
Mechanics of landslide initiation as a shear
fracture phenomenon

S.J. Martel �

Department of Geology and Geophysics, University of Hawaii, Honolulu, HI 96822, USA

Accepted 5 September 2003

Abstract

A 3-D model of shear fracture in an elastic half-space provides insight into the initiation of sliding along weak
pre-existing surfaces in rock or consolidated sediments. An elastic model is justified physically if regions of non-elastic
deformation associated with sliding are small relative to the size of the shear fracture. A subsurface elliptical shear
fracture parallel to the surface simulates sliding at depth along a pre-existing weakness (e.g. a bedding plane). Based
on the stress concentration at the shear fracture perimeter, the model predicts landslide scars will tend to have
elliptical shapes in map view and width-to-length values of 0.5^1, consistent with many observations. As a shear
fracture spreads, the stress concentration at its perimeter promotes its propagation up towards the surface. The model
predicts that sliding at depth causes and precedes fracturing at the surface. For a shear fracture less then twice as long
as it is wide, surficial fracturing should start in the head and from there ‘unzip’ down along the slide flanks.
Depending on the ambient stress state and the shear strength loss at the slide base, a shear fracture might need to
become several or more times wider and longer than its depth to develop a sufficiently intense stress concentration to
propagate out of plane to the surface. This accounts for the large length-to-thickness ratios of many natural slides.
The model also accounts for the following generic landslide characteristics: a steep, arcuate, concave-downhill head
scarp; an echelon pattern of opening-mode fractures along the flanks and subparallel to the head scarp trace;
subsidence and normal faulting near the head of a slide; and uplift with thrust faulting near the slide toe.
1 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Landslides share many common attributes (Fig.
1). In map view a slide typically is bounded by an
arcuate, concave-downhill head scarp, strike-slip
faults along its £anks, and a concave uphill toe.
The across-slope width of a slide usually is some-

what less than the downslope length, and both are
usually much greater than the thickness of a slide.
Sliding typically occurs across a surface that is far
thinner than the slide mass itself. The failure sur-
face for natural slides commonly coincides, at
least in part, with pre-existing geologic structures
(e.g. bedding, faults, and joints) but has an overall
concave-up, spoon-like shape. Immediately after a
slope failure, the failure surface at the head scarp
typically is steep or overhanging (i.e. nearly nor-
mal to the slope), although a scarp typically de-
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grades to a lower angle fairly rapidly. Near the
toe the failure surface is at a shallow angle to the
slope (Varnes, 1978). Distinctive deformational
features form at consistent places within and ad-
jacent to a slide mass. Echelon arrays of fractures,
which re£ect brittle deformation, commonly open
along and subparallel to the head scarp, whereas
across-slope buckles commonly develop near the
toes. These characteristics occur for slides in a
highly diverse range of materials : soils, sediments,
rock, snow, and ice. Analyses of sliding should be
able to account for how these characteristics de-
velop. Plastic £ow models (e.g. Savage and Smith,
1986) account for some of these features in un-
consolidated soils, notably the scarp at the land-
slide head and thrust faults at the toe, but no
published physical model accounts for all these
features in three dimensions in rock or consoli-
dated sediments. The research here relates these
features in a uni¢ed physical model. The ¢ndings
hopefully will be of some practical value in under-
standing the incipient stages of sliding and miti-
gating losses caused by slides and tsunamis.
Although the characteristics cited above are

best documented for subaerial slides, slides below
sea level exhibit similar attributes (Prior et al.,
1982; Lee et al., 1991; Schwab et al., 1993; Ed-
wards et al., 1993; Hampton et al., 1995; Mc-
Adoo et al., 2000; Tappin et al., 2001) as do those
on other planets (e.g. Lucchitta, 1978, 1979). The
similar shapes of landslide failure surfaces in
markedly di¡erent environments allow two key
inferences to be drawn about controls on the
shape of the failure surface. First, the shape is
not strongly controlled by the presence of water,
although water pressure changes are key factors
in when and where sliding occurs. Second, the

sliding process itself, in conjunction with the dis-
tribution of geologic weaknesses in a slope and
the type of material, must dictate to a large degree
the geometry of a slide mass.
This manuscript presents a simple, quantitative

end member model to account for most of these
features. It is a 3-D elastic model in which the
failure surface at the base of a slide is considered
explicitly as a shear fracture. Other end-member
models are founded on a plastic £ow rheology
(e.g. Iverson, 1986; Savage and Smith, 1986;
Duncan, 1992). One of the key distinctions be-
tween the elastic model presented here and the
plastic models is that localized stress concentra-
tions near the perimeter of the region of sliding
play a key role here, but not in the plastic models.
Another distinction is that in certain plastic mod-
els (e.g. Savage and Smith, 1986) much of a slide
mass is considered to be in a state of incipient
failure; that is not the case here. Predictions of
the plastic £ow models are consistent with key
observations of slides or £ows in unconsolidated
earth materials, including the prediction of down-
slope extension and normal faults near the head
of a slide, and downslope contraction and thrust
faults near the toe. In contrast, an elastic model
should be consistent with the incipient stages of
sliding, where the strains associated with sliding
are small, in consolidated sediments, rock, slab
avalanches in snow, and perhaps to some extent
in soils strengthened by root mats.
The focus on the sliding process here contrasts

with the aim of the limit equilibrium method
(LEM), which is widely used to gauge the suscep-
tibility of a slope to sliding. LEM involves calcu-
lating the net forces (or moments) that drive slid-
ing, and comparing them to the net forces (or

Fig. 1. Characteristics of landslides in an incipient stage of sliding.
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moments) that might resist sliding along potential
slide surfaces in a slope (e.g. Morgenstern and
Price, 1965; Morgenstern and Sangrey, 1978).
This manuscript attempts to explain key features
and processes outside the realm of LEM. For ex-
ample:
^ How the propagation of a failure surface

leads to the slide geometries commonly observed.
In LEM, slip is implicitly assumed to initiate si-
multaneously over the entire surface of failure
(which is proscribed in advance), although this
is not how natural slides actually develop (Cruden
and Varnes, 1996).
^ Deformation in the initial stages of sliding.

Standard LEM approaches typically treat earth
materials as being rigid and thus cannot account
for any deformation, even though deformation
typically precedes large displacements of a slide
mass and can be very important in monitoring
active slides.
^ The signi¢cance of tensile fracture. Tensile

fracture tends to be ignored in LEM, even though
it is widely observed in the initial stages of sliding.
This article opens by discussing the how the

failure surface of a slide can be treated as a frac-
ture and by outlining some key aspects of fracture
mechanics theory. The next section presents how
the boundary element method is used to account
for gravity-driven slip in a long slope. A descrip-
tion of predicted displacements, propagation ten-
dencies, and stresses associated with a few simple
failure surface geometries follows, together with a
discussion of the implications for the initial devel-
opment of landslides. The paper ends by compar-

ing predictions of the elastic model and a plastic
£ow model with each other and with observa-
tions, and by suggesting how the elastic model
might be improved.

