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S U M M A R Y
Resonant Ultrasound Spectroscopy (RUS) uses normal modes of elastic bodies to infer mate-
rial properties such as elastic moduli and Q. In principle, the complete elastic tensor can be
inferred from a single measurement. For centimeter-sized samples RUS fills an experimental
gap between low-frequency stress-strain methods (quasi-static up to a few kHz) and ultra-
sonic time-delay methods (hundreds of kHz to GHz). We use synchronous detection methods
to measure the resonance spectra of homogeneous rock samples. These spectra are then fit
interactively with a model to extract the normal-mode frequencies and Q factors. Inversion
is performed by fitting the normal-mode frequencies. We have successfully applied this tech-
nique to a variety of isotropic and anisotropic samples, both man-made and natural. In this
paper we will show in detail the procedure applied to a cylindrical core of Elberton granite.
By means of a statistical fit of the measured normal modes and an independent laser ultrasonic
measurement, the granite core was inferred to have orthorhombic symmetry. A 10 per cent
P-wave anisotropy was measured in the plane perpendicular to the core axis.
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1 I N T RO D U C T I O N

1.1 Laboratory measurements of elastic properties

Mechanical methods for measuring the elastic properties of labora-
tory specimens are divided into three types: quasi-static, resonance,
and time-of-flight. Those types reflect the ratio of the wavelength of
the mechanical signals used to the size of the specimen under test.

Quasi-static methods, such as cyclic loading (Batzle & Wang
1992), subject the sample to deformations that are slow compared
to any of its natural mechanical resonances, so that the sample is
close to mechanical equilibrium at all times during the test. By
measuring both the applied stresses as well as the strains induced
we hope to infer the sample’s elastic compliances; if we think of
stress, strain, and compliance as complex functions of frequency,
we can see that the phase of the compliance (which follows from the
phase shift between stress and strain) tells us about sample anelas-
ticity. Cyclic loading measurements can be made from frequencies
of the order of 103 Hz (above which the typical apparatus tends to
become animated) down to zero frequency and have the geophysi-
cally attractive property that they can be made at frequencies which
overlap those of exploration (at least) seismology. The most serious
limitations of this technique are the difficulty of accurately account-
ing for the complex mechanical behaviour of the measurement appa-
ratus and of making accurate, low-noise strain measurements at low
frequencies.

Resonance techniques measure the frequencies of the specimen’s
elastic resonances, or free oscillations. These frequencies reflect the
size, shape, and elastic composition of the sample; each corresponds
to a particular bundle of bouncing, interconverting traveling waves
which conspire to exactly repeat at intervals of 1/f , where f is the
resonance frequency. Given a sufficient data set of observed reso-
nance frequencies we can make useful inferences about the sample’s
properties. The experimental apparatus is simple and undemanding
and easily adaptable to a wide range of sample sizes and shapes. For
typical specimen sizes the frequency of measurement ranges from
about 5 × 103 Hz on up, appreciably higher than seismic frequen-
cies but still within the range of borehole acoustics. Interpreting
the observed frequencies in terms of sample composition is com-
plex but can be automated and is well within the reach of small,
consumer computers. It is possible in principle to measure arbitrary
anisotropy and it is often reasonable in practice to do so. Under
favourable conditions this approach can provide very good attenu-
ation estimates. On the other hand the method loses quite a bit of
its power when the sample is strongly coupled to its surroundings,
as is typically the case for measurements under stress conditions
at depth. Because the raw observations are curves of signal ampli-
tude versus frequency with possibly complex features and because
the intermediate observables, the resonance frequencies, are them-
selves not coupled to sample elastic properties in a simple way, this
technique offers the greatest potential for confusion and delusional
misinterpretations.
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Time-of-flight methods measure the transit time of various elastic
wave types across the specimen and sometimes alterations in the
wave’s shape due to attenuation and other phenomena inherent to
the sample. These measurements assume wavelengths which are
short compared to sample dimensions. For typical specimen lengths
of the order of a few centimeters that implies frequencies above
about 5 × 105 Hz and is this method’s principal shortcoming from
a geophysical point of view. It has a number of appealing strengths:
We can usually arrange the measurement geometry so that it is little
affected by conditions at the sample surface; this isolation is very
important for accommodating imposed conditions of pressure and
saturation. The observed signals are readily analyzed and the physics
involved is comfortingly easy to visualize.

1.2 Resurgent resonance

Resonance techniques have been used to measure elastic properties
in the laboratory since at least the 1920s (McSkimmin 1964). They
were confined to samples with rather unusual geometries, such as
bars with length to diameter ratios of ten or more, because those
were the only geometries for which it was practical to solve the
associated forward resonance problem. See (Lucet et al. 1991) for
an extensive discussion of resonance measurements for long, thin
samples.

Later researchers, starting with Francis Birch’s pre-World War II
unpublished measurements, exploited spherical samples of isotropic
materials. The forward problem for this case is computationally
harder than for thin rods but generally within the reach of tables of
special functions and determination. Successful numerical use of
variational approaches to the forward problem by Holland (1968)
and Demarest (1969) were not enough to break the field free of
its sample geometry limitations, probably because computational
resources were so limited and the bases used in these earliest efforts
were essentially useful only for rectangular geometries. Migliori &
Sarrao (1997) review this process and observe that the liberating
step was the discovery by Visscher et al. (1991) that a very simple
basis for the variational calculation led to an accurate and extremely
flexible approach to computing the elastic resonances of anisotropic
elastic bodies of arbitrary shape.

The ability of this approach to handle a wide variety of geometries
and symmetries in a unified way has added greatly to the appeal of
elastic resonance methods. It has also led to some extent to a ten-
dency to regard the individual resonances of a particular geometry
as indistinguishable and equally useful bits of incremental informa-
tion. Combined with advances in computing speed, we are now able
to expend more effort in pursuit of numerical results. We also have
access to a large variety of algorithms and languages that we can
exploit with only modest effort.

1.3 Issues with geological materials

Effective resonance measurements require

(i) accurate measurements of some of the sample’s resonances,
(ii) a good numerical model of the resonator that ties the object’s

elastic properties to its resonances, and
(iii) a way to tell the predicted resonance to which an observed

resonance corresponds.

Although (i) may require considerable ingenuity in a hostile envi-
ronment or other challenging circumstances (Maynard 1996), when

we deal with geological materials we usually find that (ii) and (iii)
pose the greater challenge.

Common resonance measurement practice is aimed at specimens
that are homogeneous in both composition and crystallographic
symmetry and that have high to very-high Q’s, usually ≥500. Ho-
mogeneity means that we can accurately model the measurement
with a small number of spatially-constant elastic parameters. Low
attenuation often implies that we can observe every, or nearly every,
resonance in a given range that the sample is capable of and that we
can easily map them onto the set of predicted resonances.

Geological materials (rocks) are frequently spatially inhomoge-
neous at scales comparable to and smaller than the centimeter scale
of laboratory specimens. It’s not unusual to find both gradations and
sharp discontinuities in specimens and it is not uncommon that these
variations are difficult to discern visually. The specimens themselves
have usually been extracted from a larger body, such as the Earth,
through mechanically aggressive means and suffer various degrees
of peripheral damage: after coring, for example, a sample may mi-
crofracture as a result of stress relaxation.

The biggest obstacle to using RUS on rocks is the low quality
factors. Observation of normal modes in a dry, competent rock such
as Elberton granite is simpler since the Q of any given mode will
likely be on the order of several hundred. However, in a softer and
more porous rock like Berea sandstone, the observed modes of-
ten have Q values of 100 or less, making it much more difficult to
identify them without first using a forward modeling code. Drying
techniques can bring this number up into the hundreds, but measure-
ments of dry rocks may not be of great interest except as starting
points for confining pressure or saturation experiments.

2 P L A N O F T H I S PA P E R

The goal of this paper is to introduce the theory of resonant ultra-
sound spectroscopy (RUS) and its application to the characterization
of the elastic moduli of homogeneous rock samples. The theory we
outline is nearly identical to that found in the book of Migliori &
Sarrao (1997). We also step through the inversion procedure, as well
as the process of extracting frequencies and Q values from resonance
spectra.

