1/∂n)out

∣∣
Σ

)
/(4πG) . (14)

If we set F(r) = 0 in (10a), i.e. if the solution of homo-
geneous tidal equations in the absence of external forces is
taken as (u(1), V (1)), volume integral (13a) vanishes iden-
tically, and relation (13b) generalizes the Betti theorem of
reciprocity to the case of a gravitating medium with a hy-
drostatic distribution of initial stresses. The terms∫

Σ

[(
(s1 · n),u(j)

)
−
(
(s(j) · n),u1

)]
dσ

in (13b), corresponding to the theorem of reciprocity, deter-
mines the difference between the values of the work done by
surface forces acting through the displacements u(j) (corre-
sponding to the solution

(
u(1), V (1)

)
) and by surface forces

acting through the displacements u(1) (corresponding to the

solution
(
u(j), V (j)

)
); the additional terms∫

Σ

[
D1R

(j) −D(j)R1

]
dσ

determine the difference between the gravitational energies
of the single layer D1 in the field with the potential R(j) and
the single layer D(j) in the field with the potential R1.

If the external body forces F(r) are nonzero, relations
(13a) and (13b) yield the identity

I =

∫
r

(
u(j),L(u1, R1)

)
dτ

=

∫
τ

(
u(j),F(r)

)
dτ =

∫
Σ

[(
(s1 · n),u(j)

)
−
(
(s(j) · n),u1

)
+D1R

(j) −D(j)R1

]
dσ ,

(15)

which is helpful for the construction of the Green function
related to the problem of elastic deformations of a gravi-
tating medium produced by the given external body forces
F(r).

Indeed, if external surface forces are absent, we have
s1 · n = 0. Let the solutions (u(j), V (j)) be specified by the
boundary conditions s(j) · n = e(j)δ(r − r0) and D(j) = 0,
where e(j) is an arbitrarily oriented vector, δ(r − r0) is the
2-D delta function, and r and r0 are vectors on the Earth’s
surface. Then, integrating the right-hand part of (15) over
angular variables, we obtain the relation

(
u1(r0), e

(j)
)
=

∫
τ

(
u(j),F(r)

)
dτ , (16)

which completely defines the three components of the sought-
for vector u1 at any point r0 of the surface σ.

Analogically, specifying the solutions (u(j), V (j)) by the
boundary conditions s(j) ·n = 0 and D(j) = δ(r−r0) and in-
tegrating the right-hand part of (15) over angular variables,
we obtain the relation

R(j)(r0) =

∫
τ

(
u(j),F(r)

)
dτ , (17)

which completely defines the potential variations on the
Earth’s surface.

3. Application of the Perturbation Method
to the Problem of the Effect of Horizontal
Heterogeneities on Elastic Deformation
of a Medium

Tidal displacements and the potential in spherically
symmetric models of the Earth are determined by the Love
formula
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u0 = f
(0)
1 (r)ery

k
2 +

r2

6
f

(0)
2 (r)∇yk

2 ,

R0 = f
(0)
3 (r)yk

2 ,

(18)

where k = 0, 1 and 2 for long-period, diurnal and semidiurnal
tidal components, respectively.

When a horizontally homogeneous model of a medium
(with distributions of density ρ0(r) and elastic moduli λ0(r)
and µ0(r)) is replaced by a spherically nonsymmetrical model
(with distributions ρ0(r) + δρ, λ0(r) + δλ and µ0(r) + δµ),
the solutions (u0, R0) of Equations (8) and (7b) acquire in-
crements (u1, R1).

In the first approximation of the perturbation theory, the
equations of tidal strain in a laterally and radially heteroge-
neous medium can be written as

L0(u1, R1) + L1(u0, R0) = 0 , (19a)

∆R(1) = 4πG∇ ·
(
ρ0u

(1) + ρ1u
(0)
)

, (19b)

where

L1(u0, R0)

= δρ
(
∇(R0 + (u0,∇W ))− (∇ · u0)∇W

)
+∇ · s1

(19c)

and

s1ik = δλ
(
∇ · u0

)
δik + δµ

(
∂(u0)i

∂xk
+

∂(u0)k

∂xi

)
. (19d)

The general solution to the problem of tidal strain in a
horizontally heterogeneous medium is sought as the sum of
spheroidal and toroidal spherical harmonics:

u(1) =
∑
n,m

[
δf

(nm)
1 (r)ery

m
n +

r2

n(n + 1)
δf

(nm)
2 (r)∇ym

n

]
+
∑
n,m

[
δt(nm)(r)er ×∇ym

n

]
,

(20a)

R(1) =
∑
n,m

δf
(nm)
3 (r)ym

n . (20b)

Auxiliary solutions (u, R(j)) determining the Green function
are represented as expressions of the same form as the terms
in (20a) and (20b) at j = 4 :

u(j) = f
(j)
1 (r)ery

m
n +

r2

n(n + 1)
f

(j)
2 (r)∇ym

n

at j = 4 ,

R(j) = f
(j)
3 (r)ym

n , at j = 1, 2, 3 ;

