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In basin modeling the thermodynamics of a multicomponent multiphase fluid flux are com-
putationally too expensive when derived from a cubic equation of state and the Gibbs equality
constraints. In this article we present an alternative implicit molar mass formulation technique
using binary mixture thermodynamics. The two proposed solution methods are based on a
hybrid smoother, Gauss–Seidel–Galerkin at each time-step with analytical computation of the
derivatives. The new algorithm overcomes the difficulty of choosing an optimal relaxation pa-
rameter and reduce significantly the numerical effort for the computation of the molar masses.
Numerical results are presented which show significant improvements with respect to previous
methods.
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1. Introduction

The primary objective of basin simulation is to determine the possible locations
of trapped hydrocarbons. Since the hydrocarbons use millions of years to migrate, the
basin structure may change several times during the migration. It is not only the geom-
etry and the geological data which cause difficulties. Compared to a reservoir model,
a basin model includes many more unknowns due to the heat transport, chemical re-
actions and thermodynamics. Our work is based on a compositional simulator for sec-
ondary oil migration [10–12]. This 3D model gives full treatment of fractures and dis-
continuities of the medium, representing them by refined cells which contain the desired
lithology [1,2].

In this work we have mostly used a simplified compositional model, named the
binary mixture thermodynamics model [5]. The phase calculation is related to tables for
dew and bubble points rather than fugacity calculations. In this model the oil and the
gas components may partly be in both the oil and gas phases, while the water phase is
treated separately.

The primary variables in our simulator, named Athena, are the temperature T ,
the water pressure pw, and the molar masses Nν , for each fluid component ν. The nu-
merical model uses a control volume finite difference box-centered space discretization
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technique [15] together with a backward Euler scheme for time discretization of the
water pressure and temperature equations and an explicit solver for the mass equation.
Recently a fixed LGR method has been successfully applied to cover discontinuities of
the porous media [7]. This method does not only allow a full geometrical treatment of
fault and matrix but it also serves as a middle step between the sequential and parallel
processing, see [4] for a comparison with other simulators. Obviously, the above dis-
cretization introduces a CFL condition that severely restricts the time step [3]. In order
to reduce the numerical effort, we propose two implicit numerical schemes to deal with
a mass conservative dynamical behavior.

The main goal of this article is to illustrate the efficiency of the simulator with the
new methods by numerical examples. For that purpose we consider different geometries
and compare the numerical results obtained by the two implicit algorithms, based on
a Newton–Galerkin with analytical derivatives, to those obtained by the explicit solver.
For further information on Galerkin methods its motivation and implementation issues
we refer to [14,16].

An outline of the paper is as follows. In section 2 we introduce the model to study.
The numerical approximations to the primary variables temperature, water pressure and
molar mass are given in sections 3, 4 and 5, respectively. The two implicit molar mass
transport formulations are further described in section 6; other discretization schemes are
given in [13]. Section 7 give some insight in the GS–Galerkin solver. Then, in section 8,
we present some numerical results, and conclusions and future work summarize the
paper in section 9.

2. The model

In this section we will give an introduction to the simulation model, which is im-
plemented into the general compositional simulator Athena. It is based on a symmetric
black oil model with the assumption that the water is always in water phase and any of
the hydrocarbons may be in both gas and oil phase. For more information and details
about compositional models we refer to [8,9].

For consistency reasons we introduce the following notation; the sub index ν will
denote any of the nc fluid components, while the super index l denotes any of the three
phases, oil, water or gas, in which the different components or fraction of them may exist.
The water component is assumed to always be in water phase whilst the hydrocarbons
are never in water phase. Besides, discretization indices will appear between brackets as
subindices for the space and as super-indices for the time.

The molar mass conservation of a multicomponent multiphase fluid flowing
through a porous media region V whose boundary is a closed surface S is given by
the integral expression

∂

∂t

∫
V

mν dV +
∫

V

∇ · �mν = −
∫

V

qν dV. (1)
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Here qν denotes the source/sink of molar mass density for each component ν with units
mol/m3 s. Besides, the molar mass flux and the density inside the region are respectively
expressed as

�mν =
∑

l=phase

Cl
ν �vlξ l, (2)

mν = φp

∑
l=phase

Cl
νS

lξ l. (3)

The entity Cl
ν denotes the mass fraction of component ν in phase l, and further

ξ l = ρl/Ml molar density of phase l, ρl mass density of phase l,

Ml the molecular weight of phase l, Sl saturation of phase l,

�vl the Darcy velocity of phase l, φp the rock porosity.

