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Internal waves in oceans, the atmosphere, and labo-
ratories are often observed as compact groups consist-
ing of few spatial oscillations [1–3]. In a laboratory
environment, the spatial structure of inner wave beams
is characterized by a scale depending on the source
size, buoyancy frequency, kinematic viscosity, and dis-
tance to the observation point [4, 5]. However, when
smooth beams cross a column of continuously stratified
fluid, the oscillation amplitude increase caused by non-
linear interaction of waves [6] is supplemented with the
formation of thin high-gradient sublayers [7, 8].
Extended discontinuities of the smooth profile of the
buoyancy frequency have a sufficiently regular form.
Near-horizontal sublayers are also observed during the
collision of internal solitons [9].

The sublayers are always confined to the beam inter-
sections zone, and their thickness is essentially smaller
than the length of the interacting waves. The mecha-
nism of “stratification fault” [7] formation governing
the transfer of impulse, mass, and the energy is still
unknown. Study of this mechanism is of interest to
identify processes of the formation of the universally
observed fine structure of oceans and atmosphere [10,
11], as well as to analyze the role of dissipation factors
in the mechanics of periodic movements of fluids.

This work studies the fine structure of beams of
three-dimensional (3D) periodic internal waves (PIW)
using analytical and numerical methods. Taking into
consideration the symmetry of internal waves, the
source chosen is a disk of radius 

 

R

 

 that lies on a solid
horizontal surface and vertically oscillates with fre-
quency 

 

ω

 

 and small velocity amplitude 

 

U

 

.

The linearized equation system for the movement of
exponentially stratified viscous fluid in the Boussinesq
approximation has the form [12]
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where 

 

v

 

 is the velocity; 

 

P

 

 and 

 

ρ

 

 are the perturbations of

pressure and density, respectively; 
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exp

is the initial density distribution; 

 

Λ

 

 is the buoyancy
scale; 

 

ν

 

 is the kinematic viscosity; 

 

g

 

 is the gravity

acceleration; 

 

∆

 

 =  +  + 

 

; and the 

 

z

 

 axis of a

cylindrical reference system (

 

r

 

, 

 

ϕ

 

, 

 

z

 

) is directed upward
against the gravity force. The diffusion and thermal
conductivity effects are neglected.

The adhesion boundary conditions are set both at the
oscillating disc and at the remaining part of the horizon-
tal plane

 

(2)

 

At infinity (

 

z

 

 

 

→ ∞

 

) all the perturbations fade out.
The steady state motions are considered when all the
functions harmonically change with time as exp

 

(–

 

i

 

ω

 

t

 

)

 

.
This factor is omitted for brevity.

Taking into consideration incompressibility and
axial symmetry, system (1) is transformed into an equa-
tion for the scalar function, 

 

Ψ

 

, that defines the compo-
nents of velocity 

 

v

 

 in the cylindrical reference system
connected with the disc center as

 

(3)
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Then, system (1) and boundary conditions (2) take the
following form:

 

(4)

(5)

 

where 

 

∆

 

⊥

 

 = 

 

∆ 

 

– , 

 

N

 

 = 

 

 is the buoyancy fre-

quency, and ϑ is the Heaviside function.

Generally, a double boundary layer consisting of
inner and isopycnal (Stokes) sublayers is formed at the
surface emitting internal waves. The parameters of the
sublayers depend on the medium properties, wave fre-
quency, and geometry of the problem [5]. At the source
considered, where the axial component of the fluid
velocity vanishes, the inner boundary layer transforms
to the Stokes one and the isopycnal one disappears. In
this case, the number of roots of the dispersion equation
is less than in the common case [5] and the solution of
(4) under the boundary conditions (5),

(6)

only includes the following regular (proportional to ν)

and singular  roots of the dispersion equation:

(7)

Here, δN =  is the universal microscale of periodic

perturbations and θ =  is the wave cone incli-

nation to the horizon.

To satisfy the damping conditions at infinity in the
upper half plane (z ≥ 0), the following roots should be
chosen: Imk1 > 0 and Imk2 > 0. The spatial structure of
the wave cone is defined by the imaginary part of solu-
tion (6), which is not small even if the stratification is
weak and the viscosity is small.
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The asymptotic expressions for the roots (7) are

The wave number k1 relates to the traveling internal
waves, while k2 relates to the boundary layer with typi-

cal thickness δω = δN .