(21a)

and

u(j) = t(j)(r)er ×∇ym
n at j = 4 ,

R(j) = 0 .
(21b)

Here fi(r) is a system of six functions defined by the ordinary
differential equations

f ′i =

6∑
k=1

aikfk , (22)

with the coefficients

a11 = −a66 =
−2λ

r(λ + 2µ)
;

a12 = −a56 =
λ

λ + 2µ
;

a16 =
1

r2(λ + µ)
;

−a21 = a65 =
−n(n + 1)

r2
;

a31 = −a64 = 4πGρ ;

−a33 = a44 =
n + 1

r
;

a34 =
4πG

r2
;

a41 = a63 = (n + 1)ρr ;

a42 = a53 = −ρr2 ;

a51 = a62 = −ρr2W ′ − 2µr
3λ + 2µ

λ + 2µ
;

a52 = 2µr2

(
2(λ + µ)

λ + 2µ
− 1

n(n + 1)

)
;

a61 = 4ρrW ′ + 4µ
3λ + 2µ

λ + 2µ
.

(23)

The symmetry properties of the coefficients aik in (23) are
due to the self-conjugacy of the operator L (8) [Molodensky,
1984].

The boundary conditions for the solutions (u(j), R(j)) are
defined as follows:(

s(j),n
)
= erynm; D(j) = 0 at j = 1 ;(

s(j),n
)
= ∇ynm; D(j) = 0 at j = 2 ;(

s(j),n
)
= 0; D(j) = ynm at j = 3 ;(

s(j),n
)
= er ×∇ynm; D(j) = 0 at j = 4 .

(24)

Then, substituting (20) and (21) into (13), we find

I = δf
(nm)
1 at j = 1 ;

I = n(n + 1)δf
(nm)
2 at j = 2 ;

I = δf
(nm)
3 at j = 3 ;

I = t(nm) at j = 4 .

(25)

Here
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I =

∫
r

(
u(j),L1(u0, R0)

)
dτ . (26)

These relations completely define all of the sought-for coef-
ficients in expansions (20a) and (20b).

4. Green Function for the Problem of Tidal
Deformations in a Heterogeneous Medium

In order to numerically calculate the Green function in
a heterogeneous medium, we express the components of the
tidal displacement vector through homogeneous harmonic
polynomials ξnm = rnym

n (ϑ, ϕ). In Cartesian coordinates
xi, they satisfy the equation

xi
∂ξnm

∂xi
= nξnm (27)

and the Laplace equation

∆ξnm = 0 . (28)

Expressing the displacement vectors u0 and u(j) through
ξnm, we obtain

(u0)i = h(0)xiξ0 + t(0)
∂ξ0

∂xi
, (29a)

(u(j))i = h(j)
n xiξnm + t(j)n

∂ξnm

∂xi
, (29b)

where ξ0 = r2yj
2(ϑ, ϕ); j = 0, 1 and 2 for long-period, diur-

nal and semidiurnal waves, respectively; and the functions
h

(j)
n , t

(j)
n and h(0), t(0) depend on the radius r alone. Com-

paring (18), (21a) and (29), these functions can easily be ex-

pressed through f
(j)
i (r), determined by the system of equa-

tions (22)–(23).
Now, we address the solutions of tidal equations in the

case of arbitrary lateral variations in elastic moduli. Then,
integral (26) takes the form

I =

∫
r

(
u(j)
)

i

∂s1ik

∂xk
dτ , (29c)

where

s1ik = δλ(∇ · u)δik + δµ

(
∂(u0)i

∂xk
+

∂(u0)k

∂xi

)
. (29d)

Using the Gauss theorem and taking into account the con-
dition of vanishing stresses at the outer surface,

s1iknk = 0 ,

we obtain

I =

∫
τ

((
u(j)
)

i

∂s1ik

∂xk

)
dτ =

∫
r

(
s1ik

(∂u(j))i

∂xk

)
dτ .(30)

The substitution of (19d) into (20) yields

I = I(δλ) + I(δµ) , (31a)

where

I(δλ) = −
∫
τ

δλ(∇ · u0)(∇ · u(j))dτ (31b)

and

I(δµ) = −
∫
τ

δµ

(
(∂u0)i

∂xk
+

∂(u0)k

∂xi

)
(∂u(j))i

∂xk
dτ . (31c)

Substituting (29a) and (29b) into (31c), we obtain(
(∂u0)i

∂xk
+

∂(u0)k

∂xi

)
(∂u(j))i

∂xk

= h′2ξ0
1

r

{
2r3h(j)′

n ξnm + 2r2h(j)
n ξnm

+ 2r2nξnm

(
h(j)

n +
t
(j)
n

r

)
+ 2t(j)n xixk

∂2ξnm

∂xi∂xk

}
+ h2ξ0

{
2rh(j)′

n ξnm + +6h(j)
n ξnm

+ 2nξnm

(
h(j)

n +
t
(j)
n

r

)}
+

(
h2 +

t′2
r

)(
xi

∂ξ0

∂xk
+ xk

∂ξ0

∂xi

)
×
{

h(j)
n

xixk

r
ξnm + h(j)

n ξnmδik

+
1

2

(
h(j)

n +
t
(j)
n

r

)(
xi

∂ξnm

∂xk
+ xk

∂ξnm

∂xi

)
+ t(j)n

∂2ξnm

∂xi∂xk

}
+ t2

∂2ξ0

∂xi∂xk

{
2h(j)′

n
xixk

r
ξnm + 2h(j)

n ξnmδik

+

(
h(j)

n +
t
(j)′
n

r

(
xi

∂ξnm

∂xk
+ xk

∂ξnm

∂xi

))

+ t(j)n
∂2ξnm

∂xi∂xk

}
.