Energy conservation is enforced by the following integral expression for the heat
flow equation

∂

∂t

∫
V

(ρu) dV −
∫

S

(k∇T ) · d�S = −
∫

S

hρ �u · d�S +
∫

V

q dV, (4)

where the capacity term and convective flux are

ρu =
∑

l=g,o,w

φpS
lulρl + urρr(1 − φp), (5)

hρ �u =
∑

l=g,o,w

hlρl �vl. (6)

Here, the new parameters denote

T the temperature, k the bulk heat conductivity,

ρr mass density of rock, ur internal energy of rock,

ul internal energy of phase l, hl enthalpy of phase l.

The volume balance method [17] imposes that the difference between the pore
volume Vp and the volume of all phases

R = Vp −
∑

l=g,o,w

V l, (7)

has to be zero at any time. Besides, this residual volume is a function of the water
pressure pw the overburden pressure W and the integral of the molar mass for each
component Nν . Hence, the first order Taylor expansion of the residual R(t+�t) together
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with the chain rule for partial differentiation of ∂R(pw,W,Nν)/∂t leads to the water
pressure equation

∂R

∂pw

∂pw

∂t
+

nc∑
ν=1

∂R

∂Nν

∂Nν

∂t
= − R

�t
− ∂R

∂W

∂W

∂t
. (8)

In what follows, the numerical model will be derived from the discretization of the
conservation equations (1), (4) and (8), using control volumes in space together with
backward Euler in time.

3. Energy conservation

The integral of the source term of equation (4) will be treated explicitly for each
control volume V[i] ∫

V[i]
q dV ≈ Q[i]. (9)

Since the convective flux, given by equation (6), is small compared to the conduc-
tive flux, this term may be neglected or treated explicitly, in which case, the integral
over each of the boundary surfaces is approximated by the value at the upstream control
volume. Denoting by I (i) the set of indices for the upstream volume Vi , the convective
flux of equation (4) may be discretized as∑

k

∫
S[i,k]

hρ �u · d�S ≈ �,

�[i] =
∑

in∈I (i)

∑
l=g,o,w

hl
[i]ρ

l
[i] �vl

[in]S[i,k(in)], (10)

where S[i,k] denotes the kth part of the surface boundary of the ith control volume, and
S[i,k(in)] the part of the surface between the ith and inth control volumes.

The conductive heat flow for the ith control volume is approximated by∫
S[i]

(k∇T ) · d�S � −
∑

j∈Mi

α[ij ]T[j ], (11)

where α[ij ] are the conductivity coupling coefficients, and the set Mi consists of the
indices for all neighbors of the ith control volume including itself.

Finally, the capacity term is a function of the temperature

∂

∂t

∫
V

(ρu) dV �
∫

V

∂

∂t
(ρu) dV �

∫
V

(
δ
∂T

∂t

)
dV, (12)

where

δ =
∑

l=g,o,w

φpS
lclρl + crρr(1 − φp). (13)



I. Garrido et al. / Implicit treatment of compositional flow 5

The term cr = ∂hr/∂T denotes the rock specific heat capacity and cl = ∂hl/∂T the
specific heat capacity of the phases. Even when the creation or disappearance of phases
within each control volume may provoke large changes per phase, one would expect a
more linear and smooth behavior over the addition of all phases. Space discretization
is done by cell centered finite difference approximation, using an explicit value for the
heat capacity at each control volume

∂

∂t

∫
V[i]

(ρu) dV � δ[i]
∂T[i]
∂t

. (14)

We have therefore substituted equations (9)–(11) and (14) into equation (4) to ob-
tain the following finite control volume discretization of the energy

δ[i]
∂T[i]
∂t

+
∑

j∈Mi

α[ij ]T[j ] = −�[i] + Q[i], (15)

which together with a backward Euler time discretization leads to a residual equation
with matrix notation

0 = D
( �T [n+1]) �T [n+1] − �T [n]

�t [n] + A
( �T [n+1]) �T [n+1] − �b( �T [n]). (16)

