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Abstract

Variation in the computation of slope from digital elevation data can result in significantly

different slope values and can, in turn, lead to widely varying estimates of environmental phenomena

such as soil erosion that are highly dependent on slope. Ten methods of computing slope from

distributed elevation data, utilizing capabilities inherent in five different geographic information

systems (GIS), were compared with field measurements of slope. The methods were compared based

on (1) overall estimation performance, (2) estimation accuracy, (3) estimation precision, and (4)

independence of estimation errors and the magnitude of field measured slopes. A method utilizing a

very high resolution digital elevation model (DEM) (1 m) produced slightly better estimates of slope

than approaches utilizing somewhat lower resolution DEMs (2–5.2 m), and significantly better

estimates than a method utilizing a 12.5 m DEM. The more accurate method was significantly

biased, however, frequently underestimating actual slope. Methods that averaged or smoothed high

resolution DEMs over larger areas also produced good estimates of slope, but these were somewhat

less accurate in areas of shallow slopes. Methods utilizing differential geometry to compute percent

slope from DEMs outperformed methods utilizing trigonometric functions. Errors in slope

computation are exaggerated in soil erosion prediction models because erosion typically increases

as a power function of slope.
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1. Introduction

Numerous empirical and process-based models have been developed to predict

environmental phenomena such as soil erosion and sediment deposition. In order for

the models to be applied with maximum effectiveness in large areas of complex terrain,

integration with geographic information systems (GIS) is requisite. Slope steepness is a

fundamental parameter in most soil erosion models. In a GIS environment, the most

efficient method to determine slope is through the use of digital elevation models (DEMs).

DEMs represent topography either by a series of regular grid points with assigned

elevation values or as a triangulated irregular network (TIN) where each point is stored

by its coordinates and the surface is represented by triangular facets.

Various techniques have been devised to compute slope from DEMs. Different

computational methods, however, may produce significantly different slope values from

the same DEM (Snyder, 1983; Skidmore, 1989; Srinivasan and Engel, 1991). Variation in

the computation of slope can, in turn, lead to widely varying estimates of soil erosion

(Srinivasan and Engel, 1991). Soil erosion models are especially sensitive to errors in

slope because runoff-induced erosion increases as a power function of slope (Zingg, 1940;

Nearing, 1997). Most soil erosion models, while operable within GIS, were not developed

using DEM-generated slopes. Rather, they were developed based on slopes obtained from

field or plot measurements. Hence, when applying soil erosion models within GIS, it is

imperative that DEM-generated slopes are compatible with measurements made in the

field. Few studies, however, have compared computed estimates of slope with actual field

measurements (e.g., Bolstad and Stowe, 1994; Giles and Franklin, 1996), and none has

evaluated this with respect to soil erosion prediction.

In this paper, we contrast 10 methods of computing slope from distributed elevation

data and compare all with field measurements of slope. The comparison of the slope

estimation methods is based on four criteria including (1) overall estimation performance,

(2) estimation accuracy (i.e., amount of systematic error or bias in the estimates), (3)

precision (i.e., random error), and (4) independence of the estimation errors (i.e., residuals)

and the magnitude of the field-measured slopes. The effects of errors in slope computation

are evaluated in light of their impact on soil erosion estimation.
2. Methods

To evaluate the capabilities of various GIS-based methods to provide reliable estimates of

slope using the elevation data obtained by geodetic survey, we compared computed slopes

with slopes measured directly in the field. When comparing the relative capabilities of

different GIS-based methods, two basic approaches are possible. A single operator may

perform all operations, which will minimize differences due to operator bias. Alternatively,

operators with long experience with particular systems may be selected, thus taking

maximum advantage of system capabilities. A basic assumption of erosion modeling is

that the model results are independent of the user so long as the person has profound

knowledge of the methods used. Hence, we followed the second approach. Each operator

was selected based on expertise with a particular GIS system. All operators were aware that it



S.D. Warren et al. / Catena 58 (2004) 215–233 217
was important to create a DEM and resulting estimations of slope which would closely agree

with field measurements. This lead to different approaches by the different GIS operators

based on the capabilities of the systems used, but reflects the reality of modeling with GIS.

As derivation of slope with GIS is not normally optimized by feedback mechanisms based

on field validation, and as some GIS allow for different approaches, one of the assigned

operators tried multiple approaches with their assigned GIS (SPANS). To further highlight

personal preferences, which may be important but are rarely documented in modeling

papers, one GIS (ArcInfo) was operated by two different people who opted for contrasting

approaches.

2.1. Field measurements

The Scheyern Experimental Station of the Forschungsverbund Agrarökosysteme Mün-

chen (Munich Agroecosystems Research Alliance) was used as the field study site. The 143-

ha study area is a hilly landscape that has been under cultivation for several centuries. Arable

slopes range up to 30%. An intense tachymetric survey was conducted at the research

station. Precise elevation was recorded for 500 locations distributed as a 50� 50m grid (Fig.