(32)

Taking into account (27), we have

xi
∂ξ0

∂xk

∂2ξnm

∂xi∂xk
=

∂

∂xi

(
xk

∂ξ0

∂xik

∂ξnm

∂xk

)

− ∂ξnm

∂xk

(
xk∆ξ0 +

∂ξ0

∂xi
δik

)
= (n− 1)

(
∇ξnm,∇ξ0

)
,
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xixkξnm
∂2ξnm

∂xi∂xk
=

∂

∂xi

(
∂ξ0

∂xk
xixkξnm −

∂ξ0

∂xk

)
×
(
xixk

∂ξnm

∂xi
+ 3xkξnm + xiδikξnm

)
=

∂

∂xi

(
2ξ0xiξnm

)
−2
(
n + 4

)
ξ0ξnm = 2ξ0ξnm .

(33)

The expansion of the lateral inhomogeneities of elastic mod-
uli in series of harmonic functions yields

δλ(r, ϑ, ϕ) =

∞∑
l=1

l∑
p=−l

λlp(r)y p
l (ϑ, ϕ) ,

δµ(r, ϑ, ϕ) =

∞∑
l=1

l∑
p=−l

µlp(r)y p
l (ϑ, ϕ) .

(33a)

Taking into account (32)and (33), the integrals in (31b) and
(31c) can be represented as the sum of terms containing in-
tegrals of products of three harmonic polynomials, scalar
products of their gradients, and the convolution of the ten-
sors consisting their second derivatives and having the form

I(δλ) = −
∫
τ

δλ
(
∇ · u0

)(
∇ · u(j)

)
dτ

=

∞∑
l,p

∫∫
τ

∫ {
ξlpξnmξ0(r)ζ(r)

}
dτ ,

−I(δµ) =

∫
τ

δµ

(
(∂u0)i

∂xk
+

∂(u0)k

∂xi

)
(∂u(j))i

∂xk
dτ

=

∞∑
l,p

∫∫
τ

∫ {
ξlpξnmξ0α1(r) + ξlp

(
∇ξnm,∇ξ0

)
α2(r)

+ ξlp

(
∂2ξnm

∂xi∂xk

∂2ξ0

∂xi∂xk

)
α3(r)

}
dτ ,

(33b)

where

ζ(r) = λlp(r)r−(l+n+2)
((

f
(j)
1

)′
(r) +

2

r
f

(j)
1 (r)

− f
(j)
2 (r)

)((
f

(0)
1

)′
(r) +

2

r
f

(0)
1 (r)− f

(0)
2 (r)

)
,

a1(r) = 2µlp(r)r−l
{

r2h(j)′
n h′0 + r

(
h(j)′

n h0 + h′0h
(j)
n

)
+ nrh′0

(
h(j)

n +
t
(j)′
n

r

)
+ 2rh(j)′

n

(
h0 +

t′0
r

)
+

n(n− 1)

r
h′0t

(j)
n +

2

r
h(j)′

n t0 + 3h(j)
n h0

+ nh0

(
h(j)

n +
t
(j)′
n

r

)
+ 2h(j)′

n

(
h0 +

t′0
r

)

(33c)

+
n

2

(
h0 +

t′0
r

)(
h(j)

n +
t
(j)′
n

r

)}
,

a2(r) = µlp(r)r−l

{(
h(j)

n +
t
(j)′
n

r

)(
h0 +

t′0
r

)
r2

+ 2(n− 1)t(j)n

(
h0 +

t′0
r

)
+ 2t0

(
h(j)

n +
t
(j)′
n

r

)}
,

a3(r) = 2µlp(r)r−lt(j)n t0 .

For calculating the integrals of products of three harmonic
polynomials, we substitute the relation ξnm = rnym

n (ϑ, ϕ)
into the first term in (33b) and obtain∫∫

τ

∫ {
ξlpξnmξ0α1(r)

}
dτ

= Alpnmn0m0

R∫
0

rl+n+n0+2α1(r)dr .

(34)

Here Alpnmn0m0 is the integral of the product of three spher-
ical functions with the respective indexes (l, p), (n, m) and
(n0, m0) taken over the surface of a unit sphere.

