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Abstract The complexity of the processes responsible for
volcanic eruptions makes a theoretical approach to
forecasting the evolution of volcanic unrest rather diffi-
cult. A feasible strategy for this purpose appears to be the
identification of possible repetitive schemes (patterns) in
the pre-eruptive unrest of volcanoes. Nevertheless, the
limited availability and the heterogeneity of pre-eruptive
data, and the objective difficulty in quantitatively recog-
nizing complex pre-eruptive patterns, make this task very
difficult. In this work we address this issue by using a
pattern recognition approach applied to the seismicity
recorded during 217 volcanic episodes of unrest around
the world. In particular, we use two non-parametric
algorithms that have proven to give satisfactory results in
dealing with a small amount of data, even if not normally
distributed and/or characterized by discrete or categorical
values. The results show evidence of a longer period of
instability in the unrest preceding an eruption, compared
to isolated unrest. This might indicate, even if not
necessarily, a difference in the energy of processes
responsible for the two types of unrest. However, if the
unrest is followed by an eruption, it seems that the seismic
energy released during the unrest (parameterized by the
duration of the swarm and the maximum magnitude
recorded) is not indicative of the magnitude of the
impending eruption. We also found that, in general, unrest
followed by the largest explosive eruptions have a longer
repose time than those related to moderate eruptions. This
evidence supports the fact that the occurrence of a large
eruption needs a sufficient amount of time after the last
event in order to re-charge the feeding system and to
achieve a closed-conduit regime so that a sufficiently
large amount of gas can be accumulated.

Keywords Precursory pattern · Common pattern · Pattern
recognition · Volcanic unrest · Seismic swarm · Volcanic
explosivity · Index VEI

Introduction

Volcanic eruptions often have devastating effects. A basic
step towards the mitigation of their consequences consists
of forecasting the time evolution of pre-eruptive unrest at
volcanoes. The present state of knowledge of the complex
physical process responsible for the volcanic eruptions
makes a theoretical approach to forecasting rather diffi-
cult. In this situation, the empirical identification of
possible repetitive schemes (patterns) in the pre-eruptive
unrest of volcanoes may represent a viable strategy to
improve significantly our forecasting capability and our
physical knowledge of the system. The potential identi-
fied patterns might not only indicate whether the unrest is
evolving into an eruption but also provide an estimation
of the energy associated with the volcanic eruption, for
instance the Volcanic Explosivity Index (VEI).

Volcanic unrest has a complex nature, involving
different interactive processes. An almost complete
picture of the phenomena consists of a large variety of
different signals, for example different seismicity vari-
ables, deformation, gas emission, and so on. A robust
technique that aims to identify possible pre-eruptive
patterns in volcanic unrest has to take into account all, or
at least some, of these measurements simultaneously. This
necessity has been recently discussed by Sparks (2003) as
the key to successful forecasting, and it is the basic
concept underlying many studies made by expert volca-
nologists in dealing with volcanic unrest (see, for
instance, the volume by Newhall and Punongbayan
1996 and, in particular, Harlow et al. 1996; Voight et
al. 1999; Hill et al. 2002). In these studies, to set some
empirical rules mainly based on human experience,
different parameters are actually taken into account
simultaneously. Here, the human brain of the expert
volcanologist works as a qualitative pattern recognition or
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neural network code, identifying empirical multivariate
patterns from past experience in order to establish some
rules for future pre-eruptive unrest phases. However, even
if the human brain is by far much more flexible and
elastic than a computer in applying a pattern recognition
or neural network code, it has some shortcomings that
might limit the use of the human experience and favor the
use of computer codes (e.g., Cammarata 1997). In
particular, the human brain can hardly deal simultaneous-
ly with 3 or more variables. In other words, the higher the
number of variables considered, the lower the capability
of the human brain in detecting patterns (even simple
ones). Also, the personal and subjective experience of a
scientist is usually more difficult to extend to the rest of
the volcanological community than rules obtained
through a quantitative and reproducible approach. More-
over, the latter produces results that are definitely much
easier to submit to rigorous scientific validation. Because
of these reasons, it might also be useful to consider a
computer-based approach, looking for strict objective and
quantitative rules.

In fact, quantitative rules have been already sought in
forecasting eruptive activity. These studies are very often
based on the retrospective analysis of a single volcanic
event (e.g., Shibata and Akita 2001; Gottsmann and
Rymer 2002), or of events from a single volcano (e.g., Aki
and Ferrazzini 2000; Londo�o and Sudo 2002) that almost
always take into account only one variable and not a
multivariate dataset. The approach based on a single
volcano, and above all, on a single eruptive episode, has
an intrinsically strong limitation: the analysis, even though
detailed, does not allow for the discrimination of the
general pre-eruptive patterns from the peculiarities of the
volcano or eruption considered. However, possible general
pre-eruptive patterns are definitely the most important
ones because they contain information useful for improv-
ing the knowledge of the physics of the erupting system.
At the same time, their identification may furnish
quantitative rules that can be profitably used to forecast
the time evolution of the unrest in other volcanoes. In
practice, in fact, we often have to cope with very
dangerous volcanoes, for instance Mount Vesuvius, where
no quantitative measurements relative to past pre-eruptive
phases are available. In such cases, it becomes very
difficult to understand when an unusual behavior of the
volcano is really linked to an impending large eruption.
Hence, the common experience acquired in other erupting
explosive volcanoes (e.g., Shimozuru 1972; McNutt 1996)
becomes the most relevant information.

The idea of this paper is to look for quantitative and
complex (i.e., coming from a multivariate dataset) pre-
eruptive patterns common to many different volcanic
areas of the world. The main difficulties in reaching this
goal are (1) the scarce availability and the incompleteness
of pre-eruptive data, and (2) the ability of the methods
used in objectively recognizing possible complex and
quantitative pre-eruptive patterns.

As regards point (1), we have to collect a sufficient
number of multivariate data coming from different

volcanoes. In fact, some effort has been dedicated until
now to collecting multivariate pre-eruptive data coming
from different volcanoes into a single dataset. Remarkable
examples are the catalogs compiled by Newhall and
Dzurisin (1988) and Benoit and McNutt (1996), just to
mention a few. The latter provides seismic data, in a time
period of 10 years, relative to pre-eruptive phases on more
than 100 volcanoes. In spite of the huge effort made by the
authors, the collected data are rather rough, being very
often categorical, strongly heterogeneous (for instance, the
magnitude measurements) and in some cases qualitative.

In our opinion a definite improvement in this field can
be achieved only through an international and coordinated
effort, such as the WOVOdat project (www.wovo.org/
wovodat.htm).

As regards point (2), the main difficulty is predomi-
nantly technical. A complication arises in the fact that the
available data are usually few, often categorical, corre-
lated, and their statistical distributions are seldom
Gaussian (see Benoit and McNutt 1996). This precludes
the use of all the parametric multivariate techniques
successfully used in many other scientific fields (e.g.,
Fukunaga 1990). Note that, when few data are available,
neural network codes cannot be used either, because they
need a large amount of data to correctly perform the
training, validating and testing steps (Tarassenko 1998).
Furthermore, in this paper we are mainly interested in the
physical meaning of the possible common patterns. With
a neural network approach, we might be able to classify
different types of unrest, but it would not be clear what
the physical rules are that allow the network to discrim-
inate between different types of unrest.