Upon excitation, elastic bodies isolated in a free space oscillate
at discrete frequencies. These normal modes can be observed and
measured. The geometry and size of the system strongly influence
the range of frequencies at which such normal modes occur. The
Earth, for example, has a fundamental mode with a period of about
36 min. For a 10 cm piece of sandstone, the fundamental mode has
a frequency of about 10 kHz. The elastic moduli also influence the
resonance frequencies: the stiffer the sample, the higher the frequen-
cies. The idea behind resonant ultrasound spectroscopy (RUS) is to
use these dependencies to infer elastic properties or shape param-
eters of samples from a suite of measured resonance frequencies.
In order to perform an inversion we must have a way of predicting
these frequencies for an arbitrary elastic body.

The forward modeling allows the design of an inversion procedure
using predicted and measured normal mode frequencies. We seek
a model that predicts the data in a least-squares sense. We design
an objective function and minimize it using non-linear optimization
methods. The inversion usually starts using an isotropic model. If a
proper fit cannot be achieved we lower the symmetry of the model
used. Using a model with too many free parameters we may however
end up fitting noise rather than just fitting the data. χ 2 tests give us
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the statistical means to decide on the proper anisotropic model to
use.

We start with a nontechnical discussion of the elastic modes of
homogeneous cylinders. Our algorithms allow us to apply RUS to
a variety of regular geometries, but the cylinder is a useful specific
case. Then we show how the calculation of the normal modes of
an elastic body can be cast as a generalized eigenvalue problem via
a Rayleigh–Ritz method. We solve this eigenvalue problem using
standard numerical tools. The inverse problem is then formulated
for the components of the elastic tensor as a least-squares fitting of
the predicted to measured normal-mode frequencies. Next we dis-
cuss the problem of measuring the resonance spectrum of a sample
and extracting the frequencies from this spectrum. Finally we show
application of the RUS method to rock samples, both isotropic and
anisotropic, at room conditions and under gas confining pressure.
Software implementing all aspects of the calculation (spectra fitting
and least squares inversion) is freely available from our web site,
listed at the end.

3 T H E O RY A N D C O M P U TAT I O N

The theory of the small oscillations of linear systems is a well-
developed part of classical mechanics. Goldstein (Goldstein 1981)
provides an extensive introduction to the topic and notes that its
origins lay in Routh’s 1877 Adam’s Prize Essay. Lord Rayleigh’s
landmark The Theory of Sound (Rayleigh 1896, 1945 re-issue), also
published in 1877, developed many of the results central to the topic.
He also examined applications of small oscillation theory to strings,
plates, bars, and other elastic systems.

More recent advances relevant to laboratory-scale resonance mea-
surements are covered in Migliori & Sarrao (1997), including suf-
ficient discussion of computational and laboratory aspects to begin
using resonance measurements. A much different modern reference,
Dahlen & Tromp (1998), provides a deep and exhaustive investiga-
tion of elastic resonances with particular emphasis on the nearly-
spherical case so important to planetary geophysics.

In this section we will summarize the principal theoretical and
numerical apparatus we need for our purposes:

(i) variational approximations for resonances—the basic formu-
lation of resonance as a variational calculation and Visscher’s sim-
ple, approximate basis that makes the necessary computations fast
enough and very flexible

(ii) elastic energy and damping—expressions that tell us how
energy in a particular resonance is partitioned between compression
and shear, how its attenuation is caused by the respective damping
of compressional and shear waves, and how the mode’s resonant
frequency is sensitive to the elastic properties of the medium

(iii) excitation calculations—how to compute the expected rela-
tive excitation of individual resonances during a particular resonance
experiment.

3.1 Variational approximations for resonance

Let V be an isolated body, that is, one bounded by a closed, stress-
free surface. Let Cijkl be its elastic stiffness tensor and let ρ be its
density; both quantities may vary with position in V .

Let ω be a non-negative real number, and u(r) be a real-valued
function of position r in V . Then the combination {ω, u} is a free
oscillation or resonance if the real-valued displacement field

s(r, t) = �(u(r)eiωt ) (1)

satisfies the elastic equations of motion in V and the stress-free
boundary condition on its surface.

There is no prima facie reason to believe that such solutions must
exist. In fact, for a given V and virtually all possible values of ω

there will not exist any u which leads to a solution of the equations
of motion and boundary conditions. It is a deep, well-known, and
important result of mechanics that a countably infinite set of such
solutions must exist; it is a miracle that there are practical ways to
compute them.

To proceed, we need the notions of the kinetic and potential energy
associated with a resonance. The potential energy Ep associated with
the displacement field u is given by the strain energy (Aki & Richards
1980)

E p = 1

2

∫
V

Ci jkl ∂ j ui ∂l uk dV, (2)

where ui, i = 1, 2, 3 are the Cartesian components of u and we are
using the summation convention for repeated indices. The corre-
sponding kinetic energy Ek is given by

Ek = ω2 K (3)

where

K = 1

2

∫
V

ρ ui ui dV . (4)

We can obviously compute Ep and Ek for any ω and u, resonance
or otherwise. Classical mechanics comes to our aid by assuring us
that (Dahlen & Tromp 1998, Section 4.1.3) the quantity

I = ω2 K − E p (5)

is stationary if and only if ω and u are a resonance of V . (By station-
ary we mean that the value of I does not change if we replace u by
u + δu where δu is any small displacement which obeys the stress-
free boundary conditions.) Stationarity, happily, turns out to be the
key to a powerful approximation technique, called the Rayleigh–Ritz
method.

Our next step is to turn the function u into something we can get
a grip on; we do this by representing it in a prescribed basis. Let
{φλ(r), λ = 1, . . . , N} be a set of N specified functions over V . By
specified we mean that they are some set which we have chosen and
thus know how to evaluate numerically. We then represent each of
the components of u by

ui = ai,λφλ. (6)

So now in order to determine u we must specify the 3N numbers ai,λ.
In particular, we must determine them so that the resultant value of
I is stationary.

If we insert the representation 6 into eqs (2) through (4), we can
express the stationary quantity 5 as

I = ω2α · K · α − α · E · α (7)

where α is a vector comprising the juxtaposed components of ai,λ.
Stationarity asserts that I will be unchanged to first order under
any small perturbation in the values of α which are consistent with
the stress-free boundary conditions. This requirement leads to the
conclusion that {ω2, α} are a stationary solution if and only if they
satisfy

ω2K · α = E · α. (8)

Eq. (8) is a standard form for the generalized symmetric eigen-
value problem (see Wilkinson & Reinsch 1971) and is readily solved
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with modern, freely-available software packages such as Lapack
(Anderson et al. 1999). Both K and E are real and symmetric, and
K is positive definite. For any energetically-stable material, the elas-
tic energy matrix E will be non-negative definite. These conditions
guarantee that the eigenvalues of 8 will be non-negative. In fact
there will be six zero eigenvalues, corresponding to three degrees of
rigid-body translation and three degrees of rigid-body rotation, and
all of the rest will be positive, corresponding to elastic resonances.

The devil in Rayleigh–Ritz methods often lies in the details of the
basis functions, φλ(r). The first studies used trigonometric functions
(Holland 1968) and orthogonal polynomials (Demarest 1969) tai-
lored to a rectangular sample shape. These choices promised good
numerical efficiency, in the one case because the trigonometric func-
tions mimicked the basic wave-like nature of the elastic displace-
ment fields and in the other case because the orthogonal polynomials
were known to have good numerical stability. On the other hand they
required substantial effort to formulate and programme the various
integrals, and the effort would be needed afresh for each new sample
geometry and symmetry.

These choices were appropriate in an environment in which alge-
braic and programming effort was regarded as cheaper than com-
puter time. The major contribution of Visscher et al. (1991) was the
discovery that the simplest possible choice of φλ, namely monomials
of the form

φλ = xη(λ) yζ (λ)zξ (λ), (9)

where η, ζ , and ξ are positive integers, could provide a basis that was
both numerically adequate (given the great advances in computing
power) and very flexible and convenient to implement for a wide
variety of shapes V and symmetries. In fact, with a little attention
to scaling (Maynard & So 1991) it is numerically much more than
adequate.

We still have to choose the set of exponents {η, ζ , ξ}. The most
common practice is to choose some positive integer NP and use the
set of all values satisfying

η + ζ + ξ ≤ NP (10)

The larger NP, of course, the more accurate the results. For a given
NP there are

3

(
NP + 3

3

)
= (NP + 1)(NP + 2)(NP + 3)/2 (11)

basis elements counting all three components of u. The size of the
problem, the length of α, grows as N3

P. Since the computational
effort required to solve 8 scales as the cube of the length of α, that
effort grows as N9

P.
An alternative scheme is to restrict the individual ranges of the

three indices to be proportional to some measure of sample size in
the dimensions. This approach tries to roughly spread the resolution
of the basis around in a way that recognizes the wavelike nature of
the solution, and is probably the better choice. Our experience is
that both are satisfactory.