2. The landslide failure surface as a shear fracture

The concentration of relative displacement
across a surface that is very thin compared to
its in-plane dimensions is characteristic not only
of many landslides but also of fractures (Pollard
and Segall, 1987). This motivates an analysis of
the landslide failure surface as a fracture (i.e. a
surface of ¢nite extent which displacements are
discontinuous across). Many people interested in
landslides are unfamiliar with fracture mechanics
concepts (e.g. Lawn and Wilshaw, 1975), so a few
key concepts are introduced here.
Three modes of fracture describe the relative

motion across a fracture near its perimeter:
modes I, II, and III. For mode I (Fig. 2a),
the opening mode, the relative displacement
vum =vuI is perpendicular to the fracture plane.
Modes II and III pertain to shear motion across a
fracture and hence are of particular interest here.
Mode II (Fig. 2b) refers to a relative displacement
vuII parallel to the fracture but perpendicular to
the nearby perimeter. Mode III (Fig. 2c) refers to
relative displacement vuIII parallel to both the
fracture and the nearby perimeter. A fracture of
mode II or mode III can propagate in plane as a
shear fracture, but it can also develop mode I
secondary fractures near its perimeter that angle

Fig. 2. The three modes of fracturing with the fracture perimeter marked by a dashed horizontal line. (a) Mode I. (b) Mode II.
(c) Mode III. (d) Mixed mode II^III fracturing around the circumference of a penny-shaped crack with a constant direction of
slip. A cross section downslope through a landslide would show mode II fracturing (sliding) near the head and the toe (circles).
A cross section across a landslide would show mode III fracturing (tearing) near the £anks (crosses).
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or twist out of plane, respectively. A shear frac-
ture with a closed tip line experiences a combina-
tion of modes II and III (Figs. 2d and 3).
According to principles of linear elastic fracture

mechanics (e.g. Lawn and Wilshaw, 1975), the
relative displacement of the fracture walls vum
near the perimeter (or tip) of a fracture vary as
r1=2, where r is the distance from the perimeter,
and the stress components cij vary as r31=2 :

v um ¼ Km
W

ðr=2Z Þ1=2gmðX Þ ð1Þ

c ij ¼ Kmð2Z rÞ31=2 f ijða Þ ð2Þ

where K is a constant known as the stress inten-
sity factor, W is the shear modulus, gm is a linear
function of Poisson’s ratio (X), and f is a trigono-
metric function of the angle a, the angle out of the
plane of the fracture front (Fig. 2a). Near a frac-
ture tip, where r is small, strong stress concen-
trations exist (Eq. 2) even though the relative
displacements are small (Eq. 1). The stress con-
centration intensity is described by K ; its value
depends on the dimensions of the fracture, the
stresses driving the relative displacement of the
fracture walls, and the geometry of the body con-
taining the fracture. For each of the three modes
of fracture, a stress intensity factor exists. The
stresses generally vary around the perimeter of a
fracture, and so do the stress intensity factors.
Stress intensity factors can be used to assess frac-
ture propagation tendencies. A fracture can prop-
agate in plane if the mechanical energy available
to propagate the fracture front by an incremental
area, G, is su⁄cient. The value of G for in-plane
propagation re£ects that work that would be done
by the near-tip stresses to produce near-tip dis-

placements, and hence G can be described in
terms of K (Lawn and Wilshaw, 1975):

G ¼

GI þ GII þ GIII ¼
13X

2W

� �
K2
I þ K2

II þ
K2
III

13X

� �
ð3Þ

Values of G at corresponding points on two
geometrically identical fractures A and B in iden-
tical bodies that are subject to di¡erent loading
conditions can be compared to assess the relative
fracture propagation tendencies (Willemse and
Pollard, 2000). Based on Eqs. 1 and 3, the ratio
of these G values, referred to as Q, depends on the
ratio of relative displacements at a given small
distance r behind the fracture front:

Q ¼ GA

GB

� �
¼ ðv u2I þ v u2II þ v u2III=ð13X ÞÞA

ðv u2I þ v u2II þ v u2III=ð13X ÞÞB
ð4Þ

This ratio can be calculated either analytically
or numerically. It will be used subsequently to
relate GA for a shear fracture in a half-space to
GB for a shear fracture in a full space.
Fracture mechanics principles have illuminated

a host of geologic phenomena, including crevasse
formation in glaciers (Weertman, 1971), dry slab
avalanches (McClung, 1981), and slip surface
propagation in soils (Palmer and Rice, 1973), as
well as fracture in hard rocks (e.g. Pollard and
Aydin, 1988). Palmer and Rice (1973) emphasized
that elastic fracture mechanics theory could be
applied to the development of a slip surface in
over-consolidated clay if non-elastic yielding dur-
ing sliding is restricted to a small region near the
slip surface. They noted that the region of non-
elastic yielding could be small relative to the size
of a slip surface in a natural slope but still be

Fig. 3. Conceptual model of rupture surface development proposed by Fleming and Johnson (1989). The arrows point down-
slope, in the direction of slip.
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large relative to the size of a typical laboratory
sample. Palmer and Rice estimated the length of
the region of non-elastic deformation near a slide
plane tip in an over-consolidated soil as 0.5^2.5
m. This distance is tiny relative to the dimensions
of natural slopes. As a result, non-elastic defor-
mation could play a minor role on the scale of
many natural slopes, even though it is an integral
part of shear failure in laboratory tests on soil
samples. Palmer and Rice emphasized the frac-
ture-like attributes of slip surfaces and cautioned
against exclusive reliance on laboratory tests of
small samples in evaluating how a slip surface
develops at the scale of a natural slope.
Fleming and Johnson (1989) proposed a con-

ceptual model that explicitly treats the failure sur-
face of a slide as fracture (Fig. 3). They consid-

ered landslide failure surfaces to nucleate at depth
and propagate to the surface, rather than the oth-
er way around. McClung (1981) proposed a sim-
ilar model for the initiation of strain softening in
a weak snow layer prior to an avalanche. Fleming
and Johnson focused particular attention on the
echelon fractures that open along landslide £anks.
These fractures compare favorably to those pre-
dicted above a vertical mode III fracture in an
elastic material (Pollard et al., 1982), where the
direction of sliding locally parallels the slide pe-
rimeter (Fig. 3). Fleming and Johnson did not,
however, employ the model to account for the
growth of the failure surface as a whole, for the
deformation near the head or toe of a slide mass,
or to account for deformation within the body of
a slide mass. These points are addressed here.
Encouraged by the work of Fleming and John-

son (1989), Muller and Martel (2000) applied a
2-D mechanical model of shear fracture to inves-
tigate the initiation of sliding at depth, subsequent
propagation of the failure surface, and the asso-
ciated surface deformation. They focused on the
head and toe of a slide mass in the context of a
mode II fracture, where the sliding direction is
locally perpendicular to the slide perimeter
(Figs. 3 and 4), thus augmenting the work of
Fleming and Johnson (1989). Muller and Martel
(2000) used a boundary element method (Crouch

Fig. 4. Coordinate system and idealized elliptical slip patch
at base of slide.