In this work, we provide a possible strategy of analysis
that properly takes into account all of the issues discussed
above. In particular, we apply two different non-para-
metric pattern recognition codes to search for common
pre-eruptive patterns in a catalog containing data recorded
during several volcanic unrest episodes around the world.
The dataset consists of the Benoit and McNutt catalog
(1996) plus all the available information concerning the
seismic swarms related to the largest (VEI�4) explosive
eruptions that occurred during the last century, and other
episodes of volcanic unrest for which information was
found in the literature. The main goal is to provide new
insights concerning the following questions:

– Do the seismic unrest episodes occurring before
volcanic eruptions have common patterns?

– Do these possible common patterns reflect the mag-
nitude of the following eruption?

– Do these possible common patterns reflect the type of
the following eruption or the initial state of the conduit
(closed or open)?

Although the catalog used is certainly the best
available, its intrinsic quality may still be too insufficient
(few data, with missing measurements) for obtaining
quantitative and useful rules to forecast volcanic events.
At the same time, it is possible to achieve interesting
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scientific insights for improving our knowledge of the
physics of the eruptive processes. In any case, indepen-
dent from the scientific results obtained here, an ambi-
tious aim of this paper is to introduce a new quantitative
perspective in approaching the eruption forecasting issue.
As soon as a worldwide catalog of volcanic unrest of good
quality is available, the strategy of analysis described here
can provide a very powerful tool in the recognition of
quantitative rules for forecasting the temporal evolution
of unrest in volcanic areas.

The dataset

The bibliography about volcanic eruptions dates back to
historical times, but only for the catastrophic events (such
as Vesuvius, 79 a.d.). Furthermore, in these cases, the
reports are purely qualitative: morphological descriptions,
eruptive products and descriptive temporal evolution.
This information is not particularly useful for a quanti-
tative approach to eruption forecasting. Thanks to the
evolution in instrumentation, in the last few decades
quantitative investigations have begun together with
geophysical data reports. It is now possible to find a
great number of different data relative to volcanic unrest
in the form of seismological records, deformation mea-
sures, temperature or magnetic field variation detections,
and so on. Among these, seismological information are
the most available and reliable, mainly because of the
great diffusion of seismometers compared to that of other
instrumentation. Furthermore, among all the precursors of
an eruption, volcanic earthquakes almost always charac-
terize periods of volcanic unrest. For these reasons, we
concentrated our study on the seismic data relative to the
episodes of unrest which occurred in the last 50 years.

The dataset that we collected and analyzed consists of
measurements relative to 217 seismic swarms in volcanic
areas (see Table 1). For each swarm, we collected as
many measurements as possible that are potentially
related to the occurrence of a volcanic eruption and/or

to the estimation of its VEI, in case an eruption occurs.
Concerning the seismicity that characterizes the unrest
followed by either low explosive events or not followed
by eruptive activity (we call the latter isolated unrest), we
mainly referred to Benoit and McNutt (1996). These two
types of unrest are quite frequent, and in that catalog we
were able to find a sufficient number of cases to be
analyzed.

On the other hand, due to the rarity of this type of the
event, many more difficulties were encountered concern-
ing the seismicity that characterizes the unrest before the
most explosive eruptions (VEI�4). Because of this,
further research was necessary.

For the VEI�4 events from 1950 to 1994, we primarily
consulted the Volcanoes of the World (Simkin and Siebert
1994). We complete the list up to 2001 through the
personal communications of Lee Siebert.

One problem was where to find information about the
seismicity, characterizing the unrest that preceded the
VEI�4 eruptions. We started by systematically seeking
articles about these eruptive events since 1950. Some of
the articles are hardly available (not being published in an
easily accessible magazine, e.g., Taylor 1957). Some
others, not being related to seismicity, were not useful for
our purposes (e.g., Buell and Stoiber 1976). However, all
the papers provided a bibliography containing a further
list of references. As regards the last events of this
century, we found the most interesting information on
web sites.

For every useful article found, we had to be careful in
giving the right meaning to the information since the
author’s interpretation can greatly influence the data. In
order to obtain continuity among the different types of
eruptions, acknowledging that they are subjective, we
interpreted the data according to the definitions of seismic
swarm and its duration used by Benoit and McNutt (1996)
in their database.

To summarize, we consulted the database of Benoit
and McNutt (1996), the catalog of Simkin and Siebert
(1994), the Bulletin of Volcanic Eruptions (1963–90), and

Table 1 This is a part of the
dataset of seismic swarms we
used in this work. In particular,
all the largest post-1950 erup-
tions (VEI�4) included are
shown. A negative value for
MXM, PRE and/or TRE means
that a measurement is missing

Volcano name VEI Swarm date
yyyy mm dd

DUR
d

MXM REP
y

PRE
0=n,
1=y

TRE
0=n,
1=y

PHI

Bezymianny 5 1955 10 11 172 4.4 1000 0 1 7.52 E 0
Shiveluch 4 1964 11 2 10 4.9 14.6 1 1 9.07 E �1
Fernandina 4 1968 6 11 16 5.4 0.05 �9 1 7.85 E �3
Plosky Tolbachik 4 1975 6 27 9 0.5 0.5 �9 1 3.13 E 0
Augustine 4 1976 1 21 0.625 0.3 4.28 �9 �9 3.51 E 0
St. Helens 5 1980 3 20 59 5.0 123 0 1 1.36 E �2
Alaid 4 1981 4 26 22 3.5 8.5 �9 0 3.58 E 0
Pagan, north 4 1981 4 1 45 4.0 56 �9 1 3.61 E �3
El Chichon 5 1982 3 1 28 4.0 132 1 1 7.17 E �2
Galunggung 4 1982 4 4 0.260 �9.0 63.7 �9 1 3.14 E �3
Colo (Una Una) 4 1983 7 4 24 4.6 45 �9 1 1.23 E �1
Augustine 4 1986 2 10 45 2.1 8.7 1 �9 3.50 E 0
Kelut 4 1989 11 15 90 2.0 21.9 �9 1 8.15 E �3
Pinatubo 5 1991 4 5 67 4.3 675 0 1 5.37 E 0
Spurr 4 1991 8 15 180 1.7 38.1 �9 1 1.98 E +1
Rabaul 4 1994 9 18 1.125 5.1 50.7 1 �9 3.45 E 0
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the available literature on the large eruptions (VEI�4) of
the last century, especially in its second half (Gorshkov
1959; Gorshkov and Dubik 1970; Simkin and Howard
1970; Zobin 1971; Reeder et al. 1977; Faberov 1983;
Fedotov et al. 1983; Gorel’chik et al. 1983; Zobin 1983;
Decker and Decker 1981; Jensen et al. 1983; Tokarev
1985; Swanson and Kienle 1988; Smithsonian Institu-
tion’s Global Volcanism Network 1990; Miller and
McGimsey 1998; Paolo Papale, personal communica-
tion, 2002; http://www.volcano.und.nodak.edu; http://
www.volcano.si.edu; http://www.vulcan.wr.usgs.gov).