1). Approximately 4000 additional positions were surveyed in areas of complex topography

in order to represent the landscape in more detail. The use of additional survey points helps

eliminate the Gibbs phenomenon which creates large errors in DEMs in areas of jump

discontinuity (Florinsky, 2002). All points were available for the computation of a DEM.

Slope measurements were made at 57 randomly distributed points throughout the

central part of the study area after harvest when the soils had settled. Slope was measured

over a 5 m distance in the direction of the perceived maximum slope. At each point,

measurements were made with a water level in three replicates over a width of 1.5 m.

Accuracy of the measurements was at least 0.1%. The average 95% confidence interval for

the three replicates was 0.3% and contains measurement error as well as variation in slope

over the 1.5 m width. Slopes ranged in steepness from 1.6% to 23.6%.

2.2. Methods of slope estimation

Five different GIS were used to process the survey data. In each case, data processing

was conducted by a person with several years of specialized experience with the particular

system, thus minimizing the impact of user capabilities on potential differences in

outcomes. None of the operators were allowed access to the measured slope data. With

algorithms inherent in each system, the operators computed their respective DEMs and

their best estimates of slope at the 57 aforementioned randomly distributed points.

Two basic approaches were used to compute the slope in percent; the first uses

trigonometry and the second is based on differential geometry. The first approach

computes percent slope as a change in elevation Dz over a certain distance Ds

slopeð%Þ ¼ 100ðDz=DsÞ ð1Þ

where Dz is the difference in elevation (m) between the given grid point and the lowest

grid point in its neighborhood, and Ds is the distance (m) between those two points



Fig. 1. An elevation map of the Scheyern Experimental Station near Freising, Germany. The small x’s represent

locations where elevation measurements were taken to allow the development of a digital elevation model. The

boxes represent the points where precise field measurements of slope were made. Elevation is depicted in meters.
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(usually a grid cell side or a diagonal). It is important to note that this approach considers

only eight possible directions of steepest slope.

The second approach is based on differential geometry and computes percent slope as a

magnitude of the gradient vector (tangent vector of the surface pointing in the direction of

steepest slope). With this approach, slope is computed at a grid point rather than over a

distance as it is in the previous case. The general equation is

slopeð%Þ ¼ 100
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2x þ f 2y

q
ð2Þ

where f x
2 and f y

2 are partial derivatives of a bivariate function z = f (x, y) which represents

the elevation surface. Various methods use different approximation functions such as

spline or bivariate polynomials. The most common approximation for regular grid DEMs

is a bivariate second order polynomial which leads to a very simple estimate of the

derivatives as weighted averages of the elevation differences between the given point and

all points within its 3� 3 neighborhood (Horn, 1981; Neteler and Mitasova, 2002).



2.2.1. HIFI88

The HIFI88 system was developed to create topographic maps from geodetic data

(Ebner et al., 1987) and does not include full GIS capabilities. Landscape surfaces are

represented in a regular grid format, with triangulated irregular networks (TIN) located

within the grid cells to more accurately describe break lines in the topography. This

method allows rapid and efficient processing of the data. A finite elements method is

used to estimate elevation at grid points based on interpolation from the given elevation

values. A least squares solution for the surface is calculated assuming that (a) the surface

fits as close as possible to the input data points, and (b) the surface is as smooth as

possible.

For this analysis, a 10 m resolution grid was initially calculated for the entire study site

using the data from the field survey points. This size was chosen both for computational

efficiency and to meet the requirement that no more than nine grid cells were represented

by each data point. In order to create a satisfactory grid density around the points where

slope was to be estimated, a 4 m resolution grid was generated from the original 10 m

DEM. A subsequent DEM was interpolated for a 1 m resolution grid within a 20� 20 m

area surrounding each point of interest. A standard local polynomial interpolation was

used to compute slopes on a regular grid using the differential geometry approach (Eq.

(2)). Slope was recorded for the grid points closest to the test points and an average was

taken. This average was used for comparison with field slope measurements.

2.2.2. PCRaster

We utilized an older shareware version of PCRaster, a raster GIS developed by the

University of Utrecht for educational purposes (van Deursen and Wesseling, 1993). The

operator of this system was less-experienced than the operators of the other GIS.

Interpolation among the scattered point data was conducted by ordinary point kriging

utilizing the included Gstat package (http://www.gstat.org). The result was a 12.5 m

resolution DEM. The slope of each grid cell was then calculated as the maximum change

in elevation over the distance between the given cell and the lowest one in a 3� 3 cell

window using the trigonometric approach (Eq. (1)).