Here, �t [n] = t [n+1] − t [n], D = diag(δ[i]), A = (α[ij ]) and �b = (Q[i] − �[i]). Be-
sides, both the convection and conduction terms have coefficients dominated by the rock
temperature, which is almost constant, so that this equation may be linearized as

J [n]� �T [n] = − �f [n], (17)

where � �T [n] = ( �T [n+1] − �T [n]) and

J [n] = D[n]

�t [n] + A[n], �f [n] = A[n] �T [n] − �b[n]. (18)

4. Treatment of the water pressure equation

Space discretization for the integral of equation (8) is done by the simple centered
control volume evaluation

δ[i]
∂pw

[i]
∂t

+
nc∑

ν=1

εν,[i]
∂Nν[i]

∂t
= s[i], (19)

where

δ[i] =
(

∂R

∂pw

)
[i]

, εν,[i] =
(

∂R

∂Nν

)
[i]

, (20)

and s[i] denotes the value of the right-hand side of control volume.
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In the discrete equation (19), the molar mass derivative may be expressed in terms
of the water pressure. This approximation is obtained from equation (1), which using
the divergence theorem reads

∂Nν

∂t
+

∫
S

∑
l=phase

Cl
νξ

l �vl · �n dS = Qν, (21)

where �n is the unit outward normal vector to the boundary surface S, and Qν is the
integral of the source term for component ν. Using the following expression for the
Darcy velocity for phase l

�vl = −
∑

m=g,o,w

K
klm

r

µm

(∇pm − γ m∇d
)
, (22)

wher klm
r is the generalized relative permeability for coupled multiphase flow, K absolute

permeability tensor, µm viscosity of the phase m, pm fluid pressure of phase m, γ m spe-
cific weight of phase m, d the depth, and the transmissibility tensors of each chemical
component ν are

tmν =
∑

l=g,o,w

Cl
νξ

lK
klm

r

µm
. (23)

Hence, the molar mass derivative in equation (21) may be rewritten as

∂Nν

∂t
=

∫
S

∑
m=g,o,w

tmν
(∇pm − γ m∇d

) · �n dS + Qν. (24)

Besides, the water pressure has been chosen as a primary variable so that the oil and gas
phase pressures are given in terms of the water and the capillary pressures as

po = pw + pow
c , pg = po + pog

c , (25)

and part of the conductivity term is∑
m=g,o,w

tmν ∇pm =
∑

m=g,o,w

tmν ∇pw + (
to
ν + tg

ν

)∇pow
c + to

ν ∇pog
c . (26)

Evaluation at the center of each control volume of the expression that results from sub-
stituting equation (26) into equation (24) leads to

∂Nν[i]
∂t

=
∑

j∈Mi

tν[ij ]pw
[j ] + �ν[i], (27.1)

�ν[i] = Qν[i] +
∑

j∈Mi

(
t

g
ν[ij ] + to

ν[ij ]
)
pow

c[j ] + t
g
ν[ij ]p

og
c[j ] − gν[ij ]d[j ], (27.2)
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where tν[ij ] = ∑
l t

l
ν[ij ] denotes the discrete transmissibilities and gν[ij ] the equivalent dis-

crete gravitation. Substituting the molar mass derivative approximation given by equa-
tion (27) into equation (19) gives at each control volume

δi

∂pw
[i]

∂t
+

∑
j∈Mi

α[ij ]pw
[j ] = β[i], (28)

with

α[ij ] =
nc∑

ν=1

εν[i]tν[ij ], β[i] = s[i] −
nc∑

ν=1

εν[i]�ν[i]. (29)

Backward Euler time discretization of equation (28) gives a residual matrix equa-
tion for the water pressure

D
( �pw[n+1]) �pw[n+1] − �pw[n]

�t [n] + A
( �pw[n+1]) �pw[n+1] − �b( �pw[n+1]) = 0, (30)

with �t [n] = t [n+1]−t [n]. When solving this nonlinear equation with the Newton–Rapson
method, we ensure that �pw[n(k)] → �pw[n+1] when k → ∞, if our initial guess is “good”
enough. Then, by using Taylor expansion of order one at �pw[n(k)] + � �pw[n(k)] we get the
following equation for the increment

J [n(k)]� �pw[n(k)] = − �f [n(k)], (31)

where n(k) denotes the kth nonlinear Newton–Rapson iteration at the nth time level

� �pw[n(k)] = �pw[n(k+1)] − �pw[n(k)],

J [n(k)] =
(

∂ �f
∂ �pw

)[n(k)]
� D[n(k)]

�t [n] + A[n]

and

�f [n(k)] = D[n(k)] �pw[n(k)] − �pw[n]

�t [n] + A[n] �pw[n(k)] − �b[n].