For each swarm, we found measurements of the
following variables:

– The duration (DUR) of the swarm (in days)
– The repose time (REP) associated to the swarm, i.e.,

the time (in years) elapsed between the end of the last
eruption and the beginning of the swarm

– The maximum magnitude (MXM) recorded in the
swarm

– A binary indicator (PRE) of the occurrence of a
previous swarm (0=no, 1=yes)

– A binary indicator (TRE) of the occurrence of volcanic
tremor (0=no, 1=yes)

– The f function value (PHI). Considering the k-th
swarm occurring in a certain volcanic area, PHI (f(k))
is a perturbation function (Marzocchi 2002) that
mimics the stress induced on this volcanic system by
all the large remote earthquakes that occurred in the 35
years preceding the k-th swarm. In particular:

fðkÞ ¼
XN

j¼1

M0jw djk

� �
ð1Þ

where N is the number of earthquakes that occurred in the
35 years preceding the onset time of the k-th swarm, M0j is
the seismic moment of the j-th earthquake and w(djk) is a
weight function dependent on the relative distance between
the location of the k-th swarm and the epicenter of the j-th
earthquake (see Fig. 3 in Marzocchi 2002). The seismic
data are taken from the catalog of Pacheco and Sykes
(1992) for the period 1900–1989, and from the CMT
Harvard catalog (Dziewonsky et al. 1981; Dziewonsky and
Woodhouse 1983) for recent years. The earthquakes
considered are the events with Ms�7 and depth �70 km.

While DUR, PHI and REP have been retrieved for
almost the totality of the catalog, PRE, TRE and MXM
retrieving has been much more difficult (see Fig. 1). The
magnitude measurements are in different scales for every
country, and have been assumed to be consistent. For the
parameters TRE and PRE, a 1 value simply means that
some information regarding the feature has been reported,
as in Benoit and McNutt (1996). If a report states that, for
example, “TRE measurements have been conducted,” the
TRE feature is set to 1 in Benoit and McNutt (1996),
which we have also done in our dataset, regardless of the
occurrence of TRE. A 0 value means that a negative result
on the occurrence of TRE or PRE was reported.

The measurements which could not be retrieved are set
to a number standing for a missing value that will not be
used in the analysis. As a final remark, we emphasize that
the resulting catalog, even though it is still rough and
needs further improvement, is certainly the largest one
available at present.

Pattern recognition analysis

Pattern recognition (PR) is a set of very powerful
multivariate analysis techniques allowing, in principle,
the identification of possible repetitive schemes or patterns
among the objects belonging to distinct classes. While
usual data analysis takes into account only one variable of
the process at a time, PR methods are able to extract
information from any possible combination (linear or not)
of variables that are suspected to have an influence on the
process. Moreover, PR methods do not need the construc-
tion of a theoretical model, but are usually based on a
basic and sole hypothesis, i.e., the assumption that the
phenomenon under study is governed by a finite number
of complex, but repetitive patterns of the variables.

For these appealing properties, we believe that PR
might also be a very promising tool in earth science. Until
now, the only few remarkable efforts in this direction are
CN and M8 algorithms (Keilis-Borok et al. 1988; Keilis-
Borok and Kossobokov 1990), and applications to
volcanology (Mulargia et al. 1991,; Vinciguerra et al.
2001). Most of these algorithms, including CN and M8,
are based on a different type of PR analysis: the so-called
logical PR. This type of PR analysis requires the arbitrary
choice (by the user) of several parameters influencing the
behavior of the algorithm. Because of this, the risk of
overfitting the data increases drastically. Furthermore,
any systematical evaluation of how the values chosen for
the parameters influence the performance of these algo-
rithms has not as yet been conducted. For these reasons, in
this study we prefer using different algorithms based on a
different approach: the so-called statistical PR. The

Fig. 1 Relative frequencies of the features in the dataset
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algorithms belonging to this category do not need the
selection of parameter values by the user.

From a technical point of view, the main goal of PR
methods is to classify objects. Every object is represented
by an array of qualitative or quantitative variables. The
procedure of analysis consists of three different steps: the
learning phase, the voting phase, and the control exper-
iments. In the learning phase, a set of known and classified
objects is analyzed in order to recognize all the possible
patterns that characterize each class, i.e., the combinations
of variables that allow for the discrimination of objects
belonging to different classes. This step turns out to be
very useful also from a theoretical point of view, since it
allows for the recognition, among all the suspected
variables, of those that really play an important role in
the process under study. In the voting phase, the patterns
identified during the learning are used to classify new
objects, whose class is unknown to the algorithm. Finally,
the control experiments allow one to check the stability of
the results by repeating the learning and the voting phases
with different values of the algorithm’s parameters.

In the present study, the main goal of the analysis is to
recognize the prominent characteristic of the seismic
swarms preceding a volcanic eruption and to find possible
relationships with the VEI of the impending eruption. Due
to the very limited amount of data available, in this paper
we will perform only the learning phase, and attempt to
recognize, as a first step, all the possible patterns in our
dataset. In spite of the impossibility of testing the results
on independent data (voting), we have used some
empirical strategies to check the presence of possible
overfit in the results.

Before performing the learning phase, we first had to:

1. Define the objects to be analyzed and the classes
involved in the problem, and

2. Select the statistical PR algorithm that is most suitable
to the problem we are dealing with

We shall explain these two steps more accurately in
the following.

Definition of the objects and of the classes

The objects of the analysis are the seismic swarms. Any
object is represented by a vector that contains all the
measurements (the features) that we can associate to the
object. Due to the large differences between the maxi-
mum and minimum measurements in the catalog for
DUR, REP and PHI, we decided to use the logarithm of
these features. Thus, each vector has the following
components: Log (DUR), Log (REP), MXM, PRE, TRE
and Log (PHI).

Each vector has then a further component: it is the VEI
associated to the eruption (if any) following the swarm
described by the vector. If the swarm has not been
followed by an eruption, a fictitious VEI is associated to it
equal to �1. In this paper, the attribution of an object to its

class depends on the VEI of the subsequent eruption (if
any). Since we had eight different values for the VEI (�1,
0, 1, 2, 3, 4, 5, 6) in our catalog, in principle we had eight
different classes of objects. For simplicity, the VEIs of the
swarms were be grouped in order to reduce the problem to
a two-class problem, i.e., class 1 versus class 2. We kept at
least one unit of VEI between the lowest VEI of the upper
class and the highest VEI of the lower class. For example,
in order to find patterns that distinguish a swarm preceding
a small eruption from one preceding a large eruption, we
considered as class 1, all the swarms with VEI�4, and as
class 2, all the swarms with 0�VEI�2. The VEI=3 events
were excluded to emphasize the distinction between the
classes. In this way we avoided more safely, with no loss
of generality, any kind of overlapping between the classes.
Note that we are interested in the most general features
distinguishing the two classes.