Table 1
Statistics for submarine slumps along the U.S. continental margin (McAdoo, pers. commun., 2003)

Latitude Longitude Length (2b) Width (2a) Thickness (t) a/b a/t
(‡) (‡) (km) (km) (km)

Oregon
44.66 3125.42 3 10.7 0.38 3.57 13.1
44.26 3125.44 2.2 1.5 0.34 0.68 2.0
California
40.01 3124.93 4.3 4.4 0.08 1.02 27.5
39.96 3124.92 2.6 2.4 0.07 0.92 16.8
39.69 3124.47 5.1 6.5 0.23 1.27 13.9
39.25 3124.37 13.1 6.1 0.08 0.47 39.8
Gulf of Mexico
27.42 392.49 4.8 13 0.14 2.71 46.4
27.39 392.37 11.4 6.7 0.15 0.59 22.6
New Jersey
39.08 372.6 8.2 6.5 0.13 0.79 25.7
39.02 372.73 5.1 1.3 0.12 0.25 5.2
38.86 372.8 5.7 2.5 0.11 0.44 11.2

Slide locations come from McAdoo et al. (2000), as does information to calculate slide thickness.
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and Star¢eld, 1983; Martel and Muller, 2000;
Martel, 2000) for a homogeneous, isotropic elastic
material in their analyses of slide initiation. Their
¢ndings indicate that: (a) slope bases and slope
notches promote the nucleation of sliding, which
can then propagate upslope, (b) sliding at depth
promotes opening of fractures normal to the slope
near the head of a slide; and (c) in many cases a
shear fracture must grow long relative to its depth
to spawn new fractures from its head that prop-
agate to the ground surface unless steep pre-exist-
ing geologic weaknesses can be exploited. This
last point accounts for the large half-width: thick-
ness ratios commonly observed for landslides (see
the a/t ratios in Table 1).
The same approach is extended here to three

dimensions. The analysis explicitly accounts for
three features required for sliding: (1) a slope,
(2) gravitational body forces, and (3) a failure
surface. In contrast to the slopes of ¢nite length
considered by Muller and Martel (2000), the
slopes here are treated as in¢nitely long. This
greatly simpli¢es the 3-D mathematical treatment
and illuminates the mechanics of slides with di-
mensions that are small relative to slope length.
In order to distinguish between the area of slip
and the pre-existing weak surface that slip occurs
along (e.g. bedding), the area of slip is referred to
as a slip patch. The pre-existing weak surface is
structurally analogous to a shallow fault parallel

to the surface. Just as an earthquake rupture need
not extend over an entire fault, slip need not ex-
tend over the entire weak pre-existing surface. To
extend the analogy, in both cases slip can nucleate
over some small region and then spread.

3. Solution method and boundary conditions

The slip patches examined here are elliptical
and parallel the surface of a tilted half-space at
a distance t (Fig. 4), so t equals the thickness of
the slide mass. Many slide scars are indeed
roughly elliptical in plan view (Cruden and Var-
nes, 1996), and an elliptical geometry also is com-
mon for planar opening mode fractures. The
model here simulates sliding along a bedding
plane parallel to the surface, a condition common
for subaerial slides and perhaps even more com-
mon on submarine slopes. The host material is
treated as isotropic and uniform, with both the
shear modulus (W) and Poisson’s ratio (X) being
constant throughout. The head and the toe of a
slide correspond to 0‡ and 180‡, respectively,
whereas the centers of the £anks occur at Q 90‡
(Fig. 5). The semi-axis a is half the across slope
width of the slip patch, and the semi-axis b is half
the downslope length (Fig. 4).
In the reference frame used here (Fig. 4), the

x-axis points across the slope, the y-axis points

Fig. 5. Element meshes used in the POLY3D calculations. Crosses mark centroids in the outermost elements. (a) A circular slip
patch with 512 triangular elements arranged in 8 rings and 8 slices. (b) A circular slip patch with an axisymmetric mesh of 360
triangular and quadrilateral elements. (c) A circular slip patch with an axisymmetric mesh of one 36-sided central polygon and
504 quadrilateral elements. The elements in (b) and (c) are de¢ned such that their vertices would lie on circles (for the central ele-
ment), sectors (for the triangles) and sections of annuluses (for quadrilaterals) of equal area.
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upslope, and the positive z-axis is normal to the
slope and points up. The coordinate origin is at a
point on the surface of a tilted half-space. Tensile
stresses are considered positive, and c1 refers to
the most tensile stress.
The solution for the total stress state around a

slip patch (ctij) can be found by superposing the
solutions for: (a) the ambient stress state in the
absence of sliding (cij0), and (b) the stress pertur-
bation due to the slide (vcij), as described by
Muller and Martel (2000):

c
t
ij ¼ c

0
ij þ vc ij : ð5Þ

The stress perturbation critically a¡ects how
slip spreads in an elastic material, yet it is ne-
glected in standard limit equilibrium analyses of
slopes and does not enter into plastic £ow solu-
tions if the entire slide mass is considered to be on
the verge of plastic £ow.
A broad range of ambient stress states could be

considered. Slope angle, slope height, slope shape,
surrounding topography, tectonic forces, elastic
material properties, and geologic history all a¡ect
the ambient state (Savage, 1994; Savage et al.,
1985; Savage and Swolfs, 1986; Martel, 2000;
Muller and Martel, 2000). To simplify matters
here, the ambient state chosen is for an in¢nite
planar slope of inclination L subject to gravity.
The ambient stresses can vary with depth but
not with position parallel to the slope surface.
The ambient shear stress parallel to the slope is
then:

c
0
zy ¼ c

0
yz ¼ bgz sinL ð6Þ

where b is density, and g is gravitational acceler-
ation. The ambient normal stress perpendicular to
the slope is:

c
0
zz ¼ bgz cosL ð7Þ

The ambient slope-parallel normal stresses cxx0

and cyy
0 are not uniquely de¢ned in an in¢nite

planar slope. Although they do not a¡ect the
slip, they are essential components of the total
stress state. In the interest of brevity and to
keep a sharp focus, the discussion of stresses em-
phasizes the stress perturbation due to slip, which
can be uniquely de¢ned in an in¢nite planar slope,
rather than the total stresses. If the ambient

stresses near the surface are small relative to the
stress perturbations, however, then the stress per-
turbations will re£ect the total stresses well (see
Eq. 1). Possible e¡ects of slope-parallel normal
stresses will be addressed later.
The stress perturbation associated with sliding

is found here using the boundary element com-
puter code POLY3D (Thomas, 1993; also see
Willemse and Pollard, 2000). This code requires
tiling the area of sliding into a mesh of polygonal
elements (Fig. 5). The relative motion across a
given element is a constant but can di¡er among
elements. POLY3D solves for the relative motion
across all the elements necessary to meet the
boundary conditions at the element centroids.
The boundary conditions along the elements

here are for no relative normal displacement
(vuz =0) and a complete loss of shear strength
(ctzx =c

t
zy =0) across a slip patch. The driving

stress vd equals 3vczy, and for a complete loss
of shear strength vd equals bgz sinL. The driving
stress will be negative because z is negative. It can
be thought of as driving the upper (positive) side
of the slip patch in the downhill (negative y-)
direction. The relative displacement (i.e. slip)
across a slip patch scales with the driving stress.
A complete loss of shear strength yields the max-
imum slip and the maximum stress perturbation
in the surrounding material, so this scenario pro-
vides an end member condition. A complete or
nearly complete loss of shear strength could occur
in nature by the generation of su⁄ciently high
pore pressures or by the collapse of a £occulated
clay structure.