The second term in formula (33b) contain the product
of the homogeneous harmonic polynomial ξlp and the scalar
product of the polynomial gradients (∇ξnm,∇ξ0) and can
be calculated as follows. Denote

J(1)
n0m0nm =

∫∫
τ

∫
ξlp

(
∇ξnm,∇ξn0m0

)
dτ . (35)

Integrating (35) by parts and taking (27) into account, we
find

J(1)
n0m0nm + Jn0m0

lpnm = nAlpnmn0m0
(36)

and two similar relations obtained from (36) by the cyclic
permutation of the polynomials ξlp, ξnm, ξn0m0 . Solving
these equalities, we find

J(1)
n0m0nm =

1

2

(
n + n0 − l

)
Alpnmn0m0 . (37)

The third term in (33b), containing the volume integral of
the convolution of tensors that consist of the second deriva-
tives of homogeneous harmonic polynomials of the form

ξlp
∂2ξnm

∂xi∂xk

∂2ξ0

∂xi∂xk

can be calculated in a similar way. Denoting

J lp(2)
n0m0nm =

∫∫
τ

∫
ξlp

∂2ξnm

∂xi∂xk

∂2ξ0

∂xi∂xk
dτ (38)

and integrating (38) by parts, we obtain

J lp(2)
n0m0nm =

∫
S

∫
xiξlp

∂ξnm

∂xk

∂2ξ0

∂xi∂xk
ds− J

n0m0(3)
lpnm , (39)

where
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J
n0m0(3)
lpnm =

∫∫
τ

∫
∂ξlp

∂xi

∂ξnm

∂xk

∂2ξ0

∂xi∂xk
dτ . (40)

Taking (27) into account, we have

xi
∂2ξ0

∂xi∂xk
=

∂

∂xk

(
xi

∂ξ0

∂xi

)
− ∂ξ0

∂xi
δik

=
(
n0 − 1

) ∂ξ0

∂xk

(41)

and, therefore,∫
S

∫
xiξlp

∂ξnm

∂xk

∂2ξ0

∂xi∂xk
ds

=
(
n0 − 1

)∫
S

∫
ξlp

(
∇ξnm,∇ξ0

)
ds

=
(
n0 − 1

)(
l + n + n0 + 1

)
J lp(1)

nmn0m0

=
1

2

(
n0 − 1

)(
n + n0 − l

)(
l + n + n0 + 1

)
Alpnmn0m0 .

(42)

Integrating J
n0m0(3)
lpnm by parts, we obtain

J
n0m0(3)
lpnm + J

nm(3)
lpn0m0

=

∫
S

∫
xi

∂ξlp

∂xi

∂ξnm

∂xk

∂ξ0

∂xk
ds

= l
(
l + n + n0 + 1

)
J lp(1)

n0m0nm .

(43)

Applying the cyclic permutation of indexes (l, p) → (n, m)
→ (n0, m0) to this relation and determining Jn0m0

lpnm from the
resulting system of three equations, we find

J
n0m0(3)
lpnm =

1

2

(
l + n + n0 + 1

)
×
(
−n0J

n0m0(1)
lpnm + lJ lp(1)

nmn0m0 + nJ
nm(1)
lpn0m0

)
,

(44)

or, substituting (37),

J
n0m0(3)
lpnm =

1

4

(
l + n + n0 + 1

)
×
(
n2

0 − n2 − l2 + 2nl
)
Alpnmn0m0 .

(45)

The substitution of (42) and (45) into (39) yields

J lp(2)
n0m0nm =

1

4

(
l + n + n0 + 1

)(
n0 + n− l

)
×
(
n0 + n− l − 2

)
Alpnmn0m0 .

(46)

With the help of (37) and (36), expression (32) is trans-
formed into the final form

−I(δµ) =

∞∑
l,p

Alpnmn0m0

1∫
0

drrl+n+n0

((
r2α1(r)

+
1

2

(
l + n + n0 + 1

)(
n0 + n− l

)
α2(r)

+
1

4

[(
l + n + n0

)2−1
](

n + n0 − l
)(

n + n0 − l− 2
)α3(r)

r2

)
.

5. Tidal Deformations of a Heterogeneous
Elastic Half-Space

In analyzing local effects of heterogeneity of a medium on
tidal tilts and strains, it is sufficient to consider the simplest
model of an elastic and nongravitating half-space.

We consider a system of two auxiliary solutions (corre-
sponding to the values j=1 and 2) of the homogeneous equa-
tions

Li

(
u(j), V (j)

)
= 0, at j = 1 , (47)

∆V (j) = 4πG∇ ·
(
ρu(j)

)
at j = 2 (48)

with boundary conditions of the delta function type at the
outer surface (corresponding to the cases of tangential and
normal concentrated loads applied at a point (x0, y0, 0):

σ
(j)
ik nk = σ0δ(x− x0)δ(y − y0)δ(z)ex

at j = 1 ,
(49a)

σ
(j)
ik nk = σ0δ(x− x0)δ(y − y0)δ(z)ez

at j = 2 .
(49b)

Here (x, y, z) is a local Cartesian system of coordinates ori-
ented in such a way that the z axis is directed along the
normal to a surface element and the x axis coincides in di-
rection with the action of load in the j = 1 solution.