The complete list of the various analyses (class 1 vs.
class 2) performed is provided in the following.

Selection of the most suitable statistical PR algorithms

In this paper, we will try to identify repetitive patterns
between two distinct categories of objects. Many statistical
PR 2-class algorithms, both parametric (e.g., maximum
likelihood estimation, see Duda and Hart 1973) and non-
parametric (e.g., binary decision tree, Fisher’s analysis, K-
nearest neighbors, linear or quadratic discriminant analy-
sis, see Rounds 1980; Duda and Hart 1973; Fukunaga
1991), have been successfully used in other scientific
fields such as engineering, biology, economy, medicine. In
these disciplines, the available datasets are large and
continuous, and the variables are normally distributed.

Our dataset, as well as most of the datasets in earth
sciences, do not have these “nice” features. In particular,
it is composed of a small amount of data, some of the
variables (if not all) are not normally distributed (e.g., the
duration of the swarm, and the occurrence of previous
swarms and tremor), and some might be also correlated
(e.g., the duration and the maximum magnitude). More-
over, some of the variables we have collected in the
catalog are probably completely irrelevant to the eruptive
process. Indeed, we compiled our catalog by taking the
largest possible number of potentially relevant variables
available for each seismic swarm, because we did not
know which (if any) of these variables are important for
the subsequent occurrence of a volcanic eruption, or for
the determination of the VEI of that eruption.

As a result, we needed to use a statistical PR algorithm
that could perform satisfactorily on small datasets and is
characterized by continuous and discrete or categorical
variables that are perhaps correlated. Possibly, we are
including in the analysis some variables which do not
affect the eruption occurrence or its VEI, thus it was
necessary to make use of a statistical PR algorithm that
was able to extract those variables having a predominant
influence on the processes related to volcanic unrest.
According to these considerations, in this work we used
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two statistical PR 2-class algorithms that we had previ-
ously simulated using synthetic data and that had proved
capable of recognizing patterns satisfactorily on small
datasets, also with correlated and/or discrete (also cate-
gorical) data, and identifying the variables having a
predominant role in the process (Sandri and Marzocchi
2003). These two non-parametric algorithms are called
binary decision tree (BDT; Rounds 1980; Mulargia et al.
1992) and Fisher discriminant analysis (FIS; e.g., Duda
and Hart 1973). The use of both algorithms, based on very
different approaches, allowed us to check if the results
that we obtained are due to the type of algorithm used.
Although the risk of overfit can be excluded only by
voting a set of independent data, the stability of the results
obtained by these two different algorithms is indirect
evidence that the risk of overfit is reduced.

Algorithm BDT was originally designed for hierarchi-
cally ordered data, but it has also exhibited very good
performance on different data. It builds up a decisional
tree where, at each level, a threshold value for a certain
variable determines which branch has to be followed.
BDT provides automatically the subset of variables
playing an important role in the process.

Algorithm FIS is a non-parametric method because,
although it assumes that the boundary between the classes
is a hyperplane, it does not make any a priori assumption
on the distribution of the data. It is a type of linear
discriminant analysis, in which the original data are
projected along a direction maximizing the ratio of the
dispersion between the two classes to the dispersion
inside each class. This algorithm, according to Fukunaga
(1990), is here applied through a so-called branch-and-
bound technique in order to identify the relevant features
of the process. The feature selection performance by the
branch-and-bound technique has been previously tested
on synthetic data as well.

For a more complete definition of the algorithms and
of the branch-and-bound technique, see Appendixes A, B
and C.

Results of the analysis and discussion

We performed three different 2-class analyses with
different goals. In particular they are:

1. VEI�1 vs. VEI=�1 where class 1 is represented by all
the swarms followed by a volcanic eruption (VEI�1)

and class 2 by all the isolated swarms (VEI=�1). This
analysis was done in order to recognize the general
differences between the swarms preceding a volcanic
eruption and the isolated swarms.

2. VEI�4 vs. VEI=�1 where class 1 is represented by all
the swarms followed by a strongly explosive eruption
(VEI�4) and class 2 by all the isolated swarms
(VEI=�1). This analysis was done in order to recog-
nize the differences between the swarms preceding a
strong explosive volcanic eruption and the isolated
swarms.

3. VEI�4 vs. 0�VEI�2 where class 1 is represented by all
the swarms followed by a strong explosive eruption
(VEI�4) and class 2 by all the swarms followed by
moderate eruptions (0�VEI�2). This analysis was done
in order to recognize the differences between the swarms
preceding a strongly explosive volcanic eruption and the
swarms preceding small or moderate eruptions.

In each analysis, we used only “complete” objects, i.e.,
the objects having no missing values for the features
considered in the analysis. We start by considering all the
six features. Due to the missing measurements, the
analysis that considers all the six features was carried
out on a low number of objects (see Tables 2, 3, 4). In
order to perform the analysis on a higher number of
objects, and to check the stability of the results obtained
on different learning datasets, we performed two addi-
tional learning phases that concern a smaller number of
features. In particular, we repeated the statistical PR
analysis concerning (1) DUR, REP, MXM and PHI, and
(2) DUR, REP and PHI (see Tables 2, 3, 4). The choice of
the features in (1) and (2) was due to their more common
reporting (allowing for a larger number of complete
objects) and to their importance in the process as
suggested by the analysis carried out on all the six
features (see below).

Since we were interested in the recognition of possible
patterns in our swarms dataset, in each analysis we used
all of the available complete objects for the learning
phase. This allowed us to make use of as much data as
possible to define the patterns in the data.

VEI�1 vs. VEI=�1

As shown in Table 2, both algorithms recognize the DUR
as the predominant variable for the discrimination

Table 2 VEI�1 (class 1) vs. VEI=�1 (class 2). In the first column,
the features used in the learning phase are shown; in the second
column, the number of available objects with no missing values for
any of the features used is shown for each class; in the two last

columns, the features recognized as relevant are reported (third
column, for BDT algorithm, fourth column for FIS algorithm). An
empty box means that the algorithm does not recognize any pattern

Features analyzed Number of complete objects Relevant features
identified by BDT

Relevant features
identified by FIS

DUR, MXM, REP, PRE, TRE, PHI Class 1: 22; Class 2: 13 DUR DUR, REP
DUR, MXM, REP, PHI Class 1: 46; Class 2: 85 DUR DUR
DUR, REP, PHI Class 1: 66; Class 2: 121 DUR
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between class 1 and class 2. In particular, swarms
preceding a volcanic eruption are generally longer than
isolated swarms. This agrees with the results obtained by
Benoit and McNutt (1996). Due to the very limited
amount of data available, the parameters of the pattern
(i.e., the thresholds in DUR by which the algorithms
classify a swarm as pre-eruptive or isolated) have a very
large uncertainty. However, just to give an idea of the
magnitude, the thresholds are in the order of a few days (a
week). For example, Figs. 2 and 3 show the case in which
four features (DUR, MXM, REP and PHI) are considered
in the analysis for BDT and FIS algorithms, respectively.
The BDT plot (Fig. 2) is very intuitive. The FIS plot
(Fig. 3) instead needs a little explanation. In Fig. 3, we
plotted the frequency of the learning objects (class 1 and
class 2 separately) as a function of the pattern found, i.e.,
the combination of relevant variables identified. In this
case, it is only Log (DUR). The data shown are
standardized (mean and variance values are given in the
figure caption). Should a new object have to be voted, we
should first standardize it, then project it along Fisher’s
criterion line (in this case it is simply the standardized
Log (DUR) axis). Then, the new object to be voted will be
attributed to class 1 (precursory swarm) if it falls to the
right of the decision boundary (i.e., if its standardized Log
(DUR) is larger than 0.075), otherwise it will be attributed
to class 2.

