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S U M M A R Y
Multiple scattering is a phenomenon generic to wave propagation in heterogeneous media.
In order to study scattering effects caused by inhomogeneities within an elastic medium we
use the direct solution method (DSM). This method is based on solving the weak form of the
elastic equation of motion. A complete set of trigonometric functions is used as trial functions
to study 2-D problems. The computational costs of this method increase with frequency. To
partially overcome this problem we use the discrete fast Fourier sine/cosine transforms. One of
the problems that arises in the application of discrete solution methods for wave propagation
calculations is the presence of reflections from the boundaries of the numerical mesh. We
apply absorbing boundary conditions at the edges and corners. We use the stiffness concept for
a three-quarter-space (calculated using the indirect boundary element method) to reduce the
undesirable reflected waves generated at the corners. We also apply the stiffness concept for a
quarter-space to impose free-surface boundary conditions. We consider SH-wave propagation
(incident plane waves and line sources) in a 2-D space with natural boundary conditions.
Comparisons with analytical solutions for simple problems are shown.

Key words: Fourier transforms, inhomogeneous media, lateral heterogeneity, numerical tech-
niques, scattering.

1 I N T RO D U C T I O N

Scattering of seismic waves plays a significant role in seismic wave
propagation in the Earth. Phenomena such as coda-wave excitation,
attenuation and irregular arrival times are often assumed to be caused
by scattering from inhomogeneities in the crust and upper mantle of
the Earth. The study of sound wave propagation through highly het-
erogeneous media is useful to understand information provided by
acoustic waveform logs and will have a direct impact in oil produc-
tion. The Earth is not a homogeneous body and this has stimulated
seismologists to study scattered waves to explain some of the fea-
tures they observe on seismograms. The Earth has heterogeneities
on many scales and it is mandatory to account for this fact. An excel-
lent overview of theoretical aspects of scattering and the influence
of small- and large-scale heterogeneities on wave fronts travelling
through heterogeneous media can be found in Sato & Fehler (1998).

A great variety of approaches are available in the literature. It
is worth mentioning the approach due to Virieux (1984) where the
author simulated SH-wave propagation in a salt dome inside a two-
layered medium using a finite-difference method (FDM) in terms of
velocity and stresses. Also using FDM, Frankel & Clayton (1986)
studied scattering of elastic and acoustic waves in 2-D media with
random spatial variations. A numerical study of coda Q in two-
layer random media is presented in Yomogida et al. (1997) apply-
ing a boundary integral scheme. The T-matrix approach is used in

Varadan et al. (1989) to study scattering of elastic or viscoelastic
inclusions. This rapid passage over relevant approaches to simu-
late wave propagation in complex media gives us a glimpse of the
many possibilities available. All of them have advantages and lim-
itations. It is not our attempt to chose the best technique because
there is not such a thing. Models and methods are appropriate to deal
with one limited parcel of reality. Instead we centre our attention
on SH-wave propagation in heterogeneous media using the direct
solution method (DSM). The DSM is a Galerkin weak form real-
ization of the method of weighted residuals (MWR). It is based on
solving the weak form of the elastic equation of motion. The DSM
is so named because the solution is obtained by directly solving a
system of linear equations. The method was originally formulated
for global-scale studies and only free-surface boundary conditions
were considered. Geller & Ohminato (1994) computed synthetic
seismograms in 2-D configurations. They imposed at the bottom of
their model exact energy-absorbing boundary conditions as natu-
ral boundary conditions. Hara et al. (1993), Cummins (1994) and
Cummins et al. (1997) used the DSM to compute surface wave syn-
thetics and the partial derivatives for a laterally heterogeneous Earth
model in spherical coordinates.

The objectives of this paper are as follows.

(1) To explore the applicability of the DSM with Cartesian co-
ordinates using a complete basis of cosines as trial and weight
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functions to deal with 2-D non-homogeneous media. The trial func-
tions are used along horizontal and vertical directions. In this way
the trial functions are well suited to modelling heterogeneities in
both directions.

(2) To use the discrete fast cosine/sine Fourier Transforms to
speed up the method.

(3) To apply the stiffness matrix for a three-quarter-space, im-
proving absorbing boundary conditions cutting down undesirable
contamination from the corners.

(4) To apply the stiffness matrix for a quarter-space to impose
free-boundary conditions.

We consider heterogeneities with a size comparable to the domi-
nant wavelength. In order to ensure a reasonable computational cost,
the wavelengths have to be in a range between the size of the model
and a few hundredths of it.