Substituting (47) and (48) into (49a) and (49b), we obtain

σ0u
(1)
x (x0, 0) =

∫
τ

(
u(j),F(r)

)
dτ

= −
∫
τ

δλ
[(
∇ · u(j)

)(
∇ · u0

)
+2δµe

(j)
ik eik0

]
dτ

(j = 1) ,

(50a)

σ0u
(1)
z

(
x0, 0

)
=

∫
τ

(
u(j),F(r)

)
dτ

= −
∫
τ

δλ
[(
∇ · u(j)

)(
∇ · u0

)
+2δµe

(j)
ik eik0

]
dτ

(j = 2) .

(50b)

The expressions for the displacement vectors u(j=1) and
u(j=2) specified by boundary conditions (15a) and (15b) are
given, for example, in [Landau and Lifshits, 1963]. The re-
lated components of the stress tensor can be written in the
following convenient form:
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σ
(1)
xx

σ0
= − 3zx2

2πR5
+

µ

2π(λ + µ)

∂

∂y

(
y

R(R + z)

)
,

σ
(1)
yy

σ0
= − 3zy2

2πR5
+

µ

2π(λ + µ)

∂

∂x

(
x

R(R + z)

)
,

σ
(1)
xy

σ0
= − 3zxy

2πR5

∂2

∂x∂y

(
ln(z + R)

)
,

σ
(1)
xz

σ0
= − 3xz2

2πR5
,

σ
(1)
yz

σ0
= − 3yz2

2πR5
,

σ
(1)
zz

σ0
= − 3z3

2πR5
,

σ
(2)
xx

σ0
= − 3x3

2πR5
+

µ

2π(λ + µ)

(
x

R3
+

∂2

∂x2

(
x

R + z

))
,

σ
(2)
yy

σ0
= − 3xy2

2πR5
+

µ

2π(λ + µ)

(
x

R3
+

∂2

∂y2

(
x

R + z

))
,

σ
(2)
xy

σ0
= − 3x2y

2πR5
+

µ

2π(λ + µ)

∂2

∂x∂y

(
x

R + z

)
,

σ
(2)
xy

σ0
= − 3x2z

2πR5
,

σ
(2)
yz

σ0
= − 3xyz

2πR5
,

σ
(2)
xy

σ0
= − 3x2z

2πR5
.

(51)

Thus, the complete solution of the problem under consider-
ation reduces to the calculation of integrals (50a) and (50b).

In the 2-D case (when elastic moduli do not depend on y),
simple expressions for tidal tilts and strains can be obtained
from formulas (50a, 50b). Integrating components (51) over
y from −∞ to ∞ and taking into account that

∞∫
−∞

dy

R3
=

2

r2
,

∞∫
−∞

dy

R5
=

4

3r4
,

∞∫
−∞

y2dy

R5
=

2

3r2
,

where
r2 = (x− x0)

2 + z2

we obtain
σ̃

(1)
xx

σ0
= −2x2z

πr4
,

σ̃
(2)
xx

σ0
=

2x3

πr4
,

σ̃
(1)
zz

σ0
= − 2z3

πr4
,

σ̃
(2)
zz

σ0
=

2z2x

πr4
,

σ̃
(1)
xz

σ0
= −2z2x

πr4
,

σ̃
(2)
xz

σ0
=

2x2z

πr4
,

σ̃
(1)
yy

σ0
= − λz

π(λ + µ)r2
,

σ̃
(2)
yy

σ0
=

λx

π(λ + µ)r2
.

These expressions allow one to obtain relatively simple an-
alytical solutions of the problem of tidal deformations in an
elastic half-space with heterogeneities independent of y. For
example, if inhomogeneities of elastic moduli are specified
by a value (δλ, δµ) in a rectangular parallelepiped infinite
along the y axis (x1 < x < x2,−∞ < y < ∞, z1 < z < z2),
the solution has the form [Molodensky, 1983a]

∂u
(1)
z

∂x0
= A ln r2

∥∥∥+B
(x− x0)

2

r

∥∥∥∥ , (52a)

e(1)
xx = C arctan

z

x− x0

∥∥∥+B
(x− x0)z

r2

∥∥∥∥ , (52b)

where

A =
1

2πµ(λ + µ)

×
{
∇ · u0

(
µδλ− λ2

2µ
δµ− λδµ

)
−λδµexx0

}
,

B = − δµ

πµ

{
∇ · u0

λ

2µ
+ exx0

}
,

C =
1

π(λ + µ)

{
∇ · u0

(
λ

2µ
δµ− δλ

)
−δµexx0

}
,

exx0 = ∂(u0)x/∂x0 ,

(52c)

and the symbol
∥∥ indicates the result of double substitution

from x1 to x2 in x and from z1 to z2 in z.

6. Thermoelastic Deformation

One of the main shortcomings of the tidal method is its
low immunity to the noise produced by local disturbances in
the atmospheric pressure, groundwater level, and tempera-
ture. The first two effects are either irregular or seasonal
and can be eliminated by increasing the lengths of observa-
tion series analyzed. On the other hand, the thermoelastic
stresses involve strictly periodic diurnal components coincid-
ing in frequency with main solar waves, and their elimination
by averaging is ineffective.