We interpreted the longer pre-eruptive swarm duration
as an indication of a prolonged instability during pre-
eruptive unrest. We did not observe any significant
difference in the magnitude of the earthquakes among the
episodes of unrest belonging to the two classes. Because
of this, if we assume that the seismic rate among the
episodes of unrest is comparable, we might interpret the
prolonged duration of precursory unrest as an indication
of higher energy involved.

Fig. 2 Pattern recognition results for BDT relative to the first
experiment, in which class 1 is given by swarms preceding VEI�1
eruptions and class 2 by isolated unrest when the features DUR,
MXM, REP and PHI are considered. The classification was
performed on the basis of the DUR and of the threshold value
indicated. In total, 91 swarms are correctly classified and 40 are not

Table 3 VEI�4 (class 1) vs. VEI=�1 (class 2). In the first column,
the features used in the learning phase are shown; in the second
column, the number of available objects with no missing values for

any of the features used is shown for each class; in the two last
columns, the features recognized as relevant are reported (third
column for BDT algorithm, fourth column for FIS algorithm)

Features analyzed Number of complete objects Relevant features
identified by BDT

Relevant features
identified by FIS

DUR, MXM, REP, PRE, TRE, PHI Class 1: 5; Class 2: 13 DUR DUR, PHI
DUR, MXM, REP, PHI Class 1: 17; Class 2: 85 MXM DUR
DUR, REP, PHI Class 1: 18; Class 2: 121 REP, DUR REP

Table 4 VEI�4 (class 1) vs. 0�VEI�2 (class 2). In the first
column, the features used in the learning phase are shown; in the
second column the number of available objects with no missing
values for any of the features used is shown for each class; in the

two last columns, the features recognized as relevant are reported
(third column for BDT algorithm, fourth column for FIS algo-
rithm). An empty box means that the algorithm does not recognize
any pattern

Features analyzed Number of complete objects Relevant features
identified by BDT

Relevant features
identified by FIS

DUR, MXM, REP, PRE, TRE, PHI Class 1: 5; Class 2: 12 REP
DUR, MXM, REP, PHI Class 1: 17; Class 2: 17 REP
DUR, REP, PHI Class 1: 18; Class 2: 34 REP REP, PHI
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VEI�4 vs. VEI=�1

As shown in Table 3, here we find again that the
predominant variable is DUR for both algorithms. A
swarm preceding a large explosive eruption is generally
longer than an isolated swarm. The same considerations
regarding the parameters of the pattern made above apply
here. Figures 4 and 5 are shown as examples for the BDT
and FIS, respectively, when all six features are considered
in the analysis. In this particular case, FIS recognized two
relevant features (the second one is PHI). Should we need
to vote a new swarm, we should first standardize its Log
(DUR) and Log (PHI) according to the means and
variances given in the caption of Fig. 5. Then, we should
project it along Fisher’s criterion line, which is a linear
combination of the relevant variables identified (given in
the x-axis of Fig. 5). Finally, the object will be attributed
to class 1 if its standardized and projected value is larger
than 0.40, otherwise it will be attributed to class 2. Even if
FIS recognizes two relevant variables, the largest part of
the discriminating capability in Fig. 5 is given by DUR

Fig. 3 Pattern recognition results for FIS relative to the first
experiment in which class 1 is given by swarms preceding VEI�1
eruptions and class 2 by isolated unrest when the features DUR,
MXM, REP and PHI are considered. The classification was
performed on the basis of DUR, which is the only relevant variable
identified by FIS algorithm in this case. The frequency of the

learning objects is given as a function of this variable. The mean of
Log (DUR) for the whole set of learning data is 2.24, and the
variance is 4.5. The standardized voting objects should be attributed
to class 1 if they are larger than 0.075; otherwise, class 2. Out of our
learning swarms, 90 swarms are correctly classified and 41 are not

Fig. 4 Same as in Fig. 2 but relative to the case in which class 1 is
given by swarms preceding VEI�4 eruptions and class 2 by isolated
unrest when all the features are considered. The classification was
performed on the basis of the DUR and of the threshold value
indicated. In total, 16 swarms are correctly classified and 2 are not
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(see the much larger coefficient for Log (DUR), com-
pared to the one for Log (PHI), in Fisher’s criterion line).

Again, we interpreted this result as an indication of the
prolonged instability during unrest that precedes large
explosive eruptions, compared to isolated unrest. The
same considerations for the above section apply here.

VEI�4 vs. 0�VEI�2

As shown in Table 4, in this case, there is no evidence of
magnitude or duration difference in these two seismic
swarm types, which suggests that the intrinsic character-
istics of the seismic swarm may not be indicative of the
eruption magnitude. This result agrees with statements
from Newhall and Hoblitt (2002). Here, the only (or the
most) relevant feature identified by both algorithms is
REP (see Table 4). Generally, the swarms corresponding
to the most explosive eruptions have a longer repose time
than those related to moderate eruptions (Simkin and
Siebert 1994; Newhall and Hoblitt 2002), as shown in
Figs. 6 and 7 (for the case in which DUR, REP and PHI

Fig. 5 Same as in Fig. 3, but relative to the case in which class 1 is
given by swarms preceding VEI�4 eruptions and class 2 by
isolated unrest when all the features are considered. The classifi-
cation was performed on the basis of DUR and PHI, which are the
relevant variables identified by FIS algorithm in this case. The
mean of Log (DUR) for the whole set of learning data is 1.63, and
the variance is 5.2. The mean of Log (PHI) for the whole set of

learning data is �0.74, and the variance is 7.2. The standardized
voting objects should be projected along the Fisher’s criterion line,
i.e., their DUR and PHI measurements should be linearly combined
as x=1.36 Log (DUR)+0.49 Log (PHI). Then, they should be
attributed to class 1 if their projected values are larger than 0.40;
otherwise, class 2. In total, 17 swarms are correctly classified and 1
is not

Fig. 6 Same as in Fig. 2 but relative to the case in which class 1 is
given by swarms preceding VEI�4, class 2 by swarms preceding
0�VEI�2 eruptions when the features DUR, REP and PHI are
considered. The classification was performed on the basis of REP
and of the threshold value indicated. In total, 41 swarms are
correctly classified and 11 are not
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are considered in the analysis for BDT and FIS, respec-
tively). In this case, FIS recognizes both REP and PHI as
relevant variables. Should a new object need to be voted,
we should first standardize its Log (REP) and Log (PHI)
according to the mean and variance given in the caption
of Fig. 7. Then, we should project it along Fisher’s
criterion line, which is a linear combination of the
relevant variables identified (given in the x-axis of Fig. 7).
Finally, the object will be attributed to class 1 if its
standardized and projected value is larger than 0.145,
otherwise, class 2. Even if FIS recognizes two relevant
variables, the largest part of the discriminating capability
in Fig. 7 is given by REP (see the much larger coefficient
for Log (REP), compared to the one for Log (PHI), in
Fisher’s criterion line).