Our task now is to compute the components of K and E, and then
to solve the resultant generalized eigenvalue problem for its eigen-
values and eigenvectors. Each eigenvalue is the squared angular
frequency of a resonance and its eigenvector comprises the coeffi-
cients of the basis functions for the resonance displacement field.
To properly formulate this we have to sort out some bookkeeping
issues.

Recall that α is a vector containing all of the coefficients for all of
the components of u. Each element in α is one of the elements from

the vector of coefficients a for one of the cartesian components of
u. Use λ as an index into α. For each value of λ, we must keep track
of

i(λ) the Cartesian component of u to which αλ applies
η(λ) the exponent of x in φλ

ζ (λ) the exponent of y in φλ

ξ (λ) the exponent of z in φλ.

Then

K = 1

2

∫
V

ρui ui dv (12)

Kλλ′ = 1

2

∫
V

ραλxη(λ) yζ (λ)zξ (λ)δi(λ)i(λ′) (13)

× αλ′ xη(λ′) yζ (λ′)zξ (λ′) dv (14)

= 1

2

∫
V

ρxη(λ)+η(λ′) yζ (λ)+ζ (λ′)zξ (λ)+ξ (λ′) dv (15)

There is an analogous but messier expansion for E. In both cases the
results look messier than they are. Each consists of a bookkeeping
hair-shirt wrapped around integrals of the form∫
V

f (x, y, z)xl ym zn dv (16)

where f (x, y, z) is either density or one of the Cartesian components
of the elastic stiffness tensor. In any region S ⊆ V in which f (x, y,
z) can be written as a sum of monomial basis functions, a condition
that includes the nearly universal case of being constant in S, all of
the integrals we need are of the form

IS(l, m, n) =
∫

S
xl ym zn dv (17)

Usually, S is V . In Appendix B we give explicit results for IS for
the cases of a rectangular parallelepiped, an ellipsoidal cylinder, a
triaxial ellipsoid, and a right-circular cylindrical wedge.

Eq. (8) can be further simplified for its numerical evaluation. In
the orthorhombic and higher symmetry case, we can order matrices
K and E in such a way to make them block diagonal. There are
then 8 diagonal blocks. Instead of (numerically) solving for a large
eigenvalue problem, we now solve for 8 smaller ones. See A for
further details.

3.2 Elastic energy and damping

We shall need to know how perturbations in the sample’s material
properties, ρ and, particularly, C, affect its resonance frequencies.
The results of this calculation are also useful in the special case that
perturbations in C are imaginary, in which instance the results tell
us how anelasticity in the sample contribute to the total dissipation
or Q of each resonance.

In order to make this computation we must appeal to Rayleigh’s
Principle, famously stated in Article 88 of Rayleigh (1896, 1945
re-issue), which tells us how to compute the perturbed eigenvalues
of a perturbed hermitian operator without computing the perturbed
eigenvectors. (This is really just standard first-order perturbation
theory for hermitian operators—see for instance chapter 10 of Math-
ews & Walker 1965—but it’s more fun to get it from Rayleigh.) This
result says that if we perturb the matrices K and E in 8 thus

K → K + δK (18)

E → E + δE, (19)
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and we represent the perturbation in the squared frequency of the
ith resonance by

ω2
i → ω2

i + δω2
i (20)

then we can compute δω2
i from

δω2
i = α(i) · (δE − ω2

i δK) · α(i)

α(i) · K · α(i)
(21)

where α(i) is the eigenvector associated with ω2
i . In eq. (21) δK and

δE are prescribed in advance, ω2
i and α(i) are assumed available from

prior computation, and δω2
i is what we want to compute. This result

is correct through terms of first order in δK and δE.
Eq. (21) looks almost self-evident, as though simple differentia-

tion of 8 would do the job, but the remarkable property of 21 is that
it does not contain terms in δα(i), the perturbation in the eigenvector.
(Straightforward differentiation would produce those terms and the
thrust of Rayleigh’s principle is that in hermitian cases the terms
in δα(i) must sum to zero.) This leads to a result which is much
more tractable and powerful analytically and vastly more efficient
computationally.

3.3 Excitation calculations

In order to assess which resonances will be observed in a particular
measurement it is very helpful to be able to predict the response of
a sample during a resonance experiment theoretically. Happily, it is
straightforward to use the resonance eigenvalues and eigenvectors
to make that prediction.

In a resonance experiment, we apply a sinusoidal excitation to
some point on the sample, measure its response at some other point,
and repeat the process for many frequencies. The calculation we
will perform here is the computation of the displacement response
of a sample to a sinusoidal point force with a specified polarization
and applied at a specified site. The calculation below hinges on the
fact that the resonance displacement eigenvectors,

ν(i)(r) = α
(i)
λ φλ(r), for i = 1, . . . (22)

form a complete basis for the space of all finite elastic displacements
in V .

Let

f(r, t) = f0δ(r − rs)eiωt (23)

where f0 is a constant vector, rs is the location of the applied point
force, and ω is it angular frequency. If s(r, t) is the response of V to
f, then we expect s will also be sinusoidal with frequency ω.

s(r, t) = s(r)eiωt (24)

Because ν(i) are complete, we can find coefficients γ i such that

s(r) = γiν
(i). (25)

A standard derivation (Dahlen & Tromp 1998) leads to

γi (ω) = νi (rs) · f0

ω2 − ω2
i

, (26)

and thus

s(r) = νi (rs) · f0

ω2 − ω2
i

ν(i)(r). (27)

Using (27) we can compute the response at any point r as a function
of the frequency ω of the applied force.

4 T H E I N V E R S E P RO B L E M

So far, we have dealt with a forward modeling problem, i.e. know-
ing the characteristics of an elastic body we compute its normal
modes. We would like to solve the inverse problem: starting from
the measured eigenfrequencies, can we infer the elastic parameters?
Here, our model could have different variables: we can invert for
the dimensions of the body (we still have to assume a type of shape
though). We can also invert for the elastic moduli or the crystallo-
graphic axis. We shall now focus on the latter topic.

4.1 Objective function and non-linear
optimization algorithms

To estimate how good a given model is, i.e., how well it can predict
the data, we make use of an the following objective function

F =
∑

i

wi

(
f (p)
i − f (m)

i

)2
, (28)

where f (p) are the computed frequencies and f (m) are the measured
ones. We minimize the difference between predicted and measured
frequencies in a least square sense. The weights wi characterize the
confidence we have in the measurements. We minimize the objec-
tive function, up to some tolerance, over the space of all feasible
models. In a neighborhood of the an extremum this is a quadratic
minimization problem. However, given the presence of noise we say
a model fits the data if F is less than some tolerance, which can be
quantified via a χ 2 type criterion.

An efficient way to minimize the objective function is to ap-
ply a conjugate gradient method (Fletcher 1980). We use a non-
linear form of conjugate-gradient which amounts to making re-
peated quadratic approximations. One advantage of such a method
is that it does not require the knowledge of the Hessian of the ob-
jective function. A sequence of search directions, hi, is constructed
and line searches are performed in order to minimize the objective
function along such directions. The procedure is as follows: assume
you have a search direction hi and a model mi. Let gi = −∇F(mi).
By minimizing the objective function, F, along the hi direction, i.e.
minimizing j(υ) = F(mi + υhi), we find a new model mi+1 =
mi + υ i hi. Then the new search direction is given by:

hi+1 = gi+1 + γi hi , (29)

with gi+1 = −∇F(mi+1) and

γi = gi+1
t gi+1

gi
t gi

. (30)

The method is initiated by taking the steepest descent direction as
the starting search direction, i.e. h0 = g0 = −∇F(m0). In the case
of a true quadratic form such an algorithm yields convergence in a
finite number of steps, in exact arithmetic. Formula (30) was derived
from that particular case. For further references we refer to Fletcher
(1980) and Press et al. (1986).

We can obtain an exact expression for the gradient of the objective
function. The partial derivative of the objective function with respect
to a particular parameter p is

∂p F =
∑

i

wi 2∂p f (p)
i

(
f (p)
i − f (m)

i

)
, (31)

and differentiating eq. (8) with respect to p , composing by a t on the
left and using � and E symmetries yield (Migliori & Sarrao 1997)

∂p(ω2) = at
(
∂p� − ω2∂p E

)
a, (32)

where we made use of the normalization a t Ea = 1. Hence, knowing
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the eigenvector a as well as the eigenfrequency ω allows us to com-
pute the gradient of the objective function. Knowledge of the gra-
dient is a key parameter for convergence and efficiency. Knowledge
of the Hessian would allow more efficient optimization methods,
e.g. Newton methods, but would require some significant additional
computational effort while computing the eigenvectors (Migliori &
Sarrao 1997).