We should note that, due to the amplitude modulation of
the diurnal temperature variations by the annual wave, this
spectrum additionally contains combination frequencies of
the diurnal and annual waves with rather high amplitudes.
Periods of these waves also exactly coincide with periods of
some main lunisolar tidal components (e.g. the Km and Ks

waves, whose period is equal to the sidereal day), so that
their elimination by methods of spectral analysis alone is
also ineffective.

Below we present results of spectral analysis of average
temperature variations in the range of tidal frequencies un-
der the natural assumption that, when averaged over a suf-
ficiently long time interval, the diurnal temperature varia-
tions are determined by the value of the solar flux incident
on the unit area of the Earth’s surface and by the effects of
heat capacity of the medium leading to a constant (season-
independent) phase delay of temperature. Based on these
calculations, we present model corrections to the amplitudes
and phases of main tidal waves recorded at the tidal strain-
meter Protvino station. Comparison of model results with
observations is shown to be effective for obtaining reliable
estimates of the thermal expansion coefficient and bulk mod-
ulus in the anomalous zone adjacent to the Protvino station.

6.1. Spectral Decomposition of the Solar Thermal
Flux.

The value of the solar thermal flux per unit area of the
Earth’s surface is determined by the well-known expression
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Table 1. Numerical values of the coefficients in the expansion of the solar thermal flux (6)

L 0 1 −1 2 −2 0 1
N 1 1 1 1 2 2 2
cln 0 0.479 −2.07×10−2 0 0 0 0

L −1 2 −2 0 1 −1 2
N 2 2 2 3 3 3 3
cln 0 9.67×10−2 −5.8×10−3 0 0 0 0

L −2 0 1 −1 2 −2
cln 0 2.25×10−2 0 0 2.37×10−2 −5.76×10−3

S =

{
S0 cos α at cos α > 0
0 at cos α < 0 , (53)

where S0 is the heat flow per unit area normal to the direc-
tion toward the Sun and α is the angle between the direc-
tion toward the Sun s and the normal to an element of the
Earth’s surface. Neglecting the effects of the Earth’s orbit
eccentricity, the motion of the vectors n and s in space can
be described as

n = i cos(φ− ωt) sin ϑ

+ j sin(φ− ωt) sin ϑ + k cos ϑ ,

s = cosΩt(i cos ε + k sin ε) + j sinΩt

(54)

and, accordingly,

cos α = (n, s) = sin ϑ cos(Ωt) cos ε cos(φ− ωt)

+ cos(Ωt) sin ε cos ϑ + sin(Ωt) sin ϑ sin(φ− ωt) .

Here, i, j,k is the right-handed system of the unit vectors
(the unit vector i lies in the equatorial plane, and j is di-
rected toward the vernal equinox point); ϑ and φ are the
colatitude and longitude, respectively; Ω and ω are the an-
gular frequencies of the orbital and diurnal rotation of the
Earth, respectively; and ε = 23.5◦ is the inclination angle of
the equatorial plane with respect to ecliptic.

In the most general case, the expansion of flow (47) in
spherical functions can be represented in the form

S = S0

∞∑
l=0

∞∑
n=0

n∑
m=−n

P m
n (cos ϑ)

×
(
a
(c)
ln m cos(mφ) cos((mω + lΩ)t)

+ a
(s)
ln m sin(mφ) cos((mω + lΩ)t)

+ b
(c)
ln m cos(mφ) sin((mω + lΩ)t)

+ b
(s)
ln m sin(mφ) sin((mω + lΩ)t)

)
.

(55)

Because we are further interested only in near-diurnal com-
ponents of thermoelastic waves, we can set m = 1. The prob-
lem in question being fully symmetrical about the Earth’s
rotation axis, the coefficients in (49) possess the following
properties at m = 1:

a
(s)
ln m = b

(c)
ln m ,

a
(c)
ln m = b

(s)
ln m .

(56)

In the case of main diurnal waves, setting m = 1 in (55)
and taking (56) into account, (49) can be represented in the
following simple form:

S = S0

∞∑
l=0

∞∑
n=0

cln sin(nϑ) cos(φ− (ω + lΩ)t) . (57)

Numerical values of the coefficients cn in this relation are
presented in the Table 1.

Taking into account relation (57) and the fact that the
sidereal and solar days Tsid and Tsol are interrelated through
the formula

Tsid = Ts(1− Ω/ω) , (58)

it is easy to show that, at l = 0, the coefficients cln in (51)
describe thermal waves having a period exactly coinciding
with the solar day; the l = 1 coefficients describe waves with
a period equal to the sidereal day, and the l = 2 coeffi-
cients correspond to the frequency which is symmetrical to
the frequency of the solar day with respect to the frequency
of the sidereal day (i.e. the period of this wave is equal to
the difference of two sidereal day and one solar day). All
these frequencies are also present in the spectrum of tide-
generating forces and can therefore be eliminated from the
results of tidal observations only by numerical modelling of
thermoelastic strains. Below, we consider several examples
of possible effects.