Note that we do not update A and �b for every iteration. The reason for this is that these
calculations are rather expensive, and the accuracy we loose by this approximation may
be neglected.

5. Implicit molar mass equations

Equation (1) is written as

∂

∂t
Nν +

∫
V

∑
l

∇ · (
Cl

νξ
l �vl

)
dV = Qν. (32)
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Since the molar mass of phase l is Nl = V lξ l, and denoting the inverse of volume for
phase l by al equation (32) may be now expressed as

∂

∂t
Nν +

∫
V

∑
l

∇ · (Cl
νa

lNl �vl
)

dV = Qν. (33)

Together with the divergence theorem, equation (33) is equivalent to

∂

∂t
Nν +

∫
S

∑
l

Cl
νa

lNl �vl · �n dS = Qν, (34)

where �n is the unit outward normal vector to the boundary surface S. This mass transport
equation shall be rewritten in terms of the molar mass of component ν in phase l, Nl

ν =
Cl

νN
l , which leads to

∂

∂t
Nν +

∫
S

∑
l

alNl
ν �vl · �n dS = Qν. (35)

A finite control volume discretization is used to create the numerical model. Space dis-
cretization of equation (35) is done by cell centered finite difference approximation. The
flux term is considered to be continuous across interfaces of area A, so that the surface
integral of the normal component at the boundary of a given volume may be discretized
as

∂

∂t
Nν[i] +

∑
is∈Si

∑
l

(
alNl

ν

)
[in]θ

l
[is] = Qν[i], θ l

[is] = (�vl · �n)
[is]A[is]. (36)

The index in denotes the upstream volume with respect to each interface, is, of the ith
control volume.

Time discretization of equation (36) is done by considering a backward Euler ap-
proximation of the derivative and by keeping the Darcy velocity and the phase volume
constant at time t [n]

N
[n+1]
ν[i] − N

[n]
ν[i]

�t [n] +
∑
is∈Si

∑
l

(
al[n]Nl[n+1]

ν

)
[in]θ

l[n]
[is] = Q

[n]
ν[i], (37)

where �t [n] = t [n+1]−t [n]. The advection term in equation (37) will be treated implicitly
when using Newton–Rapson. Thus, the molar mass of component ν in phase l may be
expanded in terms of the molar mass of the different components as

Nl[n(k+1)]
ν = Nl[n(k)]

ν +
∑
µ

(
∂Nl

ν

∂Nµ

)[n(k)]
�N [n(k)]

µ ,

�N [n(k)]
µ = N [n(k+1)]

µ − N [n(k)]
µ , (38)

where Nl[n(k)]
ν → Nl[n+1]

ν when k → ∞ and index n(k) denotes the kth nonlinear
Newton–Rapson iteration at the nth time level. Therefore, the discrete molar mass trans-
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port equation (37) of a chemical component ν flowing through a porous media region of
a closed surface S, may be rewritten as

�N
[n(k)]
ν[i]

�t [n] +
∑
is∈Si

∑
l

(
al[n] ∑

µ

J l,[n(k)]
νµ �N [n(k)]

µ

)
[in]

θ
l[n]
[is] = β

[n(k)]
ν[i] (39)

with J l,[n(k)]
νµ = (∂Nl

ν/∂Nµ)[n(k)] and right-hand side

β
[n(k)]
ν[i] = Q

[n]
ν[i] − N

[n(k)]
ν[i] − N

[n]
ν[i]

�t [n] −
∑
is∈Si

∑
l

(
al[n]Nl[n(k)]

ν

)
[in]θ

l[n]
[is] . (40)

5.1. Full Jacobian matrix formulation

Considering multicomponent multiphase fluid flow, the matrix formulation of the
molar mass equilibrium discrete equation (39) is of the form( I

�t [n] + A[n(k)]
)

� �N [n(k)] = �b[n(k)]. (41)