To perform the non-linear conjugate gradient algorithm we use
the C++ COOOL library (CWP Object Oriented Optimization li-
brary) (Deng et al. 1996a,b). A code does the forward modeling and
computes both the objective function values and its gradient using
the measured resonant frequencies. Using this result, COOOL can
perform the line search along the direction chosen and find the best
step to use. Starting from this point, with the value of the new gra-
dient a new direction is chosen as described in eq. (29) and a new
line search is performed.

5 E X P E R I M E N T D E S I G N
F O R C Y L I N D R I C A L S A M P L E S

In this section we’ll use some of the tools we developed above to
examine the properties of the elastic resonances of a cylindrical
sample, and look at the implications for experiment design. To be
specific, we assume values for density and elastic properties that are
about that for shale and refer to the material as generic soft rock:

density 2.5 gm cm−3

VP 3.000 km s−1

VS 1.400 km s−1

5.1 General resonance types

In the presence of perfect axisymmetry, that is, a system axisym-
metric in both its shape and the distribution and symmetry of its
material properties, we can show (but we won’t do it here) that the
particle displacement for any mode must vary with the cylindrical
coordinate θ as sin(n θ ) for some integer value of n. That result plus
some additional symmetry arguments can be used to conclude that
every mode of such a sample must fall into one of three classes:

Torsional axisymmetric pure shear motions consisting of rigid ro-
tations of rings of material around the sample axis. The frequencies
of these modes depends entirely upon the sample’s shear velocity.

Extensional axisymmetric mixtures of compression and shear
motions. At low frequencies, when wavelengths are long compared
to the sample’s diameter, these modes are essentially an axial com-
pression coupled to a radial expansion, their frequencies are then

almost wholly dependent on the sample’s bar velocity, VE =
√

E
ρ

and the modes are called bar modes. At higher frequencies the
modes become more complex and it would be more appropriate to
call them simply non-torsional.

Non-axisymmetric or flexural all modes for which n �= 0 in
sin(nθ ). The axisymmetric modes above represent energy travel-
ing purely up and down the cylinder axis; these non-axisymmetric
modes travel along paths that are tilted with respect to that axis.

Although these classes breakdown when axisymmetry is destroyed
(as is almost always the case in a real experiment), they are still very
useful in ‘nearly-symmetric’ circumstances, and even in ‘not-very-
symmetric’ ones.

The flexural modes occur in pairs, called doublets, both mem-
bers of which have the same resonance frequency. This obscure

distinction is important when the modes are perturbed by small, non-
symmetric changes in the sample’s composition or shape: perhaps a
small crack develops in one side of a specimen. In that circumstance
the resonance frequencies are slightly shifted by the perturbation.
For an axisymmetric mode this shift simply moves the modes peak
a little bit in frequency. The two members of a doublet, however,
may experience different shifts and what appeared to be a single
peak in the unperturbed sample may become two distinct peaks in
the perturbed sample.

5.2 Mode shapes

We have computed the theoretical resonances for a generic soft rock
sample with dimensions

height 3.099 cm
radius 0.635 cm

This sample is about 2.5 times as tall as it is wide. Fig. 1 shows
the particle motion of the sample surface for several types of modes
at two extreme points of the cycle. (The deformation is greatly ex-
aggerated: under normal circumstances in the laboratory, particle
motions are of the order of atomic radii.)

The top row of figures shows the mode shapes for the two lowest
extensional modes. The motion in both cases is clearly axisymmet-
ric, and has both axial and radial components. The bottom row of
figures shows the two lowest torsional modes which are also axisym-
metric, but here the particle motion is entirely azimuthal, that is, in
the local direction of the θ coordinate. (The apparent midriff bulge
in the figure is an artifact of the plotting algorithm.) The middle
figures show the shape of the first flexural mode, which is also the
lowest-frequency mode of the system. The mode’s bending shape is
clearly non-axisymmetric.

5.3 Experiment design

5.3.1 Transducer location

In typical RUS measurements, we try to measure all of the reso-
nances below some upper limit. Having a complete set of resonances
assures us that we have extracted all of the available information and
significantly simplifies the inverse calculation. Most important, we
can confidently match each observed mode with a computed one, a
step that is essential to interpreting the data. As Q values decrease,
however, it becomes quickly difficult, and soon impossible, to de-
termine all or even most resonances below some upper limit.

Fig. 2 shows the theoretical resonance response for our elongate
generic soft rock sample featured above using eq. (27). The com-
putation assumes that the source is a point force centered on the
sample’s end and that the receiver is a displacement sensor at the
other end. We extended our above results in a straightforward way
to account for damping in the sample, and we show results for three
assumed values of compressional and shear Q. The three cases rep-
resent, by geological standards, very high, moderate, and low (but
still plausible) Q regimes.

It’s clear that we cannot depend upon observing a complete mode
catalogue in the presence of even moderate attenuation. The good
news, which is very important, is that we can use these computed
results to determine which resonances are observable for a given
source and receiver combination.
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first extensional overtone

lowest torsional mode

lowest extensional mode

first torsional overtone

20.49 kHz

36.85 kHz 69.94 kHz

45.33 kHz22.66 kHz

lowest flexural mode

overall lowest elastic mode

Figure 1. Surface particle displacements of several characteristic modes of the generic soft rock model.
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Figure 2. The theoretical resonance response of a generic soft rock sample
for high, moderate, and low values of compressional and shear Q.

20 30 40 50 60 70 80 90

kHz

0

0.2

0.4

0.6

0.8

1

R
P

sensitive only to V
P

sensitive only to V
S

extensional
torsional
non-axisymmetric

Figure 3. Relative sensitivity to compressional and shear velocity, RP, de-
fined in eq. (33), for the lowest-frequency modes of the generic soft rock
model.

5.3.2 Resonance sensitivities

Fig. 3 shows the relative sensitivity of each mode in Fig. 2 to changes
in compressional velocity versus shear velocity for our generic soft
rock sample. The quantity shown is

RP = ∂a f

∂a f + ∂b f
, (33)

where ∂af and ∂b f are the sensitivities of each eigenfrequency to
perturbations in V P and V S , respectively, computed from Rayleigh’s
principle, eq. (21). RP is a measure of the relative importance of
the sample’s compressional and shear speeds in determining a given
mode’s frequency. Both ∂a f and ∂b f are non-negative (see Rayleigh
1896, 1945 re-issue on ‘the march of periods’) and so 0 ≤ RP ≤ 1.

If RP = 0 for some particular mode, then the resonance fre-
quency of that mode is completely insensitive to changes in the
sample’s V P: the sample motion is purely shear and the frequency
of the mode is exactly proportional to the sample’s shear velocity.
The axisymmetric torsional modes are the only modes for which the
above are exactly true, although there are clearly many modes for
which RP � 1.

Figure 4. RP defined in eq. (33) for the generic soft rock model with an
inset drawing showing the sample’s proportions. The principal plot is the
same as that in Fig. 3 but covering a broader frequency range.

If, on the other hand, RP = 1 for some mode, then the resonance
frequency of that mode is completely insensitive to changes in the
sample’s V S when V P is held constant. The elastic cylinder has
no modes for which this is true (although it may becomes asymp-
totically true for certain families of modes as frequency becomes
infinite). It is generally easier to estimate V S than V P with reso-
nance methods, so it turns out that we have an interest in looking
for modes at reasonable frequencies for which RP is as large as
possible.

The values of RP in Fig. 3 are all depressingly close to 0. None
of these modes is more than slightly sensitive to V P and we can’t
expect to get robust estimates of V P. At a given measurement error
level, the errors in V P will be twenty or more times those in V S . The
results are for a fairly elongate specimen, and this insensitivity to
V P for the lower-frequency modes of such a system is characteristic.

Fig. 4 shows RP out to about 300 kHz. In this figure we group
the modes according to the value of a numerical attribute, L, for
each resonance which approximates the value of the quantum num-
ber n used to classify modes earlier into axisymmetric (n = 0) and
non-axisymmetric (n > 0) families. L is actually the integral of
a somewhat messy quandratic function of the displacement eigen-
function which was chosen to yield stable values that converged to
L = n when the model was truly axisymmetric.