6.2. Equations of Thermoelastic Strains and Their
Approximate Solutions

General equations describing the thermoelastic strains in
a radially heterogeneous self-gravitating model of the Earth
with a hydrostatic distribution of initial stresses can be writ-
ten as

Li(u, V ) = ∂(kαT )/∂xi , (59)

where the operator L is defined by relation (8). Equation
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Figure 1. Example of results derived from the finite-difference modelling of the tidal strain effect of a
local heterogeneity. (See explanations in the text.)

(59) should be complemented with the boundary condition

(σiknk − (kαt)ni)s = 0 (60)

(nk are components of the outer normal), describing the ab-
sence of stresses at the outer surface of the Earth s.

In the case of local thermoelastic deformations (with the
characteristic horizontal size of the heated layer being much
smaller than the radius of the Earth), the effects of gravita-
tional forces and initial hydrostatic stresses on the thermoe-
lastic deformations in the Earth is small, and (59) can be
replaced by the equation

∂σik

∂xk
= ∂(kαt)/∂xi , (61)

which can be considered in the approximation of a homoge-
neous elastic half-space.

Figure 2. Corrections to the x components of tidal tilts and linear strains for an inhomogeneity specified
in a rectangular parallelepiped with a 1:5:5 ratio of the sides along the x, y and z axes. (See explanations
in the text.)

The effects of local thermoelastic deformations can be sig-
nificant if the medium contains inclusions with anomalous
values of elastic moduli, the thermal expansion coefficient
and temperature. Below, we assume that variations in elas-
tic moduli are small compared to their average values in the
surrounding medium, whereas no limitations will be imposed
on spatial local variations in temperature and the thermal
expansion coefficient.

In solving boundary problem (60)–(61) for a nongravitat-
ing medium, we may set D = V (J) = D(j) = V = 0. The
substitution of (60)–(61) into (15) yields

σ0ux

(
x0, 0

)
=

∫
s

kαT
(
u(j=1),n

)
ds

−
∫
τ

(
u(j=1),∇(kαT )

)
dτ =

∫
τ

kαT∇ · u(j=1)dτ ,

(62a)
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σ0uz

(
x0, 0

)
=

∫
s

kαT
(
u(j=2), n

)
ds

−
∫
τ

(
u(j=2),∇(kαT )

)
dτ =

∫
τ

kαT∇ · u(j=2)dτ .

(62b)

The divergences of the vectors u(j) in these relations are
determined by simple formulas:

∇ · u(j=1) =
σ0

π(λ + µ)

x− x0

r2
,

∇ · u(j=2) =
σ0

π(λ + µ)

z

r2
,

(63)

where r2 = (x− x0)
2 + z2.

Integrals (62a) are easily calculated analytically for cer-
tain simplest models of temperature distribution. For ex-
ample, if the values kαT are described by a piecewise-
continuous function equal to a constant C0 = k0α0T0 in
a rectangular volume with vertexes at the points xi, zk

(i, k = 1, 2) and is zero outside this rectangle, we have

ux(x0, 0) =

∫
τ

kαT∇ · u(j=1)dτ

=
C0

π(λ + µ)

(
z(ln r − 1)

+ (x− x0) arctan(z/(x− x0))
)∥∥ ,

uz(x0, 0) =

∫
τ

kαT∇ · u(j=2)dτ

=
C0

π(λ + µ)

(
(x− x0)(ln r − 1)

− z arctan(z/(x− x0))
)∥∥ ,

(64)

where the symbol
∥∥ indicates the result of the double sub-

stitution from x1 to x2 in x and from z1 to z2 in z.
In calculating the volume integrals (62a, 62b), one should

take into account that, in the case of diurnal temperature
variations, the depth of the layer of appreciable temperature
variations is small compared to the characteristic horizontal
size of the integration domain. Expanding (64) in powers
of the small ratios z2/(x1 − x0) and z2/(x2 − x0), setting
z1 = 0 and differentiating with respect to x0, we obtain

exx = ∂ux(x, 0)/∂x
∣∣
x=x0

=

(
λ +

2

3
µ
)

αT0z2

π(λ + µ)

(
1

x2 − x0
− 1

x1 − x0

)
,

(65)

where exx is the horizontal component of strain along the x
axis at the point x0.

In order to obtain a simple numerical estimate, the value
z2 in (65) can be determined as the thickness of the layer in
which the amplitude of the diurnal temperature variations
decreases by e times. Using the equation of heat conduction
in a homogeneous half-space β∂T/∂t = ∂T/∂z2, where β is

the ratio of the thermal conductivity of the medium to its
heat conduction, we have

z2 = (βω)−1/2 , (66)

where, as before, ω = 2π/T0 and T0 is the sidereal day.

7. Numerical Modelling Examples

Figures 1 and 2 plot results of finite-difference modelling
of tidal strain and tilts for anomalous elastic moduli within
a rectangular parallelepiped (x1 < x < x2,−∞ < y < ∞,
z1 < z < z2).