For a chemical system consisting of nc components, located on a domain decomposed
into ncv control volumes(

� �N [n(k)])
µj

= �N
[n(k)]
µ[j ] ,

(�b[n(k)])
νi

= β
[n(k)]
ν[i] , νi, µj ∈ I, (42.1)

I = {
(1, 1), . . . , (nc, 1), . . . , (1, ncv), . . . , (nc, ncv)

}
. (42.2)

I is the identity matrix, and the matrix A has been ordered in n2
cv blocks each of them

with n2
c entries of the form (

A[n(k)])
νi ,µj

=
∑

l

αl[n(k)]
νi ,µj

, (43)

where for given a phase l, j ∈ Im(i) denotes a cell which is upstream and is the interface
between cells i and j , αln[(k)]

νi ,µi
= −∑

j∈Im(i) α
ln[(k)]
νi ,µj

αln[(k)]
νi ,µj

= 0, j /∈ Im(i), (44a)

αln[(k)]
νi ,µj

= al[n]θ l[n]
ν[is]

(
∂Nl

ν

∂Nµ

)n[(k)]

[j ]
, j ∈ Im(i). (44b)

5.2. Sequential matrix formulation

The discrete molar mass equation (39) may be simplified considering the cross-
derivatives between different components to be negligible. This assumption eliminates
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the coupling and makes it possible to achieve greater computer efficiency by sequential
solution of the following molar mass equations( I

�t [n] + A[n(k)]
ν

)
� �N [n(k)]

ν = �b[n(k)]
ν , ν = 1, . . . , nc, (45)

where for a chemical system consisting of nc components located on a domain decom-
posed into ncv cells i, j ∈ {1, . . . , ncv},(

� �N [n(k)]
ν

)
j

= �N
[n(k)]
ν[j ] ,

(�b[n(k)]
ν

)
i
= β

[n(k)]
ν[i] , (46)

I is the identity matrix and each matrix Aν has n2
cv entries (Aν)

[n(k)]
ij = ∑

l α
l[n(k)]
νi ,νj

, which
are defined similarly to those of the full Jacobian.

Each set of equations (17), (31) and (41) or (17), (31) and (45), results in a compact
numerical model, since they allow to find all the primary and secondary variables for the
new time step.

6. Three phase system

The partial molar mass derivatives which appear in the molar mass discrete equa-
tions (41) and (45) are approximated based on binary system thermodynamics. Roughly
speaking, the flux has three components: water, oil and gas which may be in either
water, oil or gas phase. In particular, the oil and gas components should be viewed as
the hydrocarbon components of the flux lumped into one gas and one oil component.
This approximation at any fixed time t , generates for each phase l = w, o, g the partial
derivatives

∂Nl
ν

∂Nµ

, ν, µ = w, o, g, (47)

where ν and µ denote the lumped (grouped) components.

6.1. Single hydrocarbon phase state

The derivatives under consideration (47) depend on the number of phases that are
present in a control volume at that time. The single phase generates two subcases corre-
sponding to being either only oil phase present or only gas phase present

Ng = 0: No = No + Ng; No
o = No and No

g = Ng,

No = 0: Ng = No + Ng; N
g
o = No and N

g
g = Ng,

leading to the unit matrix 


∂Nl
o

∂No

∂Nl
g

∂No

∂Nl
o

∂Ng

∂Nl
g

∂Ng


 = I. (48)
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6.2. Two hydrocarbon phase state

Considering a control volume with both oil and gas phase present, the partial deriv-
atives may be expressed in terms of bubble β(pw, T ) and dew point α(pw, T ),

α = N
g
o

Ng
, β = No

o

No
, Ng = Ng

o + Ng
g , No = No

o + No
g . (49)

In order to simplify the calculations it will be useful to introduce the molar fraction
of oil phase in the system

zo = No

N
, N = No + Ng = No + Ng, (50)

and the molar fraction of oil component zo = No/N . Besides, zo and zo may also be
expressed in terms of the bubble and dew points since

zo = Noβ + Ngα

N
, (51)

and it is a straight forward computation to check that

No

N
= (Noβ + Ngα)/N − α

β − α
,

the left-hand side of which is zo, as given in (50), and substituting (51) in the right-hand
side gives the desired expression

zo = zo − α

β − α
. (52)