L is a kind of quasi-quantum number which was constructed
specifically to function in a cylindrical geometry. We have found it
to be a very useful tool in two important functions. First, it parti-
tions the initially-undifferentiated modes enumerated by the eigen-
value calculation into dynamically-related families for study, a role
that is most evident in the partition between axisymmetric (L = 0)
and non-axisymmetric (L �= 0) modes. (Note that an axisymmetric
model has both axisymmetric and non-axisymmetric modes.) This
classification scheme is also key to making the inverse calculation
more robust because it allows us to track resonances by dynamic
identity instead of relying on the rapidly changing location of in-
dividual modes in a sorted list of eigenfrequencies. In the inverse
calculation we identify a mode by its value of L and by its position
in the sequence of modes having that value of L.

Our result is specific to nearly-axisymmetric cylinders but the
quantum numbers of various types exist for most highly symmet-
ric systems. It should with modest effort be possible to use this
technique in other geometries.
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Figure 5. RP defined in eq. (33) for the generic soft rock model with an inset
drawing showing the sample’s proportions. Similar to Fig. 4 (preceding), but
computed for a model with the same length and twice the diameter as the
generic soft rock model used for the preceding figure.

Figure 6. RP defined in eq. (33) for the generic soft rock model with an inset
drawing showing the sample’s proportions. Similar to Fig. 4 (preceding), but
computed for a model with the same length and four times the diameter as
the generic soft rock model used in Fig. 4.

The first mode substantially sensitive to V P is a flexural mode
at about 150 kHz, for which RP > 0.4. Note that if we wanted to
use this mode in a measurement we would have to extend the upper
frequency range of our measurements. Going to higher frequencies
will surely bring additional problems: the number of resonances
increases rapidly with frequency and mode identification problems
are likely to increase, particularly in the presence of substantial
attenuation. These obstacles are probably insuperable for moderate-
Q materials.

We can do better without going to higher frequency, however, by
changing the sample geometry. Fig. 5 shows RP for a model identical
to the one used above except that it has twice the diameter. In this
case the first P-sensitive mode is a flexural mode at about 80 kHz,
about a factor of two lower in frequency than for the original sample
geometry.

Fig. 6 shows RP for a model greater by yet another factor of two in
diameter. In this case the first P-sensitive mode is at about 60 kHz.
But notice that the number of modes in any particular frequency
band is increasing rapidly as we make the sample wider. As we
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Figure 7. The theoretical resonance response of our generic soft rock sam-
ple for the edge and end mounted transducer configurations.

Figure 8. The theoretical resonance response of a generic soft rock sample
for several transducer arrangements and sample shapes.

mentioned above, the increased crowding quickly complicates mode
identification problems, particular in the presence of dissipation.

5.4 Selective excitation

If we could selectively observe a single, arbitrary mode, we would
have achieved resonance paradise. We don’t know how to do that
but we can look at the role transducer location plays in determin-
ing which resonances are observed. Fig. 2 showed that moderate
amounts of attenuation could make it impossible to discern all of
the resonances in a particular frequency interval. A possible tool for
solving this problem would be the use of transducer arrangements
that favour particular modes.

Fig. 7 shows the computed response for the our standard sample
for two transducer arrangements for moderate values of Q. The im-
portant point to note is that there are modes that appear prominently
in the edge spectrum that are missing from the end spectrum. (The
great simplicity of the latter curve is one of the strengths of the
resonant bar technique.)

Fig. 8 reproduces the two curves of Fig. 7 in the top two plots
and adds two more plots showing the effects of making the sample,
respectively, twice and four times greater in radius. As the sample

C© 2004 RAS, GJI, 156, 154–169



Resonant Ultrasound Spectroscopy 163

becomes wider, the spectrum undergoes two important changes.
First, bar-wave approximation breaks down, as we can see by the
loss between the second and third plots of the simple regularly-
spaced peaks of the narrow sample; this change is good because
some of the changed mode types are more sensitive to V P than the
bar modes were. Hand-in-hand with that, however, is much greater
spectrum complexity, as seen most dramatically in the bottom curve.
In the presence of attenuation, spectral complexity makes it much
harder to interpret the observed spectrum in terms of specific modes.

At this point, we think these results tells us that developing the
ability to get V P and V S in a single experiment will probably in-
volve a balance between sample aspect ratio and somewhat more
sophisticated transducers. We do not yet have a global solution to
the resonance experiment design problem.

6 I D E N T I F I C AT I O N A N D E S T I M AT I O N
O F N O R M A L M O D E F R E Q U E N C I E S

6.1 Mode identification vs. mode estimation

Before delving further, it is necessary to make a distinction between
mode estimation and mode identification. Mode estimation is the
process of extracting a set of parameters {pi} from a given reso-
nance peak such that the peak could be reconstructed at a later time.
This is done interactively by fitting a model to a peak or set of peaks.
The equation should include at least the peak frequency, Q, ampli-
tude and some combination of background terms. In our case, the
Breit-Wigner model is used (Breit & Wigner 1936). This does not
associate the observed resonance peak with the appropriate mem-
ber(s) of the eigenfrequency spectrum of the forward model. We
term that mode identification, which is also an interactive process.
Identifying modes should not be a problem for nicely homogeneous,
well-made samples. However, for samples with heterogeneity or low
Q, poorly cut samples or those with spectra containing a high eigen-
frequency density, mode identification can be difficult or impossible.

6.2 Normal mode estimation

The eigenfrequency of a mode is not exactly at the maximum of the
corresponding peak in the spectrum. Any one mode is assumed to
have Lorentzian shape, and multiple overlapping modes are consid-
ered to be a superposition of Lorentzians. An example of this shape
can be seen in Fig. 9.

The model we used to fit the amplitudes of one or multiple modes
is due to Briet and Wigner (Breit & Wigner 1936):
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Figure 9. Amplitude and phase of an isolated mode in granite.

A( f ) = B0 + B1( f − f0) +
N∑
n

Cn + Dn( f − f0)

( f − fn)2 + 1
4 �2

n

(34)

where the displacement amplitude A is a function of frequency. The
parameters B0 and B1 describe a constant and linear background,
respectively. The shape of each mode is then constructed via 4 pa-
rameters: amplitude Cn, skewness Dn, eigenfrequency f n and full
width at half max �n. Therefore, a simultaneous fit of n resonance
peaks will have 4 ∗ n + 2 parameters. A non-linear least squares fit
of the data is then performed. Since the fit is sensitive to the initial
parameters, they need to be chosen carefully and accurately. This
reduces the chance of divergence in the fit and greatly reduces the
computation time.

In an ideal resonance spectrum, the observed modes would be
spaced apart such that each mode appears isolated. In addition,
each mode would be fit one at a time. Unfortunately, this is not
always possible due to degeneracy and the overlapping modes. Ev-
ery mode in the measured spectrum affects every other mode to
some extent, the size of the effect being directly proportional to the
frequency spacing between adjacent modes. This is mostly a prob-
lem when one peak dominates its neighboring peak in amplitude to
the point where you see a small ‘hill’ on the side of a ‘mountain’.
The fitting procedure will tend to favour the larger peak, so the es-
timates of the parameters of the smaller peak will have a higher
uncertainty.

We put a quantitative number on this effect by putting less (or zero)
weight on the small peak during the inversion process if we’re unsure
of its existence in the forward model. One way to be fairly certain
the peak is a true resonance is the following method. If there are a
number of prominent peaks (at least 4) before the one in question, the
inversion can be performed on the set of prominent peaks with the
questionable peak ending the set. Giving a weight of one to all peaks
except the last will result in a fit to the first 4 ‘high confidence’ peaks,
and the last ‘zero-weight’ peak will be effectively guessed at by the
inversion. If the frequency from the inversion seems reasonably
close to the observed (but questionable) peak, then it may be a true
resonance. This is an iterative game that can be played under the
right conditions, but to the authors’ knowledge, there is no fool-
proof solution for this problem. However, if repeated measurements
are possible, the less prominent peaks may become greatly enhanced
in other data sets, giving rise to an increased confidence level in their
true existence.

6.3 Normal mode identification

There are a number of reasons why a measured spectrum might not
be mapped in a reasonable fashion to a modelled spectrum. It may
be that the proposed model is not able to reflect the observed mea-
surement. For example, trying to fit an isotropic model to a sample
with cubic symmetry. It may be that during mode identification, a
number of modes were identified incorrectly due to a low quality
factor. It may also be that the sample itself is poorly cut or hetero-
geneous to the point that it cannot be modelled as homogeneous, in
which case either a heterogeneous model or a new sample is needed.
In all but the last case, a little more care and more numerical effort
can fix the problem.