2.2.3. Arc/Info

With ArcInfo version 6.0 (Environmental Systems Research Institute, 1991), a

triangulated irregular network (TIN) surface was first created from the scattered elevation

data using the Delaunay method of triangulation. From the TIN, a surface grid was created

using two different interpolation methods. With the linear interpolation method, each

triangle was considered planar and autonomous, thus creating a multifaceted surface. The

elevation of any point falling within a triangle was calculated based solely on the elevation

values for the triangle nodes. Grids with 2 m (Arc/Info1) and 2.5 m (Arc/Info2) resolution

were created with this method.

With quintic interpolation, the geometry of neighboring triangles was considered, thus

allowing for undulations on individual triangle facets and creating a smooth, continuous

surface overall. Quintic interpolation uses a bivariate fifth-degree polynomial. Break lines

were not included in the calculation of the quintic interpolation. This method was used to

compute a 2.5 m resolution DEM (Arc/Info3).
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Slope was determined for the resulting DEM on a cell by cell basis using the

trigonometric approach (Eq. (1)), calculating the maximum rate of change between each

cell and its surrounding 3� 3 neighborhood.

2.2.4. SPANS

Version 5.3 of the Spatial Analysis System (SPANS) (http://www.pcigeomatics.com)

was used to generate DEMs at resolutions of 2.59 and 5.20 m. First, all elevation points

were connected with their nearest neighbors to form a TIN surface. Each triangle in the

network formed a plane. Using a linear interpolation, the TIN was converted to a grid

DEM which was then smoothed using a 3� 3 filter. The differential geometry approach

(Eq. (2)) using the standard polynomial approximation applied to a 3� 3 matrix of

elevation values was used to compute the slope in percent. Finally, the resulting slope

was smoothed using 3� 3 (SPANS3), 7� 7 (SPANS7) and 15� 15 (SPANS15) grid

matrices at the 2.59 m resolution, and a 3� 3 (SPANS3b) matrix at the 5.20 m

resolution.

2.2.5. GRASS

The Geographic Resources Analysis Support System (GRASS) version 4.1 (http://

www.grass.itc.it/) was used to derive a 2 m resolution DEM from the scattered elevation

points. The model was computed by interpolating between the given data points using a

regularized smoothing spline function with tension (Mitasova and Mitas, 1993). The

method assumes that the approximation function should pass as closely as possible to

the given data points and should be as smooth as possible. A tension parameter controls

the distance over which a given point influences the resulting surface model and enables

the user to tune the character of the resulting surface from a membrane to a thin plate. A

smoothing parameter controls the deviation of the resulting surface from the individual

data points. The parameters can be selected empirically by visual analysis of the

interpolated surface or they can be optimized by minimizing the cross-validation error

(Mitasova et al., 1995; Hofierka et al., 2002). In this application, the parameters were

adjusted empirically using visual analysis to minimize overshoots and deviations. The

selected tension parameter was 40 and the smoothing parameter was set to 0.1. Slope

was determined for each grid cell based on the differential geometry approach (Eq. (2))

using the partial derivatives of regularized spline with tension (GRASSrst).

2.3. Statistical analyses

Because the design of the study allowed individual researchers some professional

discretion, analysis of data and interpretation of findings were complicated by several

uncontrolled but realistic sources of variation. Therefore, any observed variation in

estimation ability among methods does not necessarily result solely from differences in

the methods per se. Differences in the scale of estimation, due to differences in DEM grid-

size and estimation neighborhood, will also affect estimates. Therefore, in addition to the

unconstrained comparison of methods, we also examined subsets of methods that differed

by a single parameter (e.g., grid size, estimation neighborhood, or algorithm) in an attempt

to identify the influence of specific parameters on the estimates.

http://www.pcigeomatics.com
http://www.grass.itc.it/


2.3.1. Exploratory data analysis

We tested the normality of the field-measured slopes, estimation errors (i.e., difference

between the measured and estimated slopes), and relative errors (i.e., ratio of estimation

errors and field-measured slopes) using the methods of D’Agostino et al. (1990). We also

examined the spatial structure of the field-measured slopes and estimation errors using

correlograms. It is critical that data are assessed for spatial independence prior to statistical

analyses, since spatially autocorrelated data violate the assumption of sample indepen-

dence, thereby biasing the interpretation of inferential tests (Legendre, 1993). Spatial

autocorrelation in the field-measured slopes and estimation errors was assessed with

correlograms (Sokal and Oden, 1978). Autocorrelation coefficients (Moran’s I) were tested

against the null hypothesis Ho: I = 0. Moran’s I ranges between � 1 and + 1; positive

coefficients indicate aggregation of similar values and negative coefficients indicate

segregation. Significant autocorrelation indicates that the value of the variable at a given

location depends on the values at neighboring locations. Critical values were calculated

from the standard error of I, and the hypothesis of spatial dependence was tested with t.

The overall significance of the correlograms was evaluated at a conservative Bonferroni-

corrected critical level prior to evaluating the significance of coefficients at individual

distance lags. This corrected probability (a = 0.006) was calculated as the quotient of the

critical probability level (a = 0.05) and the number of distance lags (n = 8) for which

Moran’s I was calculated (Oden, 1984). The autocorrelation analysis was performed using

GS+ (Version 2.3b, Gamma Design Software, 1994).