Once the variables α, β have been defined, it is necessary to give a suitable expres-
sion of the quantities to differentiate

No
o = βNo = βzoN, Ng

g = (1 − α)Ng = (1 − α)(1 − zo)N, (53a)

Ng
o = αNg = α(1 − zo)N, No

g = (1 − β)No = (1 − β)zoN. (53b)

The calculation of the derivatives for (53) with respect to either the oil molar mass or the
gas molar mass is now a straightforward task after substituting zo for its corresponding
value as given in (52) and recalling from z0 = N0/N that

∂zo

∂No
= 1 − zo

N
,

∂zo

∂Ng
= −zo

N
. (54)

To simplify the description, a sketch of these analytical derivatives follows


∂No
o

∂No

∂No
g

∂No

∂No
o

∂Ng

∂No
g

∂Ng


 =




(1 − α)β

β − α

(1 − α)(1 − β)

β − α

− αβ

β − α
−α(1 − β)

β − α


 , (55a)
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∂N
g
o

∂No

∂N
g
g

∂No

∂N
g
o

∂Ng

∂N
g
g

∂Ng


 =




−α(1 − β)

β − α
−(1 − α)(1 − β)

β − α

αβ

β − α

(1 − α)β

β − α


 . (55b)

It is easy to verify these calculations since the sum of the two matrices above is the
identity matrix, as it should be.

7. Numerical solver

The following algorithm for solving each of the residual equations that result from
the finite volume discretization at each Newton step is a relaxation method. Considering
the grid to be parallel to the axis, the discretized equations in our system have a special
matrix structure, J��x = �y, where

J =




T1,1 D1,2

D2,1 T2,2 D2,3
. . .

. . .
. . .

Dn−1,n−2 Tn−1,n−1 Dn−1,n

Dn,n−1 Tn,n


 .

When the grid is refined in just one of the three dimensions, the discretization is equiv-
alent to a 1D approximation so that the entries of the Jacobian J 1 are all scalars. How-
ever, if the grid is refined in two of the dimensions, the Jacobian J 2 is block-tridiagonal
with D diagonal matrices and T of the form J 1; in agreement with a 2D discretization.
Finally, in the full 3D case the Jacobian is a 7-diagonal matrix where D are diagonal
matrices, and each T has the same shape as J 2. Thus, in the full 3D case the system has
blocks of lines of the general form

Am�x = �ym, m = 1, . . . ,M, (56)

Am = (Dm,m1 + Dm,m2 + Tm,m + Dm,m3 + Dm,m4), (57)

where Dm,∗ and Tm,m are respectively diagonal and three-co-diagonal matrices of di-
mension ms × ms , while �ym is an ms-dimensional data vector, being ms the number of
control volumes at the mth geological line in a given dimension. The steps when solving
the general system (56) are smoothing, restriction and prolongation.

7.1. The Gauss–Seidel as smoother

Assuming anisotropic media where the heterogeneity varies more along one di-
mension than another, the system may be reordered so that the strongest variation oc-
curs in the dimension that determines the size of each line-block (56). Since successive
over-relaxation is always a good smoother, this method relaxes a whole block of lines
simultaneously using Block-GS, which involves splitting the sparse matrices that arise
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from the finite volume approximation in a set of systems. This set, (56) is solved using
a block Gauss–Seidel method

Tm,m �x[m]
m = �ym − Dm,m1 �x[m−1]

m1
− Dm,m2 �x[m−1]

m2
− Dm,m3 �x[m−1]

m3
− Dm,m4 �x[m−1]

m4
, (58)

where the superindices indicate that, in the current sequential formulation, the solution
of each block depends on the solution of the previous one. Each system (58) corresponds
to one geological line in the given dimension and it is solved by forward elimination and
over-relaxed backward substitution. After solving each of these blocks, m = 1, . . . ,M,
the generalized GS will iterate until a solution is found [6,18].

The downside of this method is that it only works for diagonal dominant matri-
ces and that its convergence rate is highly dependent on the relaxation parameters. The
matrices resulting from our residual formulation are always strict diagonal dominant for
small enough time steps, but without an optimal choice of relaxation parameters, the GS
method will be render inefficient.