As mentioned earlier, the lower the Q of the specimen, the more
difficult it is to identify consecutive peaks in any particular spectrum.
This is often the case with soft rocks. Fig. 2 showed this effect best.
In high Q materials the peaks are relatively narrow and splitting
of degenerate peaks is easier to detect than in lower Q materials.
However, if a rock is inhomogeneous, the degenerate peaks may
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split enough so that both (or all) are observable. In this case, the
inhomogeneity saves you during identification, but will likely come
back to bite you in the inversion uncertainty.

Another source of difficulty in eigenfrequency identification
comes from the physical coupling of the sample to the apparatus.
Slight differences in the positioning of the sample between the trans-
ducers along with the force applied by the transducers contribute to
this uncertainty. This error can be estimated by completely mount-
ing and unmounting the same sample several times. This was done
on a cylinder of Elberton granite in Section 8.2. Although remount-
ing the sample multiple times to estimate error is quite feasible for
bench-top measurements, it is too time consuming for measurements
involving complex sample preparation.

6.4 Resonance inversion

Missing a normal mode during measurement can be fatal to the in-
version if a large shift between the measured and computed frequen-
cies appears. The optimization may converge to the wrong model.
To avoid this problem, we use sets of peaks we are confident in
to perform the inversion. We can also use the weight (inverse data
standard deviation) wi in the objective function (cf. eq. 28). Lower
weight would be associated with measured frequencies in which we
have low confidence; although we will directly estimate the variance
in the measured eigenfrequencies later.

The first iterations of the inversion are done with low order poly-
nomials (N = 5–7). These approximations can rapidly predict the
first few mode frequencies accurately but fail to accurately predict
higher modes. This allows one to obtain a rough idea of the true
model. Higher order polynomials considerably increase the compu-
tation time but yield a better resolution using information of higher
normal modes. Along with the different iterations, new information
becomes new a priori information for the next iterations. One usu-
ally starts with an isotropic model. If a proper fit cannot be achieved
we lower the symmetry of the model used: cubic, then hexagonal,
etc.

The following results show that we can achieve a model that fits
our data. Uncertainties can arise from the polynomial fitting, from
uncertainties in the data, from heterogeneities in the samples, and
inaccuracies in the specification of the sample geometry (e.g. angles
between faces are not exactly 90◦, faces not perfectly flat, surface
can have some roughness that scatters waves). Finding small shifts
between the predicted values with the inverted model and the actual
measured frequencies is not surprising. What we need to know is
if a model fits the data in a statistically significant way. We imple-
ment this in two ways. First, In our non-linear conjugate gradient
method we assume to have found an answer when the gradient is
lower than a certain threshold. Deciding on this threshold depends
on the confidence we have in our data and what noise level we
have. Second, we use a χ 2 test to know if a proper fit has been
achieved.

In using the χ 2 test, it is necessary to know the uncertainty σ i

in frequency for each observed eigenfrequency f o
i . To obtain these

values, we assume that only physical mounting of the sample con-
tributes to the uncertainty. Each time a sample is mounted, the eigen-
frequency shifts slightly introducing some error. By completely
mounting and unmounting a sample N times, we get N realiza-
tions of each spectrum. Then for each mode i, we calculate a mean
eigenfrequency f i and standard deviation σ i. It is from these values,
f i and σ i, that we will later calculate how statistically significant our
inversion procedure is.

7 DATA A C Q U I S I T I O N

A function generator (Stanford DS345) sends a 10 V (peak–peak)
swept sine wave to the source transducer. This signal is detected syn-
chronously with a DSP lock-in amplifier (Stanford SR850), which
digitizes the input and reference signal with 18 bit precision, di-
rectly measuring the in-phase and quadrature components. Ampli-
tude and phase are calculated from these. Fig. 9 shows a typical
amplitude/phase response for an isolated mode measured in a gran-
ite core. We see the π phase shift associated with the arctangent
function as the frequency passes through the resonance.

To limit loss of energy and control the humidity in the bench top
measurements we place the sample in a vacuum chamber held at
approximately 160 mbar at room temperature, 23 C. In the theoret-
ical derivations of Section 3 we did not implement boundary and
radiation conditions. With the use of the vacuum chamber in the ex-
periments we can stick to those assumptions. The vacuum chamber
also yields a quieter environment for the experiment. For porous me-
dia it is well known that even a single monolayer of water adsorbed
onto the pore space of the sample can have a dramatic influence on
the moduli.

8 E X P E R I M E N TA L R E S U LT S

We have applied RUS to a variety of samples, both man-made and
natural, and both isotropic and anisotropic. Here, for simplicity we
focus on two particular samples to illustrate the method. Macor is
machinable glass ceramic mainly used in electronic applications
as a thermal insulator. The density and modulus of elasticity are
similar to that of aluminum. The natural material we chose to show
here is Elberton granite, quarried in the state of Georgia, and is
predominantly composed of feldspar, and quartz. Previous research
has shown that some granites are anisotropic (Douglass & Voight
1969). This seemed an ideal material to test for low symmetries.

8.1 Benchtop macor

A macor cylinder 3.095 cm long and 1.274 cm in diameter was
measured in vacuum after being dried. Fig. 10 shows the spectrum
obtained. Five resonances were extracted from the data along with
their corresponding Q values:

f (kHz) Q

45.496 426
45.860 335
52.116 311
81.643 442
91.838 380

The first two peaks are the split members of a doublet. All five
peaks were used in the inversion. Since macor is known to be an
elastically stiff material with moduli similar to aluminum, we fit
an isotropic model to the data. The observed frequencies and those
predicted by the inverted model are:

fobs (kHz) ffinal (kHz) Relative error

45.496 45.370 0.0028
45.860 45.455 0.0088
52.116 52.026 0.0017
81.643 81.957 −0.0038
91.838 91.826 −0.0001

The inverted model elastic velocities as well as the results of ul-
trasonic measurements on a different specimen are listed in Table 1.
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Figure 10. Benchtop sweep of a macor cylinder (3.095 cm × 1.274 cm ×
1.274 cm). A sweep from 20 to 100 kHz was applied.

Table 1. Inferred macor elastic speeds from reso-
nance and ultrasonic time-of-flight measurements.

V P (m s−1) V S (m s−1)

resonance 5655 3220
ultrasonic 5580 3162

Assuming a 50 Hz error in measurement, the observed frequen-
cies were fit with a χ 2 of 4.5. Since the sample was not remounted
and measured multiple times, the 50 Hz error is a very rough guess.
However, from experience, the quality of the data leads us to believe
that 50 Hz is a conservative guess.

There is 1.3 per cent discrepancy between the ultrasonic and res-
onance values for V P and a 1.8 per cent discrepancy for V S . Since
the resonance data depend only weakly on V P, the nearly 2 per cent
discrepancy for V S is likely a better measure of the difference in the
two measurements.

We therefore conclude that for isotropic materials, we can find
V P and V S accurately. However, in the next section we attempt the
same scheme for Elberton granite, which is anisotropic, in order to
test our ability to measure and invert for lower symmetry materials.

8.2 Granite cylinder

The anisotropy of particular granites due to microfractures has been
known for many years and is a good test for our RUS methods
(Douglass & Voight 1969). Previous work suggests that to be able
to accurately measure anisotropy in a sample we would need at
least 20 consecutive resonant frequencies (Ulrich et al. 2002). We
studied a 71 mm by 25 mm cylindrical core of Elberton granite
and were able to measure and identify the first 25 normal modes.
An example of a measured spectrum can be seen in Fig. 11. The
laser ultrasonic data in Fig. 12 was collected on a similar core.
In order to obtain the uncertainties in frequency for our χ 2, the
granite sample was completely mounted and unmounted 14 times.
The mean values of the eigenfrequencies and their corresponding
uncertainties are shown in Table 2. The differences in frequency and
amplitude can be seen in Fig. 13. Frequency uncertainty ranged from
101 Hz to 559 Hz with a mean uncertainty of 246 Hz. Although the
amplitudes in Fig. 13 seemed to vary greatly for specific modes, the
Q values of the modes were fairly stable. In Fig. 14, the Q’s range
from approximately 100 to 200, with an average uncertainty of 41.
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Figure 11. Spectrum of a cylindrical granite core (2.527 cm diameter by
7.15 cm long). A sweep from 20 to 100 kHz with a 5Hz step was applied.