4. Results

The focus here is on slip at depth, slip patch
propagation tendencies, and the stress perturba-
tions and displacements at the slope surface above
a slip patch. Before considering slip patches in a
half-space, a circular slip patch in a full space is
examined ¢rst. The simple analytical solutions for
this full-space problem provide an instructive
standard for comparison for half-space problems,
for which analytical solutions are not yet avail-
able.
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4.1. Circular slip patches in a full-space

This section treats a circular slip patch that
experiences a complete loss of shear strength.
Four speci¢c points are treated: (1) the ‘absolute’
displacement and relative displacement (i.e. slip)
of the opposing walls ; (2) the scaling of displace-
ments with slip patch size; (3) the direction of
slip; and (4) the distribution of slip across the
patch.
The displacements of points on the upper (pos-

itive) and lower (negative) walls of a circular slip
patch of radius a, measured relative to a ¢xed
point far from the patch, are obtained from West-
man (1965):

uy
a
¼ � 4

Z

� �
v d

W

� �
13X

23X

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
13ðR=aÞ2

p
ð8aÞ

ux
a
¼ 0 ð8bÞ

uz
a
¼ v d

W

� �
132X
23X

� �
y
2a

� �
ð8cÞ

where R is the distance from the patch center, and
R9 a. The displacements in the y- and z-direc-
tions increase linearly with patch radius, and no
displacement occurs in the x-direction. The dis-
placements in the y-direction of neighboring
points on opposing patch walls (Eq. 8a) are equal
in magnitude but opposite in sign, with the upper
wall being displaced in the negative y-direction

and the lower wall in the positive y-direction (re-
call that vd is negative). Neighboring points on
opposing patch walls are displaced equally in
the z-direction in proportion to their y-coordi-
nates (Eq. 8c), so the patch, together with the
surrounding material, rotates uniformly (tilts)
about the x-axis as it slips (Fig. 6a). No displace-
ment of the patch walls relative to one another
occurs in the z-direction: the upper and lower
walls rotate equally as the patch slips. Note that
both an increase in the shear modulus and an
increase in Poisson’s ratio from 0 to 0.5 will di-
minish the rotation. Interestingly, for a Poisson’s
ratio of 0.5, no rotation of a slip patch occurs, but
a rotation still does occur along adjacent parallel
surfaces (e.g. Pollard and Segall, 1987). Poisson’s
ratios near 0.25 are commonly reported for rocks
and sediments, so a rotation of the slip patch and
surrounding material would be expected for slip
in rocks and in consolidated sediments.
The slip vu, de¢ned here as ulower3uupper so as

to be positive, in this case re£ects exclusively the
relative displacement in the y-direction. All the
slip vectors parallel the y-axis (Fig. 6b). Slip peaks
at the patch center and drops to zero at the pe-
rimeter. Contours of slip are circular. The mono-
tonic increase in slip from the head of the patch
(0‡) to the center re£ects a downslope extension of
the material there above the slip patch. In con-
trast, the monotonic decrease in slip from the
center of the slip patch to the toe (180‡) re£ects
a downslope shortening of the material there

Fig. 6. Analytical solutions from Westman (1965) for displacements and slip along a circular slip patch with a uniform driving
stress vd in a full-space. (a) Normalized displacement perpendicular to the slip patch (uz/a)(W/vd). The displacement is negative
(away from the viewer) in the upper half of the ¢gure. (b) Vectors of normalized slip (vu/a)(W/vd) superimposed on a contour
plot of normalized slip magnitude.
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above the slip patch. The slip gradient, and hence
the non-zero strains, is largest near the perimeter
of the slip patch. The stresses in an elastic materi-
al scale with the strains, so the stresses are the
largest near the perimeter of the slip patch where
the slip vanishes (e.g. Martel, 1997).

4.2. Slip for circular slip patches in a half-space

Tests using slip patches with increasing radius
to depth (a/t) ratios reveal how slip would vary as
a patch grew. The focus remains on circular slip
patches rather than a variety of elliptical shapes
so that e¡ects of patch size are distinct from those
due to patch shape.
Slip in a half-space resembles slip in a full-space

in certain ways. Fig. 7 shows slip vectors for
a/t=1 and a/t=10, respectively. The slip is down-
dip, peaks at the slip patch center, and drops to
zero at the perimeter. Again, this pattern re£ects a
downslope extension of the upper half of the slide
mass and a downslope shortening of lower half.
In other ways, slip in a half-space di¡ers from

slip in a full-space. For example, for an isolated
circular slip patch growing in a full-space, the
maximum slip vuy* scales linearly with the patch
radius (Eq. 8a). In contrast, for an isolated circu-
lar slip patch growing at a constant depth in a
half-space, the maximum slip increases more rap-
idly than the radius; Fig. 8a shows the case for
X=0.25. This di¡erence occurs because as a slip
patch grows in a half-space, the slide mass be-

comes relatively thinner (i.e., the a/t ratio in-
creases) and provides progressively less resistance
to sliding. For a/t=10 the maximum slip in a
half-space is roughly 2.5 times greater than that
for a slip patch of the same radius in a full-space.
The relative values of the mazimum displace-

ments of the upper wall (uyþ) and the lower
wall (uy3) of the slip patch also change as a patch
grows and the a/t ratio increases (Fig. 8a). Just as
in the full-space case, the upper wall of the patch
moves downslope, and the lower wall moves up-
slope. The upslope displacement of the material
immediately below a slide plane might seem non-
intuitive, but it is an essential prediction of the
elastic model. For aIt, each wall contributes
to 50% of the slip (Fig. 8b). As the a/t ratio in-
creases, the maximum displacement increases on
both walls, but on the upper wall it increases
more rapidly than the patch radius, whereas on
the lower wall it increases about in proportion to
the patch radius (Fig. 8a). At a/t=10, the down-
slope displacement above the slip patch is about
four times greater than the upslope displacement
below the slip patch (Fig. 8b). So as a slip patch
grows then, not only does the slip increase, but
the displacement becomes progressively concen-
trated above the slide plane, as do the displace-
ment gradients. In contrast, the material below
the slip patch behaves as though it were increas-
ingly rigid. This suggests that some of the results
here might apply, at least qualitatively, to sliding
of a soft material above a more rigid substrate.