2.3.2. Overall estimation performance

We measured the overall estimation performance of the various methods with the

standard error of prediction or root-mean-square error (RMSE), which is calculated as the

square root of the mean of squared differences between estimated (xi) and measured slopes

(ti) for n sample locations:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðxi � tiÞ2

n� 1

vuuut
ð3Þ

Methods with low RMSE have greater predictive ability than methods with large

RMSE (i.e., estimates deviate less from the field-measured slopes). However, because the

RMSE is based on the squared differences between the estimates and the measured slopes,

large errors will have a disproportionate influence on the value of the index.

To assess the magnitude of the estimation errors relative to the steepness of the field-

measured slopes, we also calculated the RMSE for the relative errors [(xi� ti)/ti], which we

henceforth refer to as the relative root-mean-square error (RRMSE). When multiplied by

100, this index represents the error of the slope estimates as a percentage of the field-

measured slopes. The RRMSE is particularly sensitive to estimation errors in flat areas, as

large estimation errors at locations having shallow slopes will assert a greater effect on the

value of the index than equivalent errors at locations with steep slopes. We estimated the

variance of the RMSE and RRMSE with the jackknife procedure (Manly, 1991).

Confidence intervals for the indices were calculated as tn� 1SE, where SE is the standard
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error of the jackknifed distribution and tn� 1 is the critical value of a two-sided 95%

confidence interval from a t distribution with n� 1 degrees of freedom. When making

multiple comparisons, confidence intervals can provide more insight than significance

tests as they reveal the degree of uncertainty in each comparison.

2.3.3. Estimation accuracy

We assessed the accuracy of the different methods by comparing the slope estimates

and field-measured slopes. We used Williams’ corrected G-test to determine whether the

frequency of over- versus underestimated slopes differed (Sokal and Rohlf, 1994). For an

unbiased estimation method, the number of under- and overestimated slopes is expected to

be equal. For this test, a P-value of 1.00 indicates perfect fit to expectation, and a P-value

of 0.000 indicates a complete lack of fit. Tests were evaluated at a sequential Bonferroni

adjusted critical value (P < 0.005) to account for multiple comparisons. Because infor-

mation about the magnitude of the errors is not included in the G-test, we also tested

whether the mean difference between the estimated and measured slopes was significantly

different from zero with paired-comparisons t-tests. For an unbiased estimation method,

the mean difference should not differ from zero.

2.3.4. Estimation precision

We assessed the precision of the different estimation methods by first centering the

error distributions to have a zero median (i.e., for each method, we subtracted the median

from each residual) and then calculating the RMSE of the centered distributions.

Confidence intervals (CI) for the RMSE indices were calculated as F tn� 1SE, where

SE is the standard error of the jackknifed distribution and tn� 1 is the critical value of a

two-sided 95% confidence interval from a t-distribution with n� 1 degrees of freedom

(Manly, 1991).

2.3.5. Independence of estimation errors and field-measured slopes

To test whether estimation errors were independent of slope, we correlated field-

measured slopes and estimation errors. Because data distributions were skewed and

unimproved by transformations (see Section 3.1), correlations were tested with nonpara-

metric and randomization methods. Outliers were identified and removed prior to

analysis. For each estimation method, linear associations between estimation errors and

slope were tested with Pearson’s product-moment correlation coefficient (r). The

significance of the correlation coefficients was evaluated with P-values representing

the likelihood of obtaining a correlation coefficient larger than the observed simply by

chance (Manly, 1991). In order to test for nonlinear associations, we calculated Spear-

man’s rank-order correlations (rs) (Sokal and Rohlf, 1994). We also calculated (rs) for the

absolute values of the estimation errors and the field-measured slopes to assess

associations between the slope steepness and magnitude of the estimation errors, without

regard to whether slopes were over- or underestimated. In an attempt to account for the

increased likelihood of committing type I errors, due to spatial autocorrelation (see

Section 3.1), we evaluated correlations at a conservative level of significance (P= 0.01),

and with a sequential Bonferroni adjustment for multiple comparisons (Rice, 1989).

Although more exact methods of correcting for spatial dependence in variables have been
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developed for correlation analysis, they are limited to normally distributed data (e.g.,

Dutilleul, 1993).