Table 2. Comparison between the observed (f (obs)) and predicted (f (pre))
normal mode frequencies with uncertainties for an Elberton granite core.

σ (obs) is the uncertainty in σ from repeated measurements, ( f (pre)− f (obs)

σ (obs) )2 is

the relative contribution of each f (obs) to the total χ2, and freq. # is how we
labelled the identified frequencies.

f (obs) (Hz) f (pre) (Hz) σ (obs) (Hz) ( f (pre)− f (obs)

σ (obs) )2 freq. #

15878 15506 79 1.17 1
16026 15793 69 0.60 2
32564 32906 69 1.29 5
33701 34627 31 46.99 6
50031 51316 29 102.98 8
59560 59125 22 20.49 10
62017 62240 27 3.39 11
64331 63586 40 18.67 12
69799 70819 73 10.29 13
71461 71319 769 0.00 14
72553 72440 470 0.00 15
75746 75410 395 0.04 16
76353 76314 402 0.00 17
78331 77323 406 0.34 18
78969 78990 401 0.00 19
79658 79706 406 0.00 20
81338 82327 1084 0.04 21
84621 84717 360 0.00 22
85449 85152 528 0.02 23
86685 85477 331 0.70 24
87228 87594 194 0.19 25

A first attempt to match the first six normal modes with an
isotropic model was unsuccessful. Larger frequencies could not
be fitted at all. We then tried anisotropic models with lower and
lower symmetries. Finally with the use of an orthorhombic model
(with 9 independent parameters, c11, c22, c33, c23, c13, c12, c44, c66,
c55) we can achieve a fit of 25 consecutively measured resonances
with a χ 2 of 207 (as opposed to 500 for a hexagonal model),
most of the variance being associated with 5 modes. The com-
parison between predicted and measured frequencies can be found
in Table 2. The inverted model is c11 = 80.7 ± 1.7 GPa, c22 =
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Figure 12. Laser ultrasonic measurement of acoustic waves in a 5.5 cm
diameter granite core. A pulsed IR laser in the thermoelastic regime is used
to excite elastic waves which are measured with a laser Doppler vibrometer.
The source and detector positions are antipodal on a line through the middle
of the sample. The sample is rotated 10 degrees between measurements. The
arrival after 10 µs is the direct P-wave arrival travelling straight through the
sample. The 30 µs arrivals are the counter-rotating surface waves. For more
details see (Scales & Malcolm 2003).
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Figure 13. A set of 3 resonance peaks from 3 of 14 Elberton granite data
sets. Amplitudes varied with each set due to mounting. The average un-
certainty in eigenfrequency from 14 complete mountings and remountings
was 246 Hz. This uncertainty does include error from misidentification of
resonance peaks during fitting.
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Figure 14. Q values for Elberton granite have an increasing trend over
the measured range. Higher frequencies had slightly higher uncertainties, or
more variation in estimated Q from spectrum to spectrum.

68.1 ± 1.3 GPa, c33 = 74.5 ± 1.5 GPa, c23 = 25.6 ± 1.3 GPa, c13

= 42.0 ± 2.2 GPa, c12 = 37.5 ± 0.1 GPa, c44 = 19.89 ± 0.02 GPa,
c55 = 28.16 ± 0.01 GPa and c66 = 28.66 ± 0.01 GPa (where the
error bars come from the inversion of all 14 data sets). In the plane
perpendicular to the symmetry axis, this yields qP wave speeds of
5534 ± 57 m s−1 and 5082 ± 50 m s−1 in the c11 and c22 directions,
respectively. This nearly 10 per cent P-wave anisotropy is consis-
tent with the ultrasonic measurements shown in Fig. 12 (Scales &
Malcolm 2003).

In the anisotropic symmetry plane the S wave speeds are 3298 ±
3 m s−1 for the vertical polarization, 2747 ± 16 m s−1 and 3269 ±
8 m s−1 for the horizontal polarization in the vertical and horizontal
directions, respectively. For orthorhombic symmetry, c44 and c55

decouple and are not the same as shown by their fit values. Also
note the difference in values for the other decoupled coefficients:
c12 and c23, c11 and c22. Here our χ 2 test was used as a tool to decide
the symmetry of the sample. Granite is known to be anisotropic
(Douglass & Voight 1969). The way it is extracted and cut in quarries
takes advantage of that anisotropy. This ensured that the anisotropic
symmetry axis coincides with the geometrical symmetry axis of the
sample. Otherwise, we would have to invert for the crystallographic
axis as well.

Of course, going to monoclinic symmetry would reduce our χ2,
but we have independent measurements indicating weak inhomo-
geneity at low frequencies. Fig. 12 shows clear evidence of P-wave
anisotropy on the order of 10 per cent. This anisotropy is largely
due to stress-relaxation micro-fracturing that occurs when the rock
is quarried. Since the surface waves all travel around the same path,
they are not influenced by the anisotropy in this measurement. How-
ever, one can also see splitting or de-phasing of the counter-rotating
surface waves caused by heterogeneities along the path. The split-
ting corresponds to velocity heterogeneity of around 5 per cent. We
conclude then, that introducing more degrees of freedom is likely
not justified by the data.

9 C O N C L U S I O N

RUS offers a promising technique for characterizing the elastic mod-
uli of rocks. It fills a gap in existing spectrum of measurement tech-
niques between low-frequency stress-strain and ultrasonic delay-
time measurements. RUS allows one to infer the complete elastic
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tensor from a single measurement, without having to machine a
sample according to the assumed anisotropic symmetry.

The method may be applied to samples having small-scale het-
erogeneities. We have also analyzed the sensitivity of the resulting
elastic moduli to transducer position, sample aspect ratio and fre-
quency of the measurement. We have, so far, only studied clean,
relatively homogeneous rock samples, using normal modes whose
wavelengths are large compared to the granularity of the sample.
For samples with large-scale heterogeneity, it will presumably be
necessary to perform a preliminary analysis (e.g. tomography).
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A P P E N D I X A : S Y M M E T R I E S A N D
B L O C K D I A G O N A L I Z AT I O N

An elastic medium is characterized by its stiffness tensor (Cijkl). With
the so-called Voigt notation (Thomsen 1986), one can represent the
medium by a 6 × 6 matrix, (cij) in accordance with

i j or kl : 11 22 33 32 = 23 31 = 13 12 = 21.

↓ ↓ ↓ ↓ ↓ ↓
1 2 3 4 5 6

If one restricts oneself to orthorhombic or higher symmetries the
non-zero entries of the matrix (cij) are given by


c11 c12 c13

c12 c22 c23

c13 c23 c33

c44

c55

c66




.

The corresponding symmetries are isotropic, cubic, hexagonal,
tetragonal, and orthorhombic. Note that we also assume that the
symmetry axis is aligned with the coordinate axis.

We can exploit the vanishing entries and symmetries of the re-
sulting stiffness tensor Cijkl while reordering the matrices E and K
[see eqs (3) and (4)]. Reordering yields simplifications that can be
exploited for numerical efficiency. Consider the entry

Kλiλ′k = Ci jkl

∫
V

∂ jφλ ∂lφ
′
λ dV, (A1)

where φλ = x l ym zn and φλ
′ = x l′ ym′

zn′
.

Assume first that i = 1 and k = 2. Then the only non-zero terms
in the sum in eq. (A1) are for ( j , l) = (1, 2) and ( j , l) = (2, 1). In
both cases the integrand is of the form

B x l+l′−1 ym+m′−1 zn+n′
,

where B is some constant. Since we integrate with symmetric limits
if such a term is non zero then

l even (odd) =⇒ l′ odd (even),
m even (odd) =⇒ m′ odd (even),
n even (odd) =⇒ n′ even (odd).
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If now i = 1 and k = 3, then the only non-zero terms in the sum in
eq. (A1) are for ( j , l) = (1, 3) and ( j , l) = (3, 1). In both cases the
integrand is of the form

B x l+l′−1 ym+m′
zn+n′−1,

and if such a term is non zero then

l even (odd) =⇒ l′ odd (even),
m even (odd) =⇒ m′ even (odd),
n even (odd) =⇒ n′ odd (even).

If now i = 1 and k = 1, then the only non-zero terms in the sum in
eq. (A1) are for ( j , l) = (1, 1), ( j , l) = (2, 2), and ( j , l) = (3, 3). In
these cases to obtain non-zero terms we require

l even (odd) =⇒ l′ odd (even),
m even (odd) =⇒ m′ even (odd),
n even (odd) =⇒ n′ odd (even).