Figure 1 exemplifies the finite-difference modelling of the
tidal strain effect of a local heterogeneity. The spatial co-
ordinate x is plotted on the horizontal axis, and the ratio
of the horizontal component of tidal strain in the heteroge-
neous medium to that in the homogeneous elastic half-space
is plotted on the vertical axis. (The model is characterized
by an inhomogeneous distribution of the shear modulus µ
and a constant Lame coefficient λ; the shear modulus in-
homogeneity is specified within a rectangular parallelepiped
that is infinite along the y axis and has a 2:1 ratio of the
sides along the x and z axes; the ratio of distances from the
outer surface to the upper and lower faces is 0.4; curve 1 is
the strain at the upper face of the parallelepiped and curve 2
is the strain at the half-space surface.)

The method of calculating tidal strains in a heteroge-
neous medium, described above, is particularly effective in
relation to 3-D problems involving a complex configuration
of the anomalous zone (in this case, the application of the
finite-difference and finite-element approaches provides very
approximate and often unstable solutions). Figure 2 plots
corrections to the x components of tidal tilts and linear
strains for an inhomogeneity specified in a rectangular par-
allelepiped with a 1:5:5 ratio of the sides along the x, y and z
axes; in this model variant, the shear modulus µ is constant
throughout the half-space, and the λ value within the paral-
lelepiped is smaller by 90% (the corrections are normalized
in such a way that tilts in a homogeneous half-space corre-
spond to the value γ = 0.7, i.e. maximum and minimum
tilts near the vertical faces of the parallelepiped correspond
to the values γ = 0.9 and 0.5, respectively).

Figures 3 and 4 plot corrections to the x components of
linear strains (Figure 3) and tidal tilts (Figure 4) for an
inhomogeneity specified within the unit cube (−0.5<x<0.5,
−0.5 < y < 0.5, h < z < 1 + h; h = 1/10). The values of
the Lame parameters within the cube are the same as in the
parallelepiped in Figure 2. Curves 1–5 were calculated on
the profiles y = z = 0 (1); y = 0.25, z = 0 (2); y = 0.5,
z = 0 (3); y = 0.75, z = 0 (4); and y = 1, z = 0 (5). The
only distinction of Figures 5 and 6 from Figures 3 and 4 is
that they were constructed with the value h = 1.

As an example of the application of relations (64)–(65),
we consider possible values of thermoelastic strains for the
Protvino station [Latynina and Boyarsky, 1999]. Analysis of
long-term observations at this station indicates the presence
of well-pronounced seasonal variations in tidal strain am-
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Figure 3. Corrections to the x component of linear strain for an inhomogeneity specified within the
unit cube (−0.5 < x < 0.5, −0.5 < y < 0.5, h < z < 1 + h; h = 1/10). (See explanations in the text.)

plitudes (the K1 wave amplitude in summer is higher than
its winter value by about 40%). Such an anomaly can be
naturally accounted for by the presence of a thermoelastic
strain wave that has a sidereal-day period and an amplitude
amounting to about 20% of the K1 amplitude and should
coincide in phase with the tidal strain variation in summer.
With these relations between amplitudes, frequencies and
phases, treatment of observation series a few months long
fails to separate frequencies of tidal and thermoelastic waves,
but variations in the total amplitude reaching 40% of its
average value should be clearly distinguishable.

Figure 4. Corrections to the x components of tidal tilts for an inhomogeneity specified within the unit
cube (−0.5 < x < 0.5, −0.5 < y < 0.5, h < z < 1 + h; h = 1/10). (See explanations in the text.)

We estimate local variations in the parameter C0 that are
consistent with such anomalies. A relatively rough (1:50000)
map of geodynamic zones separating blocks of the 6th to
10th orders is only available for the area around the Protvino
station; this map resolves details whose linear sizes are no
less than a few hundred meters. However, as seen from rela-
tions (20), the effects of thermoelastic variations attenuate
with distance as 1/L3, implying that the effects of local het-
erogeneities indistinguishable in the map may play the major
role. Substituting the typical value z2 ∼ 0.2 m into (20) and
taking into account geological evidence on the orientation of
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Figure 5. The same as in Figure 3 except for h = 1.

the Protvino station relative to geodynamic zones separating
blocks, we adopt the values x1 = 500 m and x2 = 1300 m
for the respective distances from the tide-recording station
to the near and far boundaries of the anomalous zones of
orders 8–9. Then, the thermoelastic strain value is

exx ∼ 10−4(αT0) .

With the typical values α ∼ (10−5 − 10−4), this strain
amounts to 5 × 10−9 − 5 × 10−8, which is comparable, on
the order of magnitude, with the observed variations in the
amplitude of the tidal wave K1.

Thus, a considerable summer increase in the K1 wave
amplitude at the Protvino station is well consistent with the
effects of thermoelastic deformations in the anomalous zone
near the station.

Relations (19)–(20) and the expansion coefficients of the
average solar thermal flux presented in the table can be used

Figure 6. The same as in Figure 4 except for h = 1.

for numerical modelling of average thermoelastic strains with
an accuracy sufficient for applications.

Detailed comparison of results derived from the solution of
the study problem by various methods and the interpretation
of data on local anomalies of tidal tilts and strains in various
regions are the subject of the next paper.
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