2.4. Erosion modeling analysis

We assessed the effect of slope estimation method on soil loss prediction using the

Universal Soil Loss Equation. The equation has the form

A ¼ RKLSCP ð4Þ
where A is average annual soil loss, R represents the erosivity of average rainfall and

runoff, K is a measure of soil erodibility, L represents the effect of slope length, S is a

measure of the effect of slope steepness, C represents the influence of plant cover, and P

represents conservation support practices (Wischmeier and Smith, 1978). We calculated S

using an equation by Nearing (1997) to account for the effect of slope. To avoid

introducing additional sources of variation, the product of the remaining parameters was

held constant at 3.38 t ha� 1 year� 1 which represents the average conditions at the site

(Fiener and Auerswald, 2003).
3. Results

3.1. Exploratory analyses

The distribution of field-measured slopes was positively skewed (P < 0.01) and

leptokurtic (P < 0.05). Similarly, the distributions of the estimation and relative errors

were positively skewed for all 10 methods (P < 0.01), and leptokurtic for all methods

except Arc/Info1, PCRaster, and SPANS15 (P < 0.05). Data transformations did not

improve the normality of the distributions.

The field-measured slopes exhibited significant spatial autocorrelation (Moran’s I ) at

all distance lags examined (Table 1). At distances less than 150 m and greater than 330

m, field-measured slopes were negatively autocorrelated; at intermediate distances, they

were positively autocorrelated. The positive and negative autocorrelations of the field

measurements are a result of the asymmetric valley shapes with positive correlation for

distances in locations on some slopes and negative correlations of sites on opposite

slopes. For the estimation errors, most methods exhibited positive autocorrelation to

distances of approximately 150–210 m. The PCRaster and HIFI88 methods were

exceptions, as their residuals were not autocorrelated at any distance lags less than

210 m. At average lag distances greater than 210 m, most estimation methods either did

not have autocorrelated errors, or exhibited alternating positive and negative spatial

autocorrelation.

3.2. Overall estimation performance

Comparisons of the root-mean-square errors (RMSE) and 95% confidence intervals

indicate that the HIFI88, GRASSrst, and SPANS15 methods have a significantly lower



Table 1

Positive (+) and negative (�) autocorrelation coefficients (Moran’s I ) significant at a Bonferroni adjusted critical

value of P< 0.006 and lag distances for the field-measured slopes and estimation errors

Estimation method Distance lag (m)

90 150 210 270 330 390 450 510

Field-measured slopes � + + + + � � �
Arc/Info1 + + � + � �
Arc/Info2 + +

Arc/Info3 + + + + � +

GRASSrst + + � + �
HIFI88 + � + � + �
PCRaster � �
SPANS3 + + �
SPANS3b + + �
SPANS7 + + �
SPANS15 � + �
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estimation error than the PCRaster and Arc/Info1 methods (Fig. 2). None of the other

methods differed significantly from one another. Errors relative to the field-measured

slopes were lower for the HIFI88 method (28%) than for the Arc/Info1, Arc/Info2,

PCRaster, and SPANS3 methods (>49%, Fig. 3). None of the other estimation methods

differed from each another. Unlike the results for the RMSE, the GRASSrst and

SPANS15 methods, as well as all other slope computation methods, had comparatively

higher RRMSEs than the HIFI88 method.
Fig. 2. The root-mean-square error (RMSE) as a measure of overall estimation performance (open triangles) and

estimation precision (closed circles) of the 10 methods of estimating slope. Lower values are indicative of better

performance. The horizontal bars represent the confidence intervals.



Fig. 3. The relative root-mean-square error (RRMSE) multiplied by 100, as shown here, represents the error of

slope estimates as a percentage of field measured slopes. Lower values are indicative of better performance. The

horizontal bars represent confidence intervals.
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3.3. Estimation accuracy

When evaluated at a conservative sequential Bonferroni critical value (P < 0.005), the

results of the G-tests for goodness-of-fit indicate that none of the estimation methods are

significantly inaccurate (Table 2). Paired-comparison t-tests gave similar results (Table 3).

However, if these two analyses are evaluated without the conservative Bonferroni

adjustment (i.e., at P < 0.05), then the Arc/Info1, HIFI88, and SPANS3b methods are
Table 2

Number of over- versus underestimated slopes using Williams’ corrected G-tests for goodness-of-fita

Estimation method # Underestimated # Overestimated G P

Arc/Info1 34 16 5.61 0.018

Arc/Info2 31 19 1.89 0.170

Arc/Info3 30 20 0.99 0.319

GRASSrst 29 21 0.27 0.606

HIFI88 34 16 5.61 0.018

PCRaster 20 30 0.99 0.319

SPANS3 29 21 0.27 0.606

SPANS3b 33 17 4.19 0.041

SPANS7 31 19 1.89 0.170

SPANS15 30 20 0.99 0.319

a Bonferroni critical value for tablewide significance is P< 0.005. Estimation methods in bold text are

significantly biased when evaluated without the sequential Bonferroni adjustment in critical value (i.e., P < 0.05).