Fig. 7. Vectors and contours of normalized slip (vu/a)(W/vd) for circular slip surfaces with di¡erent a/t ratios, calculated using
POLY3D. The contour interval is 0.2. (a) a/t=1. (b) a/t=10. Here, and in Fig. 8, calculations for the slip vectors use the mesh
of Fig. 5a, and calculations for the slip contours use the mesh of Fig. 5b. Contours are not plotted at levels below 0.4. Poisson’s
ratio= 0.25.
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4.3. Slip patch propagation tendencies and slip
patch shape

The analyses above indicate how slip will vary
as a slip patch grows, assuming it maintains a
circular shape. Here the fracture energy release
rate G is used to assess the propagation tendencies
of a slip patch and the shape a slip patch might
tend to assume as it grows.
The fracture energy release rate G for an ellip-

tical slip patch in a full space sheds light on the
width: length (a/b) ratio a slip patch might as-
sume when its dimensions are small relative to
patch depth (i.e. as a/t approaches zero). The re-
lease of energy during the in-plane propagation of
a slip patch, described by Eq. 3, varies around the
patch perimeter as a function of the modes II and
III contributions. The mechanisms that consume
energy during propagation also might vary with
fracture mode, but they are not well understood
and are not considered here. The focus here is just
on the energy release rate G, along the lines of
Willemse and Pollard (2000). The calculations of
G use Eq. 3 and the analytical expressions for the
stress intensity factors of Tada et al. (2000). Fig. 9
shows G as a function of angular position 3
around the perimeter of elliptical shear fractures,

with values of a/b ranging from 0.25 to 4, for X=0
(Fig. 9a), 0.25 (Fig. 9b), and 0.5 (Fig. 9c). The
points on the curves where G is highest mark
places where the greatest amount of energy release
occurs and in-plane propagation is the most fa-
vorable. In Fig. 9a, for a/b6 1 (i.e. a ‘relatively
long’ slip patch), maxima in G (Gmax) occur at
Q 90‡ (the £anks) and minima (Gmin) at 0‡ and
Q 180‡ (the head and toe). A ‘relatively long’ slip
patch thus will preferentially spread from the
£anks rather than from the head and toe, causing
the a/b ratio to increase towards 1. In contrast,
for a/bs 1 (i.e. a ‘relatively wide’ slip patch), Gmax
occurs at 0‡ and Q 180‡ (the head and toe) and
Gmin at Q 90‡ (the £anks). A ‘relatively wide’ shear
fracture thus would spread more readily from the
head and toe rather than from the £anks, causing
the a/b ratio to decrease towards 1. A slip patch in
a full space with a Poisson’s ratio of 0 thus would
tend to assume a value of a/b of 1 (the £at curve
of Fig. 9a) where all points along the slip patch
perimeter have an equal tendency to propagate.
For a Poisson’s ratio of 0.25 and 0.5, slip patches
would tend to assume elliptical shapes with a/b
values of approximately 0.75 (Fig. 9b) and 0.5
(Fig. 9c), respectively. The results here provide a
justi¢cation for idealizing a landslide in its initial

Fig. 8. Numerical solutions for the displacements and relative displacements at the center of a slip patch in a half-space as a
function of a/t. The mesh of Fig. 5c was used for the calculations, and X=0.25. (a) Normalized maximum relative displacement
(vuyþ/a)(W/vd), normalized maximum displacement of the slip patch upper wall (vuyþ/a)(W/vd), and normalized maximum dis-
placement of the slip patch lower wall (vuy3/a)(W/vd). The ratio (vuy3/a)(W/vd) is nearly constant. The stars (*) at the left edge
of the plot mark analytic solutions for a slip patch in a full-space. (b) Absolute values of the maximum displacement at the
upper (uyþ) and lolwer (uy3) sides of a slip patch relative to the maximum slip.
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stages as having an elliptical shape in plane view.
Landslides that do not have an elliptical shape
might then re£ect structural, stratigraphic, topo-
graphic, or hydrologic controls not accounted for
here.
The behavior of G for an elliptical slip patch

growing in a half space is similar to the full-space
behavior but a bit more complicated. The values
of G for a slip patch in a half-space are calculated
using the following formula:

G ¼ QGF ð9Þ

where Q is the numerically determined ratio of G
for a slip patch in a half-space to G for a slip
patch in a full space (calculated using Eq. 4 and
results from POLY3D), and GF is the analytical
solution for a slip patch in a full-space, calculated
using Eq. 3. Fig. 10 shows G for a/b ratios of 0.5
(Fig. 10a), 0.75 (Fig. 10b), and 1 (Fig. 10c) as a/t
ranges from 0 to 20. Poisson’s ratio equals 0.25 in
all these cases. The results indicate that the inter-
action of a slip patch with the surface becomes
progressively pronounced as the slip patch half-

width a becomes several or more times the slip
patch depth t. Additionally, for a/b=0.5 (i.e. a
‘relatively long’ slip patch; Fig. 10a) Gmax occurs
at Q 90‡ (the £anks) and Gmin at 0‡ and Q 180‡
(the head and toe) at all a/t ratios. This behavior
also occurs for a/b6 0.5. So again, a ‘relatively
long’ slip patch would spread more readily in
plane from the £anks rather than from the head
and toe. For a/b=1 (Fig. 10c), Gmax occurs at 0‡
and Q 180‡ (the head and toe) and Gmin at Q 90‡
(the £anks). The magnitude of G increases with
a/t, as does the ratio of Gmax to Gmin. This behav-
ior is reproduced for a/bs 1. This means that a
‘relatively wide’ slip patch would spread more
readily in plane from the head and toe rather
than from the £anks.
For a/b=0.75 (Fig. 10b), which is the ‘equilib-

rium value’ for a slip patch in a full space (Fig.
9b), the half-space behavior is a bit more compli-
cated. For 06 a/t9 2, Gmin occurs at 0‡ and
Q 180‡ (the head and toe), and Gmax occurs at
Q 90‡ (the £anks). A relatively small slip patch
thus exhibits a weak preferential tendency to wid-

Fig. 9. Values of the normalized fracture energy release rate G* (G*=G/(vd2 a/W) as a function of angular position 3 around
elliptical shear fractures with various ratios of width-to-length (a/b) in a full space. The curves are labeled with their a/b values.
(a) X=0. (b) X=0.25. (c) X=0.5. ‘Equilibrium’ ratios are marked by the nearly £at labeled curves.
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en and increase its a/b ratio. For a/tv 5, however,
Gmax occurs at 0‡ and Q 180‡ (the head and toe),
and Gmin occurs at Q 90‡ (the £anks). A relatively
large slip patch thus will tend to preferentially
lengthen and decrease its a/b ratio toward 0.5.
Based solely on the fracture energy release rate
then, a slip patch that spreads in earth materials
with a Poisson’s ratio of 0.25 would tend to as-
sume an a/b ratio between 0.75 and 1 when it is
small (relative to its depth) and between 0.5 and
0.75 when it is large; landslides would tend to be
somewhat longer than they are wide.
Given the variations in conditions and material

properties in natural slopes, the results here might
be best interpreted as predicting that the distribu-
tion of a/b ratios for a large sample of landslides
would peak between 0.5 and 1. This prediction is
very much in line with observations. In a study of
about 350 landslides in Hokkaido, Japan (Yama-
gishi and Ito, 1994), nearly all the landslides had a
width:length ratio between 0.25 and 4, and for
roughly 60% of the landslides the ratio was be-
tween 0.4 and 1, consistent with the prediction.

