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  In the compilation of World Stress Map, 9％ of data comes from overcoring and hydraulic fracturing meas-
urement, 23％ from borehole breaking off, 63％ from earthquake focal mechanism, and 5％ from young geo-
logical investigation (Zoback, et al, 1989). Only overcoring and hydraulic fracturing can provide both the orienta-
tion and magnitude of the horizontal stress, all other methods can only provide the orientation, but no the magni-
tude of the stresses. Although some researchers tried to estimate magnitudes of stresses in earthquake mechanism 
research based on some additional assumptions (CHEN, Duda, 1996; ZHAO, et al, 2002). This method, however, 
has not been widely applied. What kind of analysis can be done with orientation-only data? What kind of incorrect 
operations should be avoided? These are basic important problems. However, some confusions and misunder-
standings exist. For example, a simple operation is to use the average of measured orientation to represent the 
principal stress orientation in a specific area; or decompose a stress into a summation of long wavelength and short 
wave length components. Is it correct to do in this way? Some fundamental ideas are hidden in these seemingly 
simple problems. We will discuss these questions in this note. 

1 Description of stress state and algebraic operation of stress tensor 
Stress tensor is used to describe the stress state at a location (Timshenko, Goodier, 1970) 
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where τxy =τyx, τxz=τzx, τxz =τzx, therefore, only six components are independent. If the vertical direction is chosen to 
be the z-axis, then σz＝0 at the surface. In dealing with geological problems close to the surface, the stress state 
can usually be assumed as a two-dimensional plane stress. The stress tensor can be reduced as: 
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in this case, there are four components, but only three of them are independent. The stress state is determined if the 
three independent components are known. From these components, normal and shear stress on any plane at this 
location can be calculated. Addition, decomposition, calculation of the mean and other algebraic operations must 
be done with respect to these components. 

Although tensor expression provides the basics for stress state description and operations, for geological 
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analysis this expression is not easily visualized. It is more convenient for geologists to describe the stress state by 
orientation and magnitude of principal stresses, which can be obtained from calculation of the eigenvalues and 
eigenvectors of the stress tensor. In two-dimensional case, the magnitude and orientation of the two principal 
stresses are: 
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Because the maximum and minimum stresses are always perpendicular to each other, therefore, it is also three 
quantities that are needed to describe the stress state. It is noted that to describe the stress state at a point, tensor, 
instead vector, must be used. From three components of stress tensor, principal stresses can be calculated; and vice 
versa: components of stress tensor can be calculated from principal stresses. No matter which kind of description, 
or a mixture of two expressions, such as knowing σx, σy and direction of the principal stress, three independent 
parameters are always necessary. 

Plane stress state can be shown graphically as Fig-
ure 1. If stress tensor components are used, the corre-
sponding graphic representation is shown in Figure 1a; if 
the principal stresses are used, the corresponding graphic 
representation is shown in Figure 1b. Vectors can be used 
to represent the displacement and velocity of a particle, or 
the traction (including normal and shear stress) on a given 
plane (the normal of the plane is given). As traction is 
concerned, the precondition is the plane must be assigned. 
In geological literatures, it is popular to state that Indian 
plate collides with Chinese mainland and to show figures 
of NNE arrows in the Indian side. It is correct if the ar-
rows represent the velocity of motion, however, it is in-
correct if the arrows are attempted to represent stresses 
and the location and strike of the boundary are not given. 

 

Figure 1 (a) To describe the stress state by stress ten-
sor, algebraic operations can be done to the 
comp onents; (b) To describe the stress state 
by the magnitudes and orientation of prin-
cipal stresses, it is visualized, but algebraic 
operations can not be done directly to the 
principal stresses. 

2 Azimuth angle can not be added, decomposed or averaged in simple ways 
If stress at a point is measured, the first measurement yield a result: 
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the orientation of the principal stress is determined by: 
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the second measurement yield a result: 
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the corresponding orientation of principal stress is: 
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then, their summation is: 
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the orientation of the summation of two stress tensors can be calculated as: 
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however, if the mean of θ1 and θ2 is calculated simply as θ′ = (θ1 + θ2)/2, it is obtained that 
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obviously, in ordinary cases, θ calculated from (10) does not equal to θ′, which is calculated from (11), (12), (13), 
(6) and (8). Two examples below bring this point out clearly. 

Example 1. If stress tensor 1 has 
1xσ =2, 

1yσ =0, 
1xyτ =0； and stress tensor 2 has 

2xσ =0, 
2yσ =1, 

2xyτ =0, then stress tensor 1 has a maximum principal stress =2, a minimum principal stress =0，and the 

angle between the maximum principal stress and the x-axis θ
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 1＝0. Stress tensor 2 has a maximum principal stress 

=2, a minimum principal stress =0, and the angle between the maximum principal stress and x-axis θ)2(
1σ

)2(
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90°. If one calculates the orientation of the stress summation simply by using the mean of the two orientation an-
gles, it would lead to a wrong result that the principal orientation of the stress tensor summation is at an angle of 
45° with the x-axis. Actually, since the summation has components as σx=2, σy=1, =0; the maximum principal 

stress σ
1xyτ

1 =2, the minimum principal stress σ2=1, and the orientation of the maximum principal stress is at an angle 
of θ＝0 with the x-axis (Figure 2). 