Table 3

Paired-sample t-tests for mean difference between estimated and field-measured slopesa

Estimation method Mean difference S.D. SE of mean 95% CI t-value P (two-tailed test)

Arc/Info1 � 0.8449 2.663 0.380 � 1.610, � 0.080 � 2.22 0.031

Arc/Info2 � 0.6327 2.282 0.326 � 1.288, 0.023 � 1.94 0.058

Arc/Info3 � 0.3143 2.533 0.362 � 1.042, 0.413 � 0.87 0.389

GRASSrst � 0.2265 2.019 0.288 � 0.806, 0.353 � 0.79 0.436

HIFI88 � 0.6143 1.742 0.249 � 1.115, � 0.114 � 2.47 0.017

PCRaster 0.7143 2.658 0.380 � 0.049, 1.478 1.88 0.066

SPANS3 � 0.5898 2.193 0.313 � 1.220, 0.040 � 1.88 0.066

SPANS3b � 0.7673 2.288 0.327 � 1.424, � 0.110 � 2.35 0.023

SPANS7 � 0.5347 2.000 0.286 � 1.109, 0.040 � 1.87 0.067

SPANS15 � 0.4020 2.006 0.287 � 0.978, 0.174 � 1.40 0.167

Mean differences are in units of % slope.
a Bonferroni critical value for tablewide significance is P < 0.005. Estimation methods in bold text are

significantly biased when evaluated without the sequential Bonferroni adjustment in critical value (i.e., P < 0.05).

S.D. Warren et al. / Catena 58 (2004) 215–233226
biased estimators, as they more frequently underestimated than overestimated slopes, and

had mean differences less than zero (Tables 2 and 3).

3.4. Estimation precision

The HIFI88 and SPANS15 methods had greater precision (i.e., smaller RMSEs for

median centered estimation errors) than the PCRaster and Arc/Info1 methods; no other

methods differed in precision (Fig. 2).

3.5. Independence of estimation errors and field-measured slopes

Spearman rank-correlation analyses using the conservative Bonferroni adjustment

indicate that the errors of the GRASSrst, PCRaster, SPANS7, and SPANS15 methods
Table 4

Spearman’s rank-order correlations and Pearson’s product-moment correlations between the field-measured

slopes and estimation errors

Spearman’s rank-order correlation Pearson’s product-moment correlation

Measured slopes P Measured slopes P

Arc/Info1 � 0.4115 0.004* � 0.441 0.0013*

Arc/Info2 � 0.4155 0.004* � 0.438 0.0007**

Arc/Info3 � 0.3068 0.038 � 0.298 0.0225

GRASSrst � 0.5132 0.000** � 0.491 0.0003**

HIFI88 � 0.3207 0.030 � 0.351 0.0085*

PCRaster � 0.4572 0.001** � 0.451 0.0004**

SPANS3 � 0.3558 0.016 � 0.332 0.0124

SPANS3b � 0.4280 0.004* � 0.381 0.0046*

SPANS7 � 0.5592 0.000** � 0.534 0.0000**

SPANS15 � 0.6748 0.000** � 0.605 0.0000**

*Significant at P< 0.01.

**Significant at the sequential Bonferroni adjusted level of P < 0.001.
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correlated negatively with the field-measured slopes (Table 4), suggesting that over-

estimates are associated with shallow slopes and/or underestimates are associated with

steep slopes. Pearson’s correlation analyses gave similar results. Neither the rank, nor

randomization correlation tests identified any significant association between the absolute

estimation errors and the field-measured slopes even when evaluated at a less conservative

P-value without the sequential Bonferroni adjustment.

3.6. Erosion modeling analysis

Estimated soil loss averaged 3.6 t ha� 1 year� 1 when using measured slopes. Deviations

ranged from 0 to 4.5 t ha� 1 year� 1, with a mean of 0.8 t ha� 1 year� 1 when using computed

slopes (Fig. 4). The ranking between methods was similar to the ranking for precision. Some

locations exhibited a strong deviation in one direction for all methods (note especially

outlying data points where the estimated soil loss from measured slope was approximately

3.5 t ha� 1 year� 1) indicating that this problemwas sometimes independent of the method of
Fig. 4. Soil loss estimates predicted by the Universal Soil Loss Equation from measured and GIS-derived slopes.

All other parameters of the USLE were held constant with average conditions at the site.
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slope computation. In other cases, strong positive or negative deviations were the result of

slope computation methodology. For example, soil loss estimates using computed slopes

ranged from 4.6 t ha� 1 year� 1 greater to 2.4 t ha� 1 year� 1 less than the soil loss estimate of

9.9 t ha� 1 year� 1 when measured slope was used in the computation of soil loss (Fig. 4).
4. Discussion

In our analysis, the HIFI88 method appeared to outperform most other methods of

slope estimation. It produced the lowest overall RMSE and RRMSE and exhibited the

highest precision of all the methods tested. However, it did show some degree of

estimation bias, frequently underestimating the measured slope. The GRASSrst and

SPANS15 methods also produced low RMSEs, but were unbiased in their estimations

of slope. However, their RRMSEs were marginally higher than the HIFI88 method

suggesting that their slope estimates were somewhat less accurate at sites with shallow

slopes, a phenomenon that is not uncommon when deriving slope estimates from DEMs

(Florinsky, 1998). This observation is confirmed by the highly significant correlation of

their errors with the field-measured slopes.