A long repose time might indicate that the volcano
system had sufficient time, since the last eruption, to re-
charge the system and to achieve the closed-conduit
regime. In this way the volcano can accumulate a
sufficient amount of gas to give a large explosive
eruption. Actually, according to Newhall and Decker
(2002), most large eruptions are preceded by long repose
times, but most long repose times are not followed by
large explosive eruptions.

As in the two previous subsections, the parameters of
the pattern have large uncertainties. However, the repose
time typical for unrest followed by large explosive
eruptions is of a magnitude of 10 years or longer.

Concluding remarks

The main goal of this paper is to identify common pre-
eruptive patterns in worldwide volcanic unrest. For this
purpose we applied non-parametric pattern recognition
codes to a catalog of seismic data relative to seismic
swarms recorded in volcanic areas. The use of two
algorithms based on very different “philosophies” allows
for a checking of the stability of the results and a
reduction of the risk of overfitting. We used seismic data
because they were the easiest to retrieve and because
seismic information is of prominent importance in
characterizing unrest in volcanic areas.

The results obtained in this study are quantitative
patterns distinguishing different types of volcanic unrest.
However, the still poor quality of the dataset used does
not allow us to use these quantitative patterns as
profitable and satisfactory rules for eruption forecasting.
In particular, the limited amount of data produces large
uncertainties concerning the parameters of each pattern
found, and does not allow us to evaluate the performance
of the patterns, i.e., the percent of missed events and false
alarms concerning an independent dataset.

In any case, the results reported here provide interest-
ing insights into the physics of the pre-eruptive processes.
In particular, there is evidence of a prolonged instability
in pre-eruptive periods of unrest, compared to the isolated
ones, both in consideration of only large explosive

Fig. 7 Same as in Fig. 3 but relative to the case in which class 1 is
given by swarms preceding VEI�4, class 2 by swarms preceding
0�VEI�2 eruptions when the features DUR, REP and PHI are
considered. The classification was performed on the basis of REP
and PHI, which are the relevant variables identified by FIS
algorithm in this case. The mean of Log (REP) for the whole set of
learning data is 1.77, and the variance is 7.2. The mean of Log

(PHI) for the whole set of learning data is �1.76, and the variance is
10.5. The standardized voting objects should be projected along the
Fisher’s criterion line, i.e., their DUR and PHI measurements
should be linearly combined as x=1.02 Log (REP)+0.25 Log (PHI).
Then, they should be attributed to class 1 if their projected values
are larger than 0.145; otherwise to class 2. In total, 41 swarms are
correctly classified and 11 are not
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eruptions (VEI �4) and all the eruptions with VEI�1. In
considering that no significant difference is found in the
maximum magnitude recorded in these two types of
swarms, a longer seismic unrest might be interpreted as an
indication of an energetic difference in the processes
responsible for pre-eruptive and isolated swarms. On the
contrary, no significant magnitude or duration difference
is found between unrest episodes preceding large explo-
sive eruptions (VEI�4) and moderate eruptions
(0�VEI�2), which suggests that the energy released
during precursory unrest is not a good indicator of the
VEI of the impending eruption. This also may indicate
that the magnitude of the eruption (i.e., the VEI) can be
mostly due to random factors such as that for other
complex systems like earthquakes, landslides, and so on
(Bak et al. 1988). Here, although less evident, the only
pattern found, compared to ones that precede small to
moderate events, is based on a longer time of repose
preceding the unrest occurring before the largest erup-
tions. The correlation to a longer repose for a large
eruption might be linked to the time needed to re-charge
the feeding system and to reach the state of a closed-
conduit volcano. In this way, the volcano can accumulate
a sufficiently large amount of gas to be able to give a
large explosive eruption.

As a final consideration, we want to stress that the
quality and the practical usefulness (eruption forecasting)
of the results can be dramatically improved by using this
kind of technique on large worldwide datasets of volcanic
unrest such as the one proposed in the WOVOdat project.
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Appendix A: Binary decision tree

This method was developed by Rounds (1980) and, slightly
modified, successfully applied to volcanic data by Mula-
rgia et al. (1992). It can be used only in the 2-class problem
and it was originally designed for hierarchically ordered
datasets, even though tests on synthetic data have shown
very good behavior also on different types of datasets.

Once the data have been collected, and objects and
classes have been defined, BDT integrates feature selec-
tion and binary decision tree according to the following
steps:

1. The fixing of a level a for the decision rule. This level
represents the risk we accept of a wrong attribution at
each step. We used a=0.1.

2. The computation of the cumulative distribution in both
classes for each feature taken one at a time, and the
identification of the feature and the relative threshold
value for which the statistical difference between the
cumulative of the two classes is the largest. This means

that the significance level of this statistical difference
must be (a) lower than the level a and (b) lower than
the significance level of the statistical difference
calculated for any other feature. The feature (if any)
for which both the (a) and (b) conditions are satisfied is
the first-order feature, often called the “root” of the
pattern. On the basis of the root feature and its
threshold value, each object is assigned to either one of
two subsets formed respectively by data with a value
of the root feature lower/higher than the threshold.

3. The identification of the second-order features and
their thresholds for which the statistical difference
again satisfies the (a) and (b) conditions. These
features, which are at most two (i.e., one for each
subset), are found by reanalyzing all the features in the
two subsets separately, as in step 2.

4. The repeating of step 3 for each second-order feature
in order to identify progressively higher orders, as long
as it is possible to find a feature for which the
cumulatives in the two classes are statistically different
at a significance level lower than a. The progressive
branching of the tree gives all the possible patterns.
The procedure automatically terminates when no
further branching is possible at the given level a.

Steps 2–4 are performed by means of non-parametric
Kolmogorov-Smirnov two-sample statistics (Hollander
and Wolfe 1973). Note that the use of an a priori fixed
level a reduces the possibility of obtaining overfitting
patterns.

Appendix B: Fisher�s discriminant analysis

This method (see e.g., Duda and Hart 1973) is based on
the reduction of the n-dimensional space of the objects
(where n is the number of variables describing the objects,
i.e., the dimension of the vectors) to an L-1 dimensional
space (where L is the number of classes). In our 2-class
problem (L=2), Fisher’s method simply projects the
objects onto a line. The basic idea, called Fisher criterion,
is to project the objects onto the direction that maximizes
the ratio of the dispersion between the classes to the
dispersion within the classes. More rigorously, suppose
we have N objects x, each represented by a vector
consisting of n components xk (k=1,...n). Of these, N1
belong to class 1 and N2 to class 2. We linearly combine
the components of x, i.e., the xk (k=1,...n), in order to
obtain a one-dimensional vector y=(y):

y ¼ wT
k xk ð2Þ

where wk are the elements of an n-dimensional vector that
projects x onto y. In this way, we obtain N objects y=(y)
spread over the two classes.