Maps of deep-seated landslides elsewhere (e.g.
Voight, 1978) and data from submarine slumps
(Table 1) show a similar trend. This suggests
that the simple model here is capturing at least
some of the essential physics of the sliding pro-
cess.
The presence of landslides with a/b ratios less

than 0.5 or greater than 1 indicates that factors
other than the fracture energy release rate come
into play in real slopes. Three particular condi-
tions assumed in the model that might not hold
in real slopes could play important roles in deter-
mining the width:length ratio of a particular land-
slide. First, the energy required for across slope
propagation (mode III) is assumed to equal the
energy required for upslope or downslope propa-
gation (mode II) ; this might not be true. Second,
the weak surface along which sliding occurs is
presumed to extend in¢nitely. In reality, the width
and length of a weak surface are ¢nite, and either
(or both) could limit the dimensions of a slip
patch. Third, the bases of real slides are not per-
fectly planar; they typically are curved concave

Fig. 10. Values of the normalized fracture energy release rate G* (G*=G/(vd2 a/W) where X=0.25 as a function of angular posi-
tion 3 around elliptical shear fractures with a/b ratios of (a) 0.5, (b) 0.75, and (c) 1 as a/t ranges from 0 to 20.
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up (at least near the head and toe). This means
that real slip patches usually propagate out of
plane and so can be in£uenced by the slope-par-
allel normal stresses. These points will be dis-
cussed further in the remaining sections.

4.4. Displacements and stresses and at the surface
for slip patches in a half-space

The discussion now turns to e¡ects that slip at
depth would have on the ground surface, where
the e¡ects would be most readily observed.
Although the fracture energy release rate for a
slip patch in a uniform, isotropic material can
reveal certain tendencies for how a slip patch
might spread, variability in the geologic condi-
tions can be assumed to play a roll as well. For
example, if a slip patch grows to the lateral edge
of a weak surface, the slip patch might be able to
propagate either: (a) in plane only in the upslope
direction, or (b) out of plane up to the surface. To
account more fully for the possible range of be-
haviors that might actually occur, a/b ratios as
small as 1/3 will be considered here. Additionally,
the actual mechanisms of slip patch propagation,
which have not been accounted for, might cause
the shape of a slip patch to deviate from that
predicted on the basis of the in-plane values of
G alone. For example, opening mode fractures
characteristically occur near the crown and £anks
of slides in many materials, and they could well be
an integral part of the propagation of a slip patch
to the surface.
As a slip patch grows, the displacements at the

ground surface evolve as well. The displacements
parallel to the ground surface increasingly resem-
ble those parallel to the slip patch at the slide
base, which have already been discussed. The fo-
cus here turns to the displacement component
perpendicular to the slope surface, which could
be monitored with high-resolution bathymetry or
altimetry measurements. Fig. 11 shows contours
of this component for circular and elliptical slip
patches for a/t ratios of 1 and 10 for X=0.25;
qualitatively similar results arise for other values
of Poisson’s ratio. Five main points emerge. First,
subsidence (negative displacement) occurs near
the slide head, and uplift (positive displacement)

occurs at the toe, as is common in real landslides.
Second, the ground surface rotates even though
the sliding surface is planar: a rotation of the
ground surface does not require a curved slide
surface. Third, the maximum normalized displace-
ments are about an order of magnitude less than
the normalized slope-parallel displacements (Fig.
7). Fourth, the normalized displacement perpen-
dicular to the slope increases with the a/t ratio
(e.g. compare the values of the contours in Fig.
11c,d). Fifth, the normalized displacement con-
tours switch from being concave ‘uphill’ near
the head of the slide and concave downhill near
the toe for a/t=1 (Fig. 11a,c), to concave ‘down-
hill’ near the head of the slide and concave uphill
near the toe for a/t=10 (Fig. 11b,d). The shapes
of the contours for a/t=10 are decidedly similar
to those typical of real landslides with a large a/t
ratio (e.g. Sowers and Royster, 1978). Although

Fig. 11. Normalized displacement perpendicular to the sur-
face [(uz/a)(W/vd)] for circular and elliptical slip patches of
various size. (a) a/b=1, a/t=1. (b) a/b=1, a/t=10.
(c) a/b=1/2, a/t=1. (d) a/b=1/2, a/t=10. Results here, and
for Figs. 12^15, are for a model with 900 elements arranged
in 15 rings and 60 slices, patterned after Fig. 5b.
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the magnitude of the slope-perpendicular dis-
placements will scale with the driving stress, the
shapes of the contours are independent of the
driving stress level. As a result, the transition
from contours that are concave away from each
other to those that are concave towards each oth-
er should accompany the growth of slip patches
as the half-width of a slide mass becomes several
or more times greater than its thickness.
The stresses at the surface also evolve consid-

erably as a slip patch grows. Figs. 12a, 13a, 14a,
15a, and 16a show the magnitude of the normal-
ized perturbation to the most tensile stress (c1) at
the surface. Figs. 12b, 13b, 14b, 15b, and 16b
show two types of stress trajectories. The light
lines (outside the area of the zero contour in
Fig. 12a) represent trajectories perpendicular to
the most tensile stress where the stress perturba-
tion is positive by light lines. These mark the
traces of potential cracks or normal faults. The
heavy lines represent trajectories perpendicular
to the most compressive stress where the stress
perturbation is negative. These mark the traces
of potential thrust fault faults or buckles. Where-
as these plots deal with perturbations associated
with slip, not total stresses, a discussion of the
signi¢cance of these plots is necessarily somewhat
qualitative.
For slip patches where a/t=1 (Figs. 12a and

14a), weak tensile stresses develop in broad re-

gions at the surface above the toe, and weak com-
pressive stresses develop locally near the head.
The compressive stresses at the head are much
more broadly developed for the circular slip patch
of Fig. 12a than the elliptical patch of Fig. 14a.
The induced tensile stresses would be unable to
open fractures at the surface unless the ambient
surface-parallel compressive stresses were very
small and the soil had no intrinsic tensile strength.
Such conditions might be rare, so sur¢cial cracks
are unlikely to open when slip patches nucleate if
they are small relative to their depth. If sur¢cial
cracks did open, they most likely would be con-
centrated just above the toe. Cracks would tend
to track the trajectories perpendicular to the most
tensile stress and hence form a radial pattern at
the toe. If opening of radial toe cracks were
coupled with closure of cracks (or thrust faulting)
at the head, then that would indicate slip patch
dimensions that were small relative to patch
depth. This would represent behavior at a very
early stage of sliding.
As a slip patch propagates, the stress concen-

trations around its perimeter propagate too, and
they intensify. A comparison of slip patches with
a/t ratios of 1 (Figs. 12a and 14a) and 10 (Figs.
13a and 15a) shows that as a patch grows the
region of elevated sur¢cial tensile stresses becomes
pronounced. The tensile stresses peak slightly
downslope of head, are focused above the perim-