Example 2. If stress tensor 1 has 
1xσ =2, 

2xσ =3, 
1xyτ =0; and stress tensor 2 has 

2xσ =0, 
2xσ =0, 

=1, then stress tensor 1 has the maximum principal stress = 3, the minimum principal stress =2, and 

the angle between the maximum principal stress and x axis θ
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the x-axis θ
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2＝45°. However, the simple average would give a wrong conclusion that the angle between maximum 
principal stress and the x-axis is 67.5°, while the actual orientation of summation stress tensor is θ＝58.3°, and  

 
Figure 3 (a) Stress tensor 1; (b) Stress tensor 2; 

(c) Summation of two stress tensors 

 

Figure 2 (a) Stress tensor 1; (b) Stress tensor 2; 
(c) Summation of two stress tensors 
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maximum principal stress σ1=3.61, minimum principal stress σ2=1.39, as calculated from summation of compo-
nents σx=2, σy=3, and =1(Figure 3). 

1xyτ
In summary, during summation or decomposition of two-dimensional stress tensors (by equation 9), there are 

3 tensors (9 independent components) concerned, and in order to calculate 3 unknown components, 6 independent 
components are required to be known, either in the form of stress tensor components or in the form of principal 
stresses.  

3 Conditions for calculating the principal orientation by simple mean 
As we discussed, generally orientation of the principal stress cannot be simply averaged from 

multi-measurements, are there special cases that the average can be directly done? 
It is known that in the coordinate system which use the principal axes as x-y axes, stress tensor can be ex-

pressed as: 
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where, p＝(σ1＋σ2)/2, and ∆σ＝(σ1－σ2)/2, they are the mean hydrostatic pressure and the maximum shear stress 
respectively. If the EW direction is chosen to be the x-axis and the NS direction is chosen to be the y-axis in geo-
logical study, the angle between maximum principal stress and x-axis is denoted by θ, the stress tensor in the coor-
dinate system is expressed as: 
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the orientation of the principal stress is solely determined by the second term in equation (15) 
If the first measurement has a result: 
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the second measurement has: 
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when ∆σ (1)＝∆σ (2)＝∆S, their summation is: 
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it is easy to show that in this case, 
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Therefore, the simple mean of θ1 and θ2 calculated as θ ′=(θ1+θ2)/2 is right equal to the orientation θ of the 
principal stress of the summation of the two stress tensors in the condition that maximum shear stresses of each 
stress tensor are equal. In calculation of the mean of n stress tensors, it is required for the same condition ∆σ(i)＝

∆S. 
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4 Discussion and Conclusion 
It is summarized that: (1) Stress tensor must be used for description of the stress state, and algebraic opera-

tions of addition, decomposition, averaging, etc. must be done to the components of the tensor. However, this 
method is difficult for geologists to visualize their meanings. (2) Using the orientation and magnitude of the prin-
cipal stresses provide an alternative method to describe the stress state for easy visualization, however, algebraic 
operation cannot be done to the principal stresses directly. Only firstly transforming the principal stresses into 
stress components for operation, and then transforming the results back to principal stress expression can obtain 
the orientation and magnitude of the resultant tensor. 

As focal mechanism data is concerned, if the moment tensor of earthquakes are known, it is easy to make op-
erations for the components of the tensor to calculate the average moment as well as the magnitudes and orienta-
tion of the principal stresses. However, if we use the initial P wave data, we can get the orientation only, but not 
magnitude of the stress. In principle, it is usually not feasible to get the orientation by simple average, especially if 
the orientation angles differ to each other significantly. Such average can be done only if the maximum shear stress 
of all measurements are equal, and it is difficult to satisfy such a stringent condition. However, if the orientation 
measurements are relatively clustered, it is acceptable as an approximation, as long as the user keeps alert on the 
pitfalls. 

The conclusion is also valid for some other problems: such as calculating the mean value of stress measure-
ments obtained from several times of overcoring in the same borehole; computation of stress in an stress observa-
tory which has both absolute stress measurement at the beginning, and continuous observation of subsequent stress 
variations; decomposition of stress into components of long wave length and short wave length; Summation of 
stress from the background stress and stress changes during certain duration obtained from GPS or InSAR meas-
urements. Great attention must be paid to their algebraic operations, in any case if only the orientation of principal 
stress is known, but the magnitude of stress tensor is unknown.  
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