The unknown in Eq.(2) is the projector, i.e., the vector
w. As mentioned above, we would like to choose the
projection for which the ratio of the dispersion between
the classes to the dispersion within the classes is
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maximum. In order to do this, first we need to define
some quantities.

We define mi as the average vector of class i:

mi ¼
1
Ni

X

x2classi

x ð3Þ

We also define m as the average of all the x:

m ¼ 1
N

X

x

x ð4Þ

Thus, the dispersion matrix within the class i is given
by:

Si ¼
X

x2classi

ðx�miÞðx�miÞT ð5Þ

and the dispersion within all of the classes is

Sw ¼
X2

i¼1

Si ð6Þ

The total dispersion matrix is given by

ST ¼
X

x

ðx�mÞðx�mÞT ð7Þ

It follows that

ST¼
X2

i¼1

X

x2classi

ðx�mi þmi �mÞðx�mi þmi �mÞT

¼
X2

i¼1

X

x2classi

ðx�miÞðx�miÞ
T

þ
X2

i¼1

X

x2classi

ðmi �mÞðmi �mÞT

¼ Sw þ
X2

i¼1

Niðmi �mÞðmi �mÞT ð8Þ

The second addendum of the right side term of Eq. (8)
is a dispersion matrix Sb that gives an idea of the
dispersion between the partial means mi over the different
classes and the total mean m:

Sb ¼
X2

i¼1

Niðmi �mÞðmi �mÞT ð9Þ

In order to achieve the vector w* that maximizes the
ratio of the Sb to the Sw, we need to project these matrixes
onto the y space and compute the w* such that:

jw�T Sbw�j
jw�T Sww�j ¼ max

w

jwTSbwj
jwT Swwj ð10Þ

Once the maximization has been carried out, Fisher’s
analysis projects the x vectors onto the y space, which is a
line. Then, each object y is assigned to the class i whose
mean mi, projected onto the same line, is closest to y.

Appendix C: Branch-and-bound technique

This technique (see e.g., Fukunaga 1990) allows us to
select the subset of relevant features among those
available. In fact, given n features for each object, apart
from few statistical PR algorithms (e.g., BDT) that
automatically provide the subset of features by which
the classification is carried out (named optimal subset),
most of the statistical PR algorithms just perform the
pattern recognition and the classification of the objects,
but do not explicitly provide the optimal subset. The basic
concept in the selection of the optimal subset of features
is to find, among all possible subset of the n features, the
one leading to the lowest classification error and consist-
ing of the smallest number of features. In such a situation,
we are confident that we are considering all of the
important variables (otherwise the classification error
would not be the lowest) and we are excluding the
irrelevant ones (otherwise the number of features in the
optimal subset would not be the smallest).

A simple, but very time consuming way to find such an
optimal subset consists of exploring the performance of
the chosen statistical PR algorithm on all the possible
subsets of the n features. This becomes prohibitive as n
increases, since we have to explore

Pn
k¼1

n
k

� �
subsets. In

order to avoid the application of the chosen statistical PR
algorithm to all the possible subsets of features, the
branch-and-bound technique was developed. This tech-
nique is applied iteratively n times; at each iteration k
(k=1,...n), it allows for the identification of the suboptimal
subset consisting of k features by applying the statistical
PR algorithm only to the “most promising” subsets of k
features. The suboptimal subset is then the one consisting
of k features and leading to the lowest classification error.

The branch-and-bound method relies on a basic
assumption; i.e., it assumes that the noise introduced by
irrelevant features does not deteriorate the signal given by
the relevant features. In a previous study we have tested
the validity of this assumption for algorithms BDT and
FIS. Based on this assumption, when a certain subset of k
features does not produce a good discrimination rule, the
branch-and-bound method assumes that any other subset
of k+l (l=1,...n-k) features containing those k features will
not be the optimal one. In this way, a considerable portion
of all the possible subsets is discarded a priori thus saving
computation time and effort.

References

Aki K, Ferrazzini V (2000) Seismic monitoring and modeling of an
active volcano for prediction. J Geophys Res 105(B7)16617–
16640

Bak P, Tang C, Wiesenfeld K (1988) Self-organized criticality.
Phys Rev Am 38:364–374

Benoit JR, McNutt SR (1996) Global volcanic earthquake swarm
database 1979–1989. USGS Open-File Report 1996, No 69, US
Department of the Interior, Washington, DC

Buell RE, Stoiber M (1976) Eruption of Volcan Fuego: October
14th, 1974. Bull Volcanol 38:861–870

Cammarata S (1997) Reti neuronali, 2nd edn. Etaslibri, Milano, pp
1–291

274



Decker R, Decker B (1981) The eruptions of Mount St Helens, vol
244, No 3. Scientific American, New York, pp 68–80

Duda RO, Hart PE (1973) Pattern classification and scene analysis.
Wiley, New York, pp 1–482

Dziewonsky AM, Woodhouse JH (1983) An experiment in
systematic study of global seismicity: centroid-moment tensor
solutions for 201 moderate and large earthquakes of 1981. J
Geophys Res 88:3247–3271

Dziewonsky AM, Chou TA, Woodhouse JH (1981) Determination
of earthquake source parameters from waveform data for studies
of global and regional seismicity. J Geophys Res 86:2825–2852

Faberov AI (1983) Activity of the Plosky Tolbachik volcano June–
July 1975. In: Fedotov SA, Markhinin YEK (eds) The great
Tolbachik fissure eruption: geological and geophysical data
1975–1976. Cambridge University Press, Cambridge, pp 36–40

Fedotov SA, Gorel’chik VI, Stepanov VV, Garbuzova VT (1983)
The development of the great Tolbachik fissure eruption in
1975 from seismological data. In: Fedotov SA, Markhinin YEK
(eds) The great Tolbachik fissure eruption: geological and
geophysical data1975–1976. Cambridge University Press,
Cambridge, pp 189–203

Fukunaga K (1990) Statistical pattern recognition, 2nd edn.
Academic Press, San Diego, pp 1–591

Gorshkov GS (1959) Gigantic eruption of the volcano Bezymianny.
Bull Vulcanol 20:77–109

Gorshkov GS, Dubik YM (1970) Gigantic directed blast at
Sheveluch volcano (Kamchatka). Bull Vulcanol 34:261–288

Gorel’chik VI, Stepanov VV, Khanzutin VP (1983) Volcanic
tremor during the great Tolbachik fissure eruption of 1975. In:
Fedotov SA, Markhinin YEK (eds) The great Tolbachik fissure
eruption: geological and geophysical data 1975–1976. Cam-
bridge University Press, Cambridge, pp 204–212