Fig. 12. Magnitudes of (a) the normalized most tensile stress at the surface (c1/(vd a/t)) and (b) stress trajectories at the surface
for a circular slip patch where a/t=1. In (b) the light tick marks are perpendicular to the most tensile stress, and the heavy tick
marks are perpendicular to the most compressive stress. The light ticks show the potential location and orientation of traces of
opening mode fractures and normal faults. The heavy ticks show the potential location and orientation of traces of buckles and
thrust faults. This stress trajectory convention also applies to Figs. 13^16.
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eter of the slip patch, and extend in a crescentic
pattern down along the £anks. The normalized
peak sur¢cial tensile stresses at the head in Fig.
13a (a/t=10) are about twenty times greater than
the peak tensile stresses at the toe in Fig. 12a
(a/t=1). Note that the stress values contoured in
these ¢gures, however, are normalized: the values
contoured are c1/(vd a/t). So as a slip patch grows
at a constant depth and its radius increases by a

factor of ten from a= t to a=10t, the absolute
perturbation in the peak sur¢cial tensile stress in-
creases by a factor of about two hundred, not
twenty. The sur¢cial stress perturbation thus in-
creases much more rapidly than the slip patch
radius increases as a patch grows.
Figs. 12^15 indicate that if fractures opened up

where the tensile stress is su⁄ciently high, then
they should ¢rst develop near the head if

Fig. 13. Magnitudes of (a) c1/(vd a/t) at the surface and (b) stress trajectories at the surface for a circular slip patch where
a/t=10. Echelon fractures are predicted to open near the head and to parallel the stress trajectories there.

Fig. 14. Magnitudes of (a) c1/(vd a/t) at the surface and (b) stress trajectories at the surface for an elliptical slip patch (a/b=1/2)
where a/t=1.
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a/bs 1/2, as is usually the case. The stress concen-
trations are substantially greater at depth near the
slip patch perimeter than at the surface, so cracks
at the head also are likely to open at depth and
then propagate up to the surface rather than just
propagating from the surface down to the slip
patch. Opening mode cracks tend to open and
grow along principal stress surfaces. As a result,
since the topographic surface is free of shear trac-
tions, where surface-parallel tensile stresses exist,
opening mode cracks will tend to be perpendicu-
lar to the topographic surface, whether it is sub-
aerial, submarine, or on another planet. This will
occur no matter whether the opening mode cracks
grow up from depth or down from the surface.
This would account for why fresh scarps near the
head of a landslide commonly are overhanging.
Figs. 13a and 15a suggest that the shape of the

eventual scar and the shape of the slip patch be-
fore it propagates strongly out of plane should
nearly coincide. Note that the peak tensile stresses
occur at the slide head (0‡), not the £anks ( Q 90‡).
From the head, fracturing at the surface would
tend to propagate in a zipper-like fashion down

along the £anks. Arcuate zones of echelon frac-
tures that are concave downslope thus indicate a
slope that already has progressed substantially to
failure, with a signi¢cant amount of slip already
having occurred at depth. Additionally, the most
compressive stress in broad regions near the head
has become reoriented in Figs. 13b and 15b such
that it is normal to the surface rather than parallel
to the surface. This means that fractures there
inclined relative to the topographic surface would
tend to slip as normal faults; such features are
typical at the heads of slides. The most compres-
sive stresses at the toe form a radial pattern. This
stress ¢eld would promote the formation of
buckles and thrust faults at the toe with traces
that are concave uphill. The thrust faults would
be expected to intersect the surface at an angle of
roughly 30‡. Such features are common where the
toe of a slide mass is displaced well out of a slide
scar and can spread (e.g. Cruden and Varnes,
1996) but the results here indicate that they could
also form at an incipient stage of sliding.
The scenario for surface fracturing is somewhat

di¡erent if a slip patch propagates in the direction

Fig. 15. Magnitudes of (a) c1/(vd a/t) at the surface and (b) stress trajectories at the surface for an elliptical slip patch (a/b=1/2)
where a/t=10. Echelon fractures are predicted to open near the head and to parallel the stress trajectories there.
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of dip but maintains its width. Figs. 13a and 15a
indicate the e¡ect of b doubling while a remains
¢xed at 10t. The most tensile stress perturbation
at the head of the slide increases by about 1/3, but
at the £anks (at Q 90‡) it approximately triples.
So the tensile stress increases at the ends of the
short axis of the slip patch much more rapidly
than at the ends of the long axis. The tensile stress
still is greatest near the head for a/b=1/2, but for
a/b9 1/3 the tensile stresses are higher on the
£anks (Fig. 16). In that scenario, fracturing at
the surface would tend to initiate at the £anks
and then propagate towards the head. The site(s)
and progression of initial sur¢cial fracturing po-
tentially could be used to determine whether the
a/b ratio of a slip patch is greater or less than 1/3.

5. Discussion and conclusions

Slip at depth across an elliptical slip patch can

account for some of the most common generic
characteristics of landslides:
^ Roughly elliptical shapes in map view;
^ Large minor axis-to-depth ratios;
^ Width-to-length ratios between 0.5 and 1;
^ Arcuate, concave downhill head scarps and

slope contours;
^ Regions of subsidence near the slide head and

uplift near the toe;
^ Echelon opening mode fractures near the

head and £anks;
^ Normal faults near the head;
^ Thrust faults near the toe.
The elastic model predicts the gross geometry

of typical landslides. For the fractures and the
faults, the model accounts for their location, ori-
entation, and type. The consistency between a
rather broad variety of widely observed features
and the model predictions indicates that an elastic
model of shear fracture is viable, accounts for
some of the key physics, and provides insight
into the deformation of slopes in the incipient
stages of sliding.
In terms of process, the model predicts that slip

at depth over a broad area should precede frac-
turing at the surface, rather than the other way
around. For slip patches that are less than twice
as long than they are wide, fracturing at the sur-
face should initiate at the head, then ‘unzip’ down
the £anks. Fig. 17 shows a submarine slope o¡
the coast of Santa Barbara, California, that ap-
pears to illustrate this process.
The prediction that slip at depth precedes frac-

turing at the surface has been made previously in
the context of fracturing along landslide £anks
using both theory and observation. Pollard et al.
(1982) showed theoretically how the front of a
shear fracture with a mode III component tends
to break down into a series of echelon opening
mode fractures. Fleming and Johnson (1989)
make use of this point and provide corroborating
¢eld evidence in their discussion of echelon frac-
tures along the £anks of the Aspen Grove and
Twin Lake landslides; they conclude that
‘Tstrike-slip faults at £anks of the Tlandslides
propagate from the surface at the base of the
landslide toward the ground surface as mode III
fracturesT. When the strike slip fault reaches the