Among the methods tested, the poorest performers were Arc/Info1 and PCRaster. These

methods produced the highest overall RMSEs and were the least precise. In addition, the

Arc/Info1 method had a tendency to underestimate the measured slopes, while the errors of

PCRaster were negatively correlated to the measured slope, indicating a tendency for

greater inaccuracy at the high and/or low extremes of the range of slopes measured in this

study.

4.1. Impact of resolution

The Nyquist frequency, which is twice the grid resolution, describes the lower size limit

of the terrain features that a grid-based DEM is able to delineate (Table 5). When using the

trigonometric approach, slope is measured as a change in elevation (z) over some distance

(s), and the minimum distance over which slope can be measured in a raster-based DEM is

between two adjacent grid cells. Consistent with the Kotelnikov-Shannon sampling
Table 5

Grid size and minimum scale of precision (Nyquist frequency) for the different methods of slope estimation

Estimation method Grid size (m) Nyquist frequency (m)

Arc/Info1 2� 2 4

Arc/Info2 2.5� 2.5 5

Arc/Info3 2.5� 2.5 5

GRASSrst 2� 2 4

HIFI88 1�1 2

PCRaster 12.5� 12.5 25

SPANS3 2.59� 2.59 5.18

SPANS3b 5.2� 5.2 10.4

SPANS7 2.59� 2.59 5.18

SPANS15 2.59� 2.59 5.18
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theorem (Benedetto and Ferreira, 2001), the grid cell size of the DEM must be less than

one half the size of the smallest geographic unit to be investigated. Therefore, to estimate

slope over a 5 m hillslope segment, the DEM resolution should be at least 2.5 m. When

using the differential geometry approach, slope is computed at a point. To properly capture

the geometry of a 5 m long slope by the approximation function, at least 2.5 m resolution

is again needed. Most of the GIS operators selected DEM resolutions between 1.0 and

2.6 m (Table 5).

ArcInfo and SPANS use a TIN to create a DEM, which is then interpolated to a grid.

HIFI88 uses a raster DEM which is further divided into triangles to better capture break

lines. PCRaster and GRASSrst compute raster DEMs directly. All approaches except

GRASSrst use grids to estimate slope; GRASSrst computes slope directly from given

points. Therefore, the minimum precision of four of the estimation methods is directly

constrained by grid resolution. If differences in performance among methods are primarily

an artifact of DEM resolution, then one might expect a positive relationship between grid

size and estimation accuracy (i.e., small grid size results in low RMSE). Consequently, the

relatively poor performance of the PCRaster method may be at least partially related to the

lower DEM resolution (12.5 m) used to calculated slopes, rather than the accuracy of the

interpolation and slope estimation algorithms. By the same token, the somewhat better

performance of the HIFI88 method may be a consequence of a higher resolution DEM.

However, the SPANS3b method, utilizing a DEM resolution of 5.2 m, or slightly more

than double the recommended minimum, was statistically similar to all other methods in

terms of accuracy (Fig. 2). More importantly, the performance of the SPANS3b method

was very similar to that of the SPANS3 method. The two methods were identical except

for the resolution of the DEM they generated, indicating that, within limits, DEM

resolution may be less important than other factors in determining methodological

accuracy.

4.2. Impact of smoothing and slope averaging

In addition to differences in DEM interpolation method and resolution, the accuracy of

the various slope estimates is influenced by the degree of smoothing applied during the

computation of the DEM as well as by the size of the area that is considered when

computing the slope for a given point (either in terms of the DEM resolution or the area

from which the slopes are averaged). If one assumes that slopes computed with the least

smoothing using the smallest area will provide the most accurate estimates, then the

relationship of RMSEs among the various methods should be ordered as PCRaster and

SPANS15>SPANS3b and SPANS7>Arc/Info1, Arc/Info2, Arc/Info3, HIFI88, and

SPANS3. Note that GRASSrst was not included in this comparison, because it estimates

slopes over variable areas depending on the spatial distribution of data (see Section 2) and

a tension parameter. Based on this assumption, the PCRaster and SPANS15 would be

expected to have poor predictive ability since they computed slopes using the elevation

data over larger areas (PCRaster using elevation matrix with 3� 12.5 = 37.5 m length) or

averaged slopes over larger areas (SPANS15 averaging slopes from matrix with

15� 2.59 = 38.9 m length). Yet, the SPANS15 method had a comparatively low RMSE,

while PCRaster method had a high RMSE. The apparent difference in RMSEs may be
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attributed to the finer resolution of the SPANS15 DEM (2.59 m) versus the PCRaster

DEM (12.5 m).