7.2. Galerkin acceleration

The convergence of the block GS algorithm may be accelerated by using a coarse
mesh re-balancing technique based on the Galerkin variational method. Consider that
the linear equations (56) have been solved with the GS (see (58)) and define the set of
basis functions

��m ∈ 	ms , m = 1, . . . ,M, (59)

consisting of only zero elements except for unit elements at entries corresponding to the
mth block. Using the test function �z given by

�z = �x +
M∑

m=1

�dm
��m, (60)

where �z is the solution to the variational formulation〈 ��m,J �z〉 = 〈 ��m, �y〉
, m = 1, . . . ,M; (61)

it yields the following equations for the unknowns �dm

Ĵ �dm = �̂y, m = 1, . . . ,M, (62)

where Ĵm,n = 〈 ��m,J ��n〉 is a matrix tridiagonal with fringes and �̂y = 〈 ��m, �y − J �x〉.
The sparse structure of Ĵ may be exploited by solving the system with blockwise for-
ward elimination and backward substitution.

7.3. Gauss–Seidel–Galerkin

Block Gauss–Seidel has proven to be an efficient smoother for many problems.
However, its convergence is slow and depends on two relaxation parameters: outer re-
laxation parameter, which relates block solutions to each other, and inner relaxation
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(a) (b)

Figure 1. Solution error with respect to the number of solver iterations, it = 1 : 10, considering (a) the
full GS–Galerkin, and (b) GS. The error increases proportionally to the relaxation parameter, w = 0.9 :

0.2 : 1.9.

parameter which is a smoothing parameter within each block. In particular, the choice
of the outer parameter is of special relevance for convergence since it affects the whole
matrix. However, the Galerkin acceleration acts as a physical smoother for the GS so-
lution, diminishing the effect of different parameter choices. Considering a random
matrix where we impose diagonal dominance and simulate a low permeability area by
decreasing the connectivity in a CV block, we may see from figure 1 that the GS looses
convergence as the relaxation parameter w → 2, while GS–Galerkin is more robust with
respect to the choice of w.

8. Numerical examples

This section will illustrate with two different examples the efficiency of the two
novel implicit molar mass formulations: full Jacobian and sequential Jacobian, within
the Athena simulator. As expected, it will be seen that the new implicit formulations
are particularly useful to avoid the time step constraints that the CFL condition imposes
when using the explicit formulation. Additionally, the robustness of the implicit methods
as function of the time step will be studied.

8.1. A first example: The dome

Before proceeding with the numerical experiments, the geological domain and
boundary conditions shall be described. The three-dimensional domain has 50 m depth
on the ends, and a size of 1000 m × 100 m × 70 m. There are four different layers in
the z direction: shale, sandstone, shale and sandstone again. The lithology for the sand-
stone has a porosity of φ = 0.5 and a permeability of Kx = 500 mD, Ky = 500 mD
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Figure 2. Oil migration simulated by Athena for 100y with 0.0047y as time step.

and Kz = 500 mD while the corresponding values for the shale are φ = 0.5 and
Kx = 5 · 10−6 mD, Ky = 5 · 10−6 mD and Kz = 5 · 10−6 mD. The boundary conditions
consist of an explicitly given flux of oil and gas with value 5 · 10−5 mol/m2 s going in-
wards on the left-hand side and an outwards water flux with value 6.5 · 10−4 mol/m2 s
in the right-hand side. There are also temperature boundary conditions of 450 K at the
top and 460 K at the bottom. The domain is uniformly subdivided in each direction as is
shown in figure 2, which serves as an illustration of the Athena output.

In order to validate the two new implicit methods for the molar mass equations,
they will be compared to the explicit solver. The Athena simulator is run for each
of these three methods and the time step has been set to be small enough for the CFL
condition to remain inactive in the explicit case. For these small time steps the reference
solution given by the explicit solver is graphically indistinguishable from the solution
obtained with the implicit methods. Thus, the relevant factor to analyze is how the
solution of the implicit formulation varies as the maximum allowed time step increases.
Given an implicit solver, we shall compare the hydrocarbon saturations Sl , l = o, g, that
result from simulations with different maximum value of the time steps. The error norm
is chosen to be ‖Sl