We obtain similar results for the cases (i , k) = (2, 2) and (i , k) = (3,
3). There are 8 choices for the parities of l, m, and n. The previous
relations give an equivalence relation on the set

{(i, λ) | 1 ≤ i ≤ 3, λ = (l, m, n) with l + m + n < N } ,

with 8 equivalence classes. If one takes two representatives of two
distinct equivalence classes the associated entry in K is zero. There-
fore, by grouping the representative of the same classes we decom-
pose the matrix K into 8 diagonal blocks.

With such a block diagonal decomposition, instead of solving
one large generalized eigenvalue problem, we solve eight smaller
ones. Since the computational complexity of the algorithm used is
proportional to R3 (R is the dimension of the problem) the gain in
efficiency is obvious.

A1 Low symmetry

For axis definations, refer to Fig. A1. In the case of symmetries
lower than orthorhombic a block diagonalization of the matrices
K and E does not apply. This simplification similarly breaks down
when symmetry axes do not align with coordinates axes (i.e. sample
faces). In such a case call (Rij), i , j = 1, 2, 3, the rotation matrix
transforming coordinates from the system associated to the symme-
try axes to that associated to the sample faces. The stiffness tensor
(cijkl) transforms according to ci ′ j ′k′l ′ = Rii ′ R j j ′ Rkk′ Rll ′ cükl . Such a
transformation breaks the structure of the matrix in the sample-face
coordinate system. This yields a higher computational complexity
for the modeling operation.
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Figure A1. Dimension associated with the different shapes used in our work: rectangular parallelepipeds, spheroids, cylinders.

Note that the rotation matrix involves three additional parameters.
These can be chosen to be Euler angles as in Goldstein (1981). To
determine symmetry axes one has to invert for these three additional
parameters. Note also that the determination of symmetry axes is
restricted to samples with distinct face orientation. In the case of a
spherical sample the additional parameters cannot be inverted for.
In the case of cylindrical samples with a circular base the axes of
symmetry can only be inverted for up to a rotation around the sample
symmetry axis (Backus 1970).

The inversion procedure we have followed assumes some a priori
knowledge of the symmetry axis for the anisotropy of the sample.
Another approach that one could follow is to invert for the general
elastic tensor, i.e. the 21 elastic constants. In such a case inversion
requires knowledge of a large number of resonance frequencies.
Assuming that one can invert the 21 elastic parameters, one would
then want to know what type of anisotropic symmetry the sample ex-
hibits. In other words the question is: Can one guess the anisotropic
symmetry with the elastic tensor given in any orthogonal coordinate
system? Backus proposes one strategy to answer this question. His
approach is based on the representation of the elastic tensor with
harmonic tensors. The elastic tensor, Cijkl is first decomposed into
two tensors C = S + A, one symmetric Sijkl, one asymmetric, Aijkl.
S can be represented with the help of three harmonic tensors, one
of order 4, one of order 2, one of order 0. S can be represented with
the help of two harmonic tensors, one of order 2, one of order 0. In
three dimensions the action of a harmonic tensor H (q) of order q can
be written as

H (q)(r) = A
∏

1≤ν≤q

a(ν) · r + r 2 P (q−2)(r), (A2)

where r is the position, a(ν), 1 ≤ ν ≤ q is a unique set of directions, A
is a scalar, r = | r|, and P(q−2) is a homogeneous polynomial of order
q − 2. Backus shows that the symmetry properties of H (q) coincide
with that of the set of directions a(ν) e.g. H (q) is rotation invariant
with respect to some axis if and only if the set of directions a(ν) is
so too. Hence one can decompose the five harmonic tensors accord-
ing to (A2) and obtain five ‘bouquets’ of directions. The common
symmetry of these ‘bouquets’ is then that of the elastic tensor C.

In our inversion framework, one would thus have the geometrical
mean to obtain the symmetry axis. Because of uncertainties in the
data and hence in the inverted components of the elastic tensor one
would only be able to make a guess. One can then however transform
the elastic tensor C into the system of guessed symmetry axis. In
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such a system some entries of the tensor should vanish, at least
within the uncertainties. Such an observation can then confirm the
symmetry type of the elastic medium. With an anisotropic symmetry
in mind, one could now proceed with the main method discussed
in this paper and having fewer parameters to invert for, sharpen the
estimates of the elastic constants.

A P P E N D I X B : E V A L U A T I O N
O F P O L Y N O M I A L I N T E G R A L S

B1 Rectangular parallelepiped

As far as computing integral (17), the case of a rectangular paral-
lelepiped is easiest. We know that if one of l, m or n is odd then IV

vanishes, otherwise we have

IV = 8 d l+1
1 dm+1

2 dn+1
3

(l + 1)(m + 1)(n + 1)
.

B2 Ellipsoidal cylinder

Again, if either l, m or n is odd then IV is zero. If they are all even,
then IV is equal to

IV = 2d l+1
1 dm+1

2 dn+1
3

n + 1

∫ 1

0
r l+m+2 dr

∫ 2π

0
cosl θ sinm θ dθ

after integrating over z and applying the change of variables, x = d1r
cos θ , y = d2r sin θ . The second integral is the integral of powers
of trigonometric functions over a period and is equal to (Gradshteyn
& Ryzhik 1965)

2π
(l − 1)!! (m − 1)!!

(l + m)!!
,

where

(2a)!! = 2a(2a − 2)(2a − 4) . . . (2) = 2aa!,

(2a + 1)!! = (2a + 1)(2a − 1)(2a − 3) . . . (1), and

0!! = (−1)!! = 1.

which gives

IV = 4π
d l+1

1 dm+1
2 dn+1

3

(n + 1)

(l − 1)!! (m − 1)!!

(l + m + 2)!!
.

Note that the form of IV shows the cylindrical symmetry of the
system.

B3 Triaxial ellipsoid

Here also, IV (eq. 17) is only non-zero for l, m and n even. In
the spheroid case, we apply the change of variables, x = d1r sin θ

cos φ, y = d2r sin θ sin φ, z = d3r cos θ . This yields the integral

IV = d l+1
1 dm+1

2 dn+1
3

∫ 1

0
r l+m+n+2 dr

×
∫ π

0
sinl+m+1 θ cosn θ dθ

∫ 2π

0
cosl φ sinm φ dφ

= d l+1
1 dm+1

2 dn+1
3

l + m + n + 3

×
∫ π

0
sinl+m+1 θ cosn θ dθ

∫ 2π

0
cosl φ sinm φ dφ.

The second integral is equal to (Gradshteyn & Ryzhik 1965)

2π
(l − 1)!! (m − 1)!!

(l + m)!!
,

whereas the first is (Gradshteyn & Ryzhik 1965)

2
(l + m)!! (n − 1)!!

(l + m + n + 1)!!
.

Therefore, we obtain

IV = 4π d l+1
1 dm+1

2 dn+1
3

(l − 1)!! (m − 1)!! (n − 1)!!

(l + m + n + 3)!!
.

Note that the form of IV shows the spheroidal symmetry of the
system. Other geometrical shapes and values of IV are given in
Visscher et al. (1991).

B4 Right-circular cylindrical wedge

This shape is a bite out of a right-circular cylinder which is bounded
between planes at heights z1 and z2, between planes at the con-
stant angles θ 1 and θ2, and between the cylindrical surfaces of con-
stant radius r1 and r2. This in isolation is a rather bizarre sample
shape, but the wedge is a very useful and general component vol-
ume for building systems more complex than a single, homogeneous
cylinder.

Incorporating the domain limits above yields

IS =
∫

S
(r sin(θ ))l (r cos(θ ))m zn dv (B1)

=
∫ r2

r1

r l+m+1 dr (B2)

×
∫ θ2

θ1

sinl (θ ) cosm(θ ) dθ

∫ z2

z1

zn dz (B3)

= r l+m+2

l + m + 2

∣∣∣∣
r2

r1

zn+1

n + 1

∣∣∣∣
z2

z1

T (θ1, θ2; l, m) (B4)

where

T (θ1, θ2; l, m) =
∫ θ2

θ1

sinl (θ ) cosm(θ ) dθ (B5)

T can be computed by a recursive procedure implied in eq. (2.5.10)
of (Gradshteyn & Ryzhik 1965).

C© 2004 RAS, GJI, 156, 154–169