Gottsmann J, Rymer H (2002) Deflation during caldera unrest:
constraints on subsurface processes and hazard prediction from
gravity-height data. Bull Volcanol 64:338–348

Harlow DH, Power JA, Laguerta EP, Ambubuyog G, White RA,
Hoblitt RP (1996) Precursory seismicity and forecasting of the
June 15, 1991, eruption of Mount Pinatubo. In: Newhall CG,
Punongbayan RS (eds) Fire and mud: eruptions and lahars of
Mount Pinatubo, Philippines. Philippines Institute of Volcanol-
ogy and Seismology, Quezon City, University of Washington
Press, Seattle, pp 285–308

Hill DP, Dzurisin D, Ellsworth WL, Endo ET, Galloway DL,
Gerlach TM, Johnston MJS, Langbein J, McGee KA, Miller
CD, Oppenheimer D, Sorey ML (2002) Response plan for
volcano hazards in the Long Valley Caldera and Mono Craters
region, California. USGS Bull 2185:58

Hollander M, Wolfe DA (1973) Non-parametric statistical meth-
ods. Wiley, New York, 503 pp

Jensen JH, De La Cruz-Reina S, Singh SK, Medina-Martinez F,
Gutierrez-Martinez C (1983) Actividad sismica relacionada con
las erupciones del volcan Chichonal en marzo y abril de 1982,
Chiapas. In: El volcan Chichonal, UNAM, Instituto de Geolo-
gia, pp 36–48

Keilis-Borok VI, Knopoff L, Rotwain IM, Allen CR (1988)
Intermediate-term prediction of occurrence times of strong
earthquakes. Nature 335:690–694

Keilis-Borok VI, Kossobokov V (1990) Premonitory activation of
earthquake flow: algorithm M8. Phys Earth Planet Int 61:73–83

Londo�o JM, Sudo Y (2002) A warning model based on temporal
changes of coda Q for volcanic activity at Nevado Del Ruiz
Volcano, Colombia. Bull Volcanol 64:303–315

Marzocchi W (2002) Remote seismic influence on large explosive
eruptions. J Geophys Res 107:B1 DOI 10.1029/2001JB000307

Mc Nutt, SR (1996) Seismic monitoring and eruption forecasting of
volcanoes: a review of the state-of-the-art and case histories. In:
Scarpa R, Tilling R (eds) Monitoring and mitigation of volcano
hazards, Springer, Berlin Heidelberg New York, 99–146

Miller TP, McGimsey RG (1998) Catalog of the historically active
volcanoes of Alaska. Department of the Interior USGS Open-
File Report 1998 No 582

Mulargia F, Gasperini P, Marzocchi W (1991) Pattern recognition
applied to volcanic activity: identification of the precursory

patterns to Etna recent flank eruptions and periods of rest. J
Volcanol Geotherm Res 45:187–196

Mulargia F, Marzocchi W, Gasperini P (1992) Statistical identifi-
cation of physical patterns which accompany eruptive activity
on Mount Etna, Sicily. J Volcanol Geotherm Res 53:289–296

Newhall CG, Dzurisin D (1988) Historical unrest at large calderas
of the world. USGS Bull 1855:1108

Newhall CG, Punongbayan RS (eds) (1996) Fire and mud:
eruptions and lahars of Mount Pinatubo, Philippines. Philip-
pines Institute of Volcanology and Seismology, Quezon City,
University of Washington Press, Seattle, pp 1–1126

Newhall CG, Decker R (2002) Can the VEI of an eruption be
forecast? In: Proc IAVCEI Int. Congr., Martinique, 12–16 May
2002

Newhall CG, Hoblitt RP (2002) Constructing event trees for
volcanic crises. Bull Volcanol 64:3–20

Pacheco JF, Sykes LR (1992) Seismic moment catalog of large
shallow earthquakes, 1900–1989. Bull Seismol Soc Am
82:1306–1349

Reeder JW, Lahr JC, Thomas J, Conens S, Blackford M (1977)
Seismological aspects of the recent eruption of Augustine
volcano. EOS Transact 58:12

Rounds EM (1980) A combined nonparametric approach to feature
selection and binary decision tree design. Pattern Recogn
12:313–317

Sandri L, Marzocchi W (2003) Testing the performance of some
nonparametric pattern recognition algorithms in realistic cases.
Pattern Recogn (in press)

Shibata T, Akita F (2001) Precursory changes in well water level
prior to the March, 2000 eruption of Usu volcano, Japan.
Geophys Res Lett 28(9):1799–1802

Shimozuru D (1972) A seismological approach to the prediction of
volcanic eruptions. In: The surveillance and prediction of
volcanic activity, vol 8. UNESCO Earth Sci Monograph, Paris,
pp 19–45

Simkin T, Howard KA (1970) Caldera collapse in the Galapagos
Islands, 1968. Science 169(3944):428–437

Simkin T, Siebert L (1994) Volcanoes of the world, 2nd edn.
Geoscience Press, Tucson, Arizona, pp 1–349

Smithsonian Institution’s Global Volcanism Network (1990) Sum-
mary of recent volcanic activity. Bull Volcanol 52:407

Sparks RSJ (2003) Forecasting volcanic eruptions. Earth Planet Sci
Lett 210:1–15

Swanson SE, Kienle J (1988) The 1986 eruption of Mt. St.
Augustine: field test of a hazard evaluation. J Geophys Res
93:4500–4520

Tarassenko L (1998) A Guide to neural computing applications.
Wiley, New York, pp 1–139

Taylor GA (1957) The 1951 eruption of Lamington, Papua
Commonwealth of Australia. Bureau of Mineral Resources.
Geol Geophys Bull 38:117

Tokarev PI (1985) The prediction of large explosions of andesitic
volcanoes. J Geodyn 3:219–244

Vinciguerra S, Latora V, Bicciato S, Kamimura RT (2001)
Identifying and discriminating seismic patterns leading flank
eruptions at Mt. Etna volcano during 1981–1996. J Volcanol
Geotherm Res 106:211–228

Voight B, Sparks RSJ, Miller AD, Stewart RC, Hoblitt RP, Clarke
A, Ewart J, Aspinall WP, Baptie B, Druitt TH, Herd RA,
Jackson P, Lockhart AB, Loughlin SC, Lynch L, McMahon J,
Norton GE, Robertson R, Watson IM, Young SR (1999)
Magma flow instability and cyclic activity at Soufriere Hills
Volcano, Montserrat, BWI. Science 283:1138–1142

Volcanological Society of Japan (1960–1993) Bull volc eruptions,
vols 1–30. Published in Bull Volcanol since 1986

Zobin VM (1971) Mechanism of volcanic earthquake of the
Sheveluch volcano, Kamchatka. Bull Vulcanol 35(1):225–229

Zobin VM (1983) The focal mechanism and dynamic parameters of
volcanic earthquakes preceding the great Tolbachik fissure
eruption of 1975. In: Fedotov SA, Markhinin YEK (eds) The
great Tolbachik fissure eruption: geological and geophysical
data 1975–1976. Cambridge University Press, Cambridge pp
243–256

275