The SPANS3 and SPANS7 methods, which utilized the same resolution as the

SPANS15 method but averaged slopes from smaller areas, had higher RMSEs than

the SPANS15 method. This indicates that averaging slopes computed at higher resolution

from relatively large neighborhood can lower the RMSE. Indeed, although not readily

apparent from the method descriptions, the better performing methods such as GRASSrst

and HIFI88 used elevations from larger areas to compute the high resolution DEMs and

slopes. The GRASSrst method uses approximately 200 points to compute the interpo-

lation function, its derivatives, and slope; the HIFI88 method initially computed a

10� 10 m grid which was further refined to 4 and 1 m resolution DEMs. At the same

time, the better performing approaches used various levels of smoothing when comput-

ing the DEM as well as averaged slopes (e.g., the SPANS15 and HIFI88 methods).

While it may seem counterintuitive that smoothing and averaging data from larger areas

result in more accurate slope estimates than a more local, less smoothed computation,

this is entirely possible if slopes were negatively autocorrelated at small distances, and

positively autocorrelated at larger distances. It requires only that one imagine a rough

surface angled at a gradual incline. Over small distances, the surface would appear

highly variable, but at larger distances, measured slopes would be very similar regardless

of where they were measured. Some evidence of this pattern of variation was found for

the field-measured slopes, which showed significant negative autocorrelation at the first

lag distance (90 m), and positive autocorrelation at greater distances (Table 1). However,

the minimum scale over which we could examine the spatial variation in slope was

larger than the scale used to estimate slopes (e.g., minimum lag of 90 m versus

estimation scales of < 30 m), thereby precluding an unequivocal interpretation of this

observation.

4.3. Impact of method for slope computation

As explained in Section 2, two basic approaches for computation of slope were used.

The methods which used the differential geometry approach performed better than the

methods based on simple trigonometry. This result is in agreement with the previously

published tests (Skidmore, 1989; Jones, 1998). Lower accuracy of the trigonometric slope

estimates usually results from the fact that only eight directions of steepest slope are

considered and only two points are used for the estimate; the differential geometry

approach uses all nine points within the 3� 3 elevation matrix and any direction of the

steepest slope is possible.

4.4. Impact on soil erosion prediction

Slope is a critical parameter controlling most translocation processes within land-

scapes. When attempting to model such processes in a GIS environment, it is

imperative that algorithms used to derive slope from DEMs represent actual slope as

closely as possible. This is especially critical when attempting to model soil erosion, as

slope has a superproportional influence on its estimation (Zingg, 1940; Nearing, 1997).
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It is less critical for parameters such as runoff velocity which is subproportionally

influenced by slope (Manning, 1889). With physically based erosion models, errors in

slope calculation at any point on a hillslope will be propagated downhill, as the erosion

processes in downslope grid cells are affected by inputs from all of the upslope

contributing cells.

Typically, deviations between measured soil loss and modeled predictions are

attributed to deficiencies in the models themselves. However, this study illustrates that

parameter determination may play a significant role in modeling errors. The various

methods used for slope computation produced a large scatter in soil erosion predictions

(Fig. 4). This study used only a single, simple soil loss prediction model, but similar

results could be expected from other models, as all incorporate slope as an important

parameter. For example, EUROSEM is a dynamic single-event model with a completely

different approach to erosion prediction (Morgan et al., 1998). Nevertheless, in cases

where soil erosion is limited by rill transport, the influence of slope is raised to the

power of 1.5, much like the USLE. Where soil erosion is limited by interrill transport,

the effect of slope may be raised to the power of 10 or more, depending on Manning’s

roughness coefficient. In either case, the effects of errors in slope computation are

exacerbated due to the superproportional consideration of slope in the calculation of soil

erosion.
5. Conclusions and practical application

Because estimation methods may vary in performance under different terrain conditions

or estimation scenarios, the results of our analyses are specific to the particular scales,

parameters, and landscape examined. Therefore, we caution against broad speculation on

the general performance of the various methods. Despite this caveat, evidence that the

accuracy of slope estimates can vary among methods and that a portion of the variation is

attributable to DEM resolution is still pertinent. Our findings suggest that greater attention

be given to these potential sources of variation when using slopes estimated from DEMs in

soil erosion prediction models.

Ultimately, the size and spatial distribution of the original elevation data limit the

minimum precision of a DEM, which subsequently limits the minimum precision of the

slope estimates. The most effective DEM resolution will ensure that precision is not lost

due to choice of an overly large grid size as was the case in the PCRaster approach in

this study. Similarly, a grid size that is too small may result in an estimate of slope

variation at a much higher level of detail than is relevant for the process being

modeled.

Probably the most informative result of our study is that the best slope estimates can be

obtained by computing the DEM at high resolution, but with sufficient smoothing, using

elevation data from larger areas. Computing slope at the given point as an average of

values estimated in its neighborhood can also improve the results. Our study has

confirmed that the differential geometry approach based on local polynomial approxima-

tion (using weighted averages of all points within the 3� 3 neighborhood) provides better

results than the trigonometric approach.
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