�t −Sl
�to

‖L1 with time steps �t , that double from �t = 0.00235y until
0.6y using as reference solution S�to, the one obtained with maximum time step �to =
0.0006y. Figure 3 shows that the full Jacobian is more robust than the sequential method
as it should be expected, since in the sequential formulation the cross derivatives have
been neglected. Even when the error is bounded below 10%, the sequential formulation
shows an erratic convergence rate for time steps bigger than 0.0376y, where, according
to table 1, the explicit method would impose severe CFL conditions. Concerning the
computational time, it may be read in table 1 that whilst the CPU time for the explicit
method remains bounded above a quantity close to that obtained when the CFL condition
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(a) (b)

Figure 3. Athena simulation of 100y; the L1 error in saturations, against maximum allowed time step,
�t ∈ (0.00235y, 0.6y). (a) Full Jacobian solution, and (b) sequential Jacobian.

Table 1
CPU time statistics: Athena simulation of 100y with three solvers.

max �t 0.0094 0.0188 0.0376 0.0752 0.15 0.3 0.6

Exp. x
x

2

x

2

x

2

x

2

x

2

x

2

Seq. ys
ys

2

ys

4

ys

8

ys

16

ys

32

ys

64

Jac. yj

yj

2

yj

4

yj

8

yj

16

yj

32

yj

64

becomes for the first time active, the CPU time for both implicit methods decreases at a
rate inversely proportional to the maximum allowed time step. Even when the respective
CPU times at small time steps x, ys and yj depend on implementation factors, in our
particular simulations they do have similar values as expected from the analytical nature
of the implicit formulation.

8.2. A highly nonlinear model

In this subsection numerical results for a full 3D treatment of a domain with a fault
shall be described. The domain has a size of [8.75, 1, 8.75] m × 10 m ×[7.5, 2.5, 10] m
and 8 m depth at the left end. It has three different layers both in the x and in the
z direction, shale, sandstone and shale again. The lithologies have the same values as
those given in section 8.1 and the boundary conditions consist of an explicitly given flux
of oil and gas with value 0.2 · 10−4 mol/m2 s going inwards on the left-hand side and an
outwards water flux with value 2.5 · 10−4 mol/m2 s on the right-hand side. Some results
of this model simulation with Athena are shown in figure 4.
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Figure 4. Oil migration simulated by Athena for 20y with 0.0047y as time step.

Table 2
CPU time statistics: Athena simulation of 20y with three solvers.

max �t 0.00235 0.0047 0.0094 0.0188 0.0376 0.0752 0.15

Exp. x
x

2

x

4

x

3

x

3

x

3

x

3

Seq. ys
ys

2

ys

4

ys

8

ys

16

ys

32

ys

64

Jac. yj

yj

2

yj

4

yj

8

yj

16

yj

32

yj

64

In this particular example the system is highly nonlinear, so that the Jacobian
variation at each Newton step is very high, and may be seen from table 2 that the
implicit methods give a relative speed up below the one in the simpler case of sec-
tion 8.1. According to figure 5, the relation between the oil and gas saturation L1-error,
‖Sl

�t − Sl
�to

‖L1 , and the time step for both implicit methods, allow us to conclude that,
even when the discrete treatment of cross derivatives yields a natural time control in the
Newton step, further improvements should be introduced in order to treat regions where
the phase and velocity are subject to rapid changes. As a step in that direction, a local
time domain griding and parallel processing is currently under study.

9. Conclusions

We apply numerical techniques to determine the essential dynamical behavior of
two novel implicit formulations for the molar masses in multicomponent, multiphase
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(a) (b)

Figure 5. Athena simulation of 100y; the L1 error in saturations, against maximum allowed time step,
�t ∈ (0.0012y, 0.15y). (a) Full Jacobian solution, and (b) sequential Jacobian.

flux in porous media. The Jacobian resulting from the Newton–Rapson algorithm is
approximated analytically from the dew an bubble point curves. The results indicate
that the size of the cross-diagonal terms in the Jacobian serve as a time step control.

Moreover it can be shown that for regions where the change in velocity and phase
is small, the implicit formulation performs, in our implementation, at least a factor of
50 times faster. Hence, altogether we may conclude that both the implicit formulations
for the molar mass of multicomponent, multiphase porous media exhibit a much better
CPU time than the explicit solver at any time step. Besides, the error remains bounded
when using a discretization-derived time step control. Some animations of these results
and the C++ code for the GS–Galerkin may be found at the home-pages of the authors.
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