Crystal chemistry of REEXO₄ compounds (X = P, As, V). II. Review of REEXO₄ compounds and their stability fields

UWE KOLITSCH1* and DAN HOLTSTAM2

¹ Institut für Mineralogie und Kristallographie, Geozentrum, Universität Wien, Althanstr. 14, A-1090 Wien, Austria * Corresponding author, e-mail: uwe.kolitsch@univie.ac.at

²Department of Mineralogy, Research Division, Swedish Museum of Natural History, Box 50007,

SE-104 05 Stockholm, Sweden

Abstract: A comprehensive critical review of the phase fields, metastable modifications, solid solution ranges and phase transitions of monazite- and zircon-type REEXO₄ (X = P, As, V) compounds is given. Monazite-type REEPO₄ compounds are stable for REE = La to Gd and metastable for Tb to Ho; zircon-type members exist for REE = Gd to Lu, and Y, Sc. REEAsO₄ compounds with monazite-type structure exist for REE = La to Nd, while zircon-type compounds are known for REE = Pm to Lu, and Y, Sc; no metastable arsenate members are known. The only stable monazite-type REEVO₄ is LaVO₄, but metastable members are known for REE = Ce to Nd. Zircon-type REEVO₄ compounds are stable for REE = Ce to Lu, and Y, Sc, and metastable for REE = La. Solid solution series are complete only if minor size differences exist between REE³⁺ or X⁵⁺ cations in respective end-members. Phase transitions occur under pressure (zircon \rightarrow (monazite \rightarrow) scheelite) and at very low temperatures. The evaluation of the metastable phase fields and of naturally occurring members suggests that metastable modifications of REEXO₄ compounds can occur in nature under certain conditions (formation at temperatures < ~200-300°C; formation via hydrated precursor phases; stabilisation by various impurity cations).

Key-words: REEXO₄ compounds, review, monazite, xenotime, zircon, stability, phase transition.

Introduction

The present article is the second part of studies of the crystal chemistry of REEXO₄ compounds (X = P, As, V). In the first part (the accompanying paper by Kolitsch et al., 2004), we present data on the paragenesis and crystal structure of a phosphatian gasparite-(Ce) [ideally CeAsO₄] from Kesebol, Sweden. Apart from the important role of phosphate members in the geosciences, all REEXO4 compounds are also of increasing importance in several related fields of science. The physico-chemical properties of monazite-type synthetic REEPO₄ compounds have been studied in some depth in the last two decades. These phosphates are nontoxic, and LaPO₄-Al₂O₃ composite ceramics with excellent high-temperature properties, and high damage tolerance, machinability and oxidation resistance have been characterised (e.g., Davis et al., 1998, 2000; Marshall et al., 1999, and references therein). Similarly good high-temperature properties are known for the zircon-type REEPO₄ (Hikichi et al., 1998). Freezing points for some REEPO₄ phases range between 1896°C (REE = Er) and 2072°C (REE = La) (Hikichi et al., 1979, 1987; Hikichi & Nomura, 1987). Melting points of members along the series $REEAsO_4$ (REE = La-Lu) are also very high and increase from 1830°C to 2000°C (Angapova & Serebrennikov, 1973). REEPO₄ materials have been proposed as important candidates for host materials suitable for the stabilisation and disposal of high-level nuclear waste (e.g., Boatner et al., 1980; McCarthy et al., 1980; Pepin et al., 1981; Volkov, 1999; Meldrum et al., 2000; Ewing, 2001; Ewing & Wang, 2002). Furthermore, REEPO₄ compounds show intense blue photoluminescence (e.g., Aia, 1967), and they are promising scintillators, especially if doped with Ce, Eu or Sm (e.g., Lempicki et al., 1993, Wojtowicz et al., 1995; Moses et al., 1998). GdPO₄ is an excellent candidate for a chemically stable, water-insoluble neutron absorber for inclusion in spent nuclear fuel canisters (Lessing & Erickson, 2003). Interestingly, both REEPO₄ phases and their arsenate and vanadate analogues were found to be ferroelectrics for most REE members (e.g., Ismailzade et al., 1980, 1981; Kurbanov et al., 1982; Hur et al., 1990). Nd-doped YVO₄ is one of the most interesting laser hosts for micro and diode-pumped solid state lasers (e.g., Guillot-Noel et al., 2000). Recently, REEVO₄ materials were reported to be efficient for the catalytic treatment of propane (*e.g.*, Au & Zhang, 1997) and hydrogen sulphide (Li & Chi, 2001).

The present article provides a comprehensive review of the monazite- and zircon-type phase fields (stable and metastable), as well as solid solution ranges and phase transitions of REEXO₄ (X = P, As, V) compounds. Furthermore, impor-