Fig. 16. Magnitudes of (a) c1/(vd a/t) at the surface and (b)
stress trajectories at the surface for an elliptical slip patch
(a/b=1/3) where a/t=10. Boundary element distribution for
model results is analogous to Fig. 5c (505 elements).
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ground surface it either destroys or integrates the
cracks and fault segments that had formed above
it.’ The analyses here show that an analogous ar-
gument applies to the slide head for echelon frac-
turing at surface in response to mixed mode II^III
sliding at depth. Signi¢cantly, the echelon frac-
tures clockwise from the apex of the head scarp
step to the left, whereas those clockwise from the
apex step to the right (Fig. 1). The predicted ori-
entation of cracks along the slide perimeter in
Figs. 13b and 15b also show this sense of step.
This pattern implies a reversal in the sense of
mode III shear (i.e. relative displacement parallel
to the slip patch perimeter) along the crown of a
slide. An inspection of Figs. 6 and 7 at 320‡ and
+20‡ shows that the model predicts this behavior.
This kind of reversal is di⁄cult to explain in the
absence of slip at depth. Furthermore, the ob-
served echelon pattern of sur¢cial fractures at
the head of a slide appears inconsistent with the
fractures growing down from the surface prior to
slip. In such a scenario, if the ambient stress ¢eld
at the surface were uniform, the sur¢cial fractures
would tend to form a straight trace perpendicular
to the most tensile stress (e.g. Hills et al., 1996;
Tada et al., 2000), rather than the observed con-

cave downhill pattern of echelon fractures (Fig.
1). The analyses here thus indicate that slip at
depth can cause the observed sur¢cial fracture
patterns around the head and £anks of a slide,
and that the observed sur¢cial fracture patterns
are unlikely to develop without slip at depth.
The prediction that fractures form at the sur-

face at the head of a slide in response to slip at
depth, rather than preceding slip at depth, has an
important practical implication. It implies that
sur¢cial fracturing marks a relatively late stage
in landslide initiation, rather than an early stage.
Sur¢cial fractures provide a warning that a com-
plete slope failure could be imminent.
An elastic analysis raises the distinct possibility

that opening mode fractures propagate away from
a slip patch at depth and towards the surface at
the head of a slide, in addition to just propagating
from the surface down. Even though slip at depth
produces a strong ¢nite tensile stress concentra-
tion at the surface, elasticity theory predicts a
vastly greater (singular) tensile stress concentra-
tion at the slip patch tip at depth. To my knowl-
edge, no one has yet described the propagation of
opening mode fractures towards the surface at the
head of a landslide, but this could be because: (a)

Fig. 17. Sidescan sonar image of a submarine landslide o¡ the coast of Santa Barbara, California (courtesy of the Monterey Bay
Area Aquarium Research Institute). The view is to the east. To the north (left) of the slide the slope appears undeformed. To
the south (right) of the slide is a fracture about 4 km long, marked by arrows. This is interpreted to represent fracturing pro-
duced in an incipient stage of sliding and to mark the future location of a head scarp.
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the observations would be hard to make, and (b)
no one has considered making the observations.
The opening of sur¢cial cracks above a dike prop-
agating towards the surface (e.g. Pollard et al.,
1983) shows that upward and downward fracture
propagation can occur contemporaneously. In
that case, the opening of a dike at depth clearly
causes the sur¢cial fractures to open, rather than
the converse. Opening mode fractures also are
widely documented near the ends of faults ex-
humed from depths of several kilometers (e.g. Se-
gall and Pollard, 1983; Granier, 1985; Martel,
1997), where con¢ning pressures are vastly larger
than those in landslides; this strongly indicates
that fractures also could open at depth and prop-
agate up from a landslide slip surface.
A central postulate here is that the stress con-

centration at the perimeter of a slip patch not
only permits it to propagate in plane as a shear
fracture but also allows it to propagate out of
plane up towards the surface. The extent to which
a slip patch propagates in plane before propagat-
ing out of plane towards the surface likely de-
pends on the ambient normal stresses parallel to
the slope, the materials in a slope, and on varia-
tions in stratigraphy, topography, lithi¢cation,
weathering, and fracture distribution. The range
of conditions in nature probably permits a broad
range in thickness:width ratios for landslides. A
systematic analysis of these factors is beyond the
scope of this report, but a few general comments
can be made about the probable e¡ect of the am-
bient normal stresses parallel to a slope. First, the
greater the compressive stress parallel to the
ground surface (or sea£oor) is, the more the open-
ing of fractures normal to the surface would be
retarded. The opening of steep fractures at the
eventual perimeter of a slide before a slope com-
pletely fails demonstrates that fracture opening
plays an integral role in the development of a
landslide and presumably in the propagation of
a slip patch up to the ground surface. It follows
that the propagation of a failure surface to up to
the ground surface (or sea£oor) also would be
retarded by large compressive stresses parallel to
the ground surface. Second, if the ambient com-
pressive stresses parallel to the slope are large,
then a slip patch will need to spread out over a

large area to generate tensile stress perturbations
su⁄cient to overcome the ambient compressive
stresses and allow tensile fracture and out-of-
plane propagation of a slip patch to the ground
surface. A slip patch would be more likely to
propagate parallel to the ground surface at the
head or toe, and to turn up at the £anks, if the
ambient downslope compressive stresses are larger
than the across-slope compressive stresses. Con-
versely, a slip patch would be more likely to prop-
agate parallel to the surface laterally, and turn up
at the head, if the ambient across-slope compres-
sive stresses are larger than the downslope com-
pressive stresses. Measurements of the ambient
slope-parallel stresses thus could prove useful in
understanding the development of a slide, as
would information on the shear strength drop at
the base of a slide. Acquiring that information,
however, might require a concerted e¡ort.
Predictions of the elastic shear fracture model

and the analytical 2-D plastic £ow model of Sav-
age and Smith (1986) are similar in some ways but
di¡er in others. Both models consider sliding to
originate at depth and propagate to the surface.
Both predict downslope extension in the head re-
gion of a slide mass and downslope contraction in
the toe region. A key di¡erence is that the elastic
shear fracture model admits strong stress concen-
trations, whereas the plastic £ow model does not.
Among other things, accounting for the stress
concentrations allows the elastic model to account
for: (a) the relative values of the length, width,
and thickness of slide scars, (b) scars with ellipti-
cal shapes in plan view, and (c) the commonly
observed distribution of opening mode fractures
at the surface. On the other hand, the elastic mod-
el presented here does not account for pore pres-
sure, but the plastic £ow model does, and pore
pressure is known to be an important factor in
landslides. Poro-elastic solutions exist for dis-
placement discontinuities in two dimensions, how-
ever, and could be incorporated into an elastic
model (see Wang, 2000). The formation of thrust
faults at the slide toe and their propagation up to
the ground surface might involve a considerable
amount of non-elastic deformation unless pre-ex-
isting weaknesses can be exploited, and the plastic
£ow model might predict thrust fault geometry at
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the toe of a slide decidedly better than an elastic
model would. An elastic model could also be im-
proved in this regard by accounting for a zone of
non-elastic deformation near the fracture perime-
ter (e.g. Martel and Boger, 1998).
Both stress heterogeneities and stress concentra-

tions are a natural consequence of slip in a de-
formable medium. They have been cited as key
factors in slope stability (Terzaghi, 1950; Peck
and Wilson, 1968), yet stress heterogeneities and
stress concentrations of the sort described here are
not included in standard slope stability analyses.
Failure to account for stress heterogeneities and
stress concentrations, which could be transient,
could lead to over-estimates of slope stability
and misinterpretation of evidence bearing on im-
pending slope failure.
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