From (6) follow the expressions for the vertical and
radial velocities,

(8)

(9)

and for the vorticity components,

(10)

Far from the disc (r � R) with a smaller radius (rel-

ative to the viscosity wave scale R � Lν, Lν = )

in the concomitant reference system (q, p) and the axes
oriented along the cone generator and along the normal
to wave cone, the asymptotic expression for the vertical
velocity takes the canonical form [4]

(11)

As follows from (11), the amplitude of 3D periodic
waves falls inversely with distance from the source, the
oscillations across the beam rapidly fading. Asymptotic
expression (11) only describes the regular velocity
component. It is more convenient to calculate the
boundary layers using the boundary function method.

In the low-viscosity approximation, the items in the
expression for the vertical component of the force act-
ing upon the vibrating disk surface,

(12)

differ from the inertial and dissipative components of
the resistance force acting upon a sphere oscillating in
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homogeneous fluid [12] by factors 4(1 + i)  and

, respectively. Both the exact solution (6) and

the asymptotic representation (11) include only the
problem parameters, in contrast to [3], where it is nec-
essary to empirically define the properties of the model
sources and sinks. The fine structure of the wave beams
described by exact solution (6) is further studied by
numerical methods.

In order to reproduce the flow structure, array values
(8) and (9) are computed using the Simpson method at

θcot
π

-----------

π 1 i+( )
6

-------------------

the grid points, with parameters chosen so as to visual-
ize the flow elements with resolution of 0.1–0.02 mm.
The upper limits of integration intervals are chosen so
as to preserve calculation accuracy within the whole
range of the problem parameters. The full-color visual-
ization program code is written in MS Visual C++.
Only black-and-white images are presented here. The
computation shows that it is possible to visualize both
the boundary layer at the emitting surface and the wave
fields in the entire space.

The mode structure of PIW conic beams generated
by different-sized discs is shown in Fig. 1 (the buoy-
ancy frequency, as well as the frequency and amplitude
of vertical oscillations of the source, are constant in
either case). The flow image is based on the modified

method of isolines 25 lines, with a pitch of . The

small disc (R = 1.7 cm, R < Lν) emits a single-mode
beam with the displacement maximum at the center
(Fig. 1a). The distribution of the vertical velocity mod-
ule in the internal wave beam emitted by the wide disk
(R = 4 cm, R > Lν; Fig. 1b) shows two maximums at the
beam edges.

The distributions of the velocity module and vertical
component across the beam also remain symmetrical in
the latter case [2, 4]. Boundary layers at the plane
extend beyond the source and their perturbation phases
are coherent with the wave ones. Extended inhomoge-
neities are located at the outer boundaries of the beams.
Since the cross size is small, the fine structure rapidly
and synchronically evolves in the whole observation
area.

The fine structure of perturbations becomes more
prominent when we utilize “differential analyzers” act-
ing as schlieren instruments used in experimental
hydrodynamics. The image of the first derivative of the
vertical velocity, also based on the modified method of
isolines (Fig. 2a), is sufficiently contrasting to demon-
strate the fine structure of the wave beam shells with
cross section size of approximately δN generated by the
disc edge. The total number of isolines is 50. The pitch

is equal to  of the first derivative maximum (2.41 s–1)

at the intersection of the inner beam shells. Two pertur-
bation bands forming the inner and outer shells of the
beam cone are generated by the disc edge. Their con-
trast ratios and cross section sizes change with time
much more rapidly than the entire wave image. The fine
beam shells are even more contrasting in the image of
the second derivative of the velocity (50 isolines with
pitch equal to 1/51 of the velocity second derivative
module maximum (22.7 cm–1 s–1) at the disc edges). At
the beam periphery, the velocity shift decreases with
distance sufficiently slowly.

The superposition and nonlinear enhancement of
gradients at the intersection of the structure elements—
δN thick—may lead to the origination of stratification
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Fig. 1. Mode structure of periodic wave cone beams gener-
ated by horizontal (a) small (R = 1.7 cm) and (b) large (R =
4 cm) discs. Vertical velocity distribution in the central sec-
tion of the beam is shown. N = 1.2 s–1; ω = 0.998 s–1, U =
0.25 cm/s, t = 0.
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discontinuities [6–8]. In order to confidently record and
measure singular element parameters relative to large-
scale internal waves, it is necessary use fast gages with
resolution of δN, which is only accessible for the best
schlieren instruments.
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Fig. 2. Fine structure shells of two-mode beams of 3D peri-

odic internal waves. Distributions of the (a) first  and

(b) second  derivatives of the radial velocity in the

central section of the conic beam. N = 1.2 s–1; ω = 1.0 s–1;
R = 4 cm; Lν = 1.8 cm; U = 0.25 cm/s; t = 0.
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