The simulation of wave propagation by finite-difference or finite-
element methods in unbounded domains requires a specific treat-
ment for the boundaries of the necessarily truncated computational
domain. One method for eliminating undesirable reflections is cre-
ating a large and/or expanding grid. Another approach is to make the
grid boundary transparent to outgoing energy. This is ideally done by
designing absorbing or non-reflecting boundaries, which are math-
ematically equivalent to a one-way, or outgoing, elastic wave equa-
tion only. Perhaps the simplest example of absorbing boundaries
comes from the application of a paraxial (one-way) wave equation
at the artificial grid boundary. This method was first used by Clay-
ton & Engquist (1977) and is limited to a range of incidence angles
within which it works properly. Higdon (1990) developed an ap-
proximation of the absorbing boundary condition that is based on
the composition of simple first-order differential operators. Each
operator gives perfect absorption for a plane wave impinging on
the boundary at a certain incidence angle. In practice, an outgoing
elastic wave equation is an approximation since the wave equation
is not generally separable in outgoing and incoming parts. Minimiz-
ing the coefficient of reflection at the artificial boundary is another
popular technique such as in Peng & Toksöz (1994, 1995). Absorb-
ing layers have been used in the past (see Kosloff & Kosloff 1986)
with reasonable results in time-domain computations. An extension
of this idea, the perfect matched layer (PML) is being used with
success in finite-difference studies (e.g. Bérenger 1994; Collino &
Tsogka 2001). This work deals with the DSM, thus we will remain
in the frequency domain and impose absorbing boundary conditions
as natural boundary conditions using the local wavenumber. Gen-
erally speaking, the absorbing boundary condition can be regarded
as a linear relationship between tractions and displacements along
an interface. Such an operator is called the stiffness of the inter-
face in engineering practice (e.g. Kausel 1992). We use the indirect
boundary element method (IBEM) to compute the stiffness in two
canonical cases: the three-quarter-space and a quarter-space with a
free boundary. These conditions allow one to reduce spurious re-
flections produced at the corners of the computational domain, and
to impose nearby free-surface boundary conditions, respectively.

In Section 2 we discuss the feasibility of the DSM by solving
a simple 1-D layered medium problem. We compare the solutions
obtained using the DSM with those obtained by using the Thomson–
Haskell propagator matrix method. We show the advantages of using
cosine functions as trial functions, since the discrete cosine/sine fast
Fourier transforms (FFTs) can be used to speed up computation. We
also give indications concerning the choice of the parameters in the
model and the accuracy limits. In Section 3 we give the explicit
Galerkin weak form operator for the 2-D case. We briefly discuss

how to compute the stiffness matrix and how its use reduces parasitic
reflections generated at the corners. The stiffness concept has been
applied for a quarter-space where we impose a free-surface bound-
ary condition. In this example we consider a rectangular prominence
over a half-space subjected to an incident plane wave. We discuss the
advantages and disadvantages of using the stiffness formulation. In
Section 4 we give comparisons between analytical solutions and re-
sults obtained using the DSM for two simple 2-D problems. The first
problem is a homogeneous medium with an impulsive line source,
the analytical solution is given by the Green’s function. The second
problem is an elastic medium with a cylindrical elastic inclusion,
under incidence of a plane wave. Finally, in a last example we study
the scattering effects produced by interaction of the travelling waves
encountering four elastic cylinders.

2 T H E D I R E C T S O L U T I O N M E T H O D
F O R T H E 1 - D C A S E

The considerable variability of material properties in the near-
surface part of the Earth means that a horizontally stratified model
necessarily has a local meaning. In fact, a reservoir is made up of
layered sedimentary rock which took shape after a long period of
sedimentation and millions of years of diagenesis. Thus, a simple
but reasonably realistic stack of homogeneous isotropic layers over-
laying a homogeneous half-space represents the inhomogeneous
medium. In this section we first consider a 1-D layered medium
(Fig. 1) and show how the DSM can be used to find displacements
in the domain of interest under an incident plane wave. Assuming
harmonic motion, the unknown displacement v is as follows:

v(z) = v(0)(z) + V (z), (1)

where v(0) is a known driving field given by

v(0) = v0(ω)e+ikz z, (2)

where the vertical wavenumber is given by kz = ω

β(H ) cos γ and
v0(ω) is the reference field, with β(z) being the velocity of shear
waves at z (in this case we consider β(H) the shear wave velocity in
the half-space) and γ the incident angle. The time–horizontal space
dependence is given by the factor eiωt−ikx x (where kx = ω

β(H ) sin γ

is the constant horizontal wavenumber), which is omitted hereafter.
The function V (z) is a function of depth represented as a linear
combination of trial functions,

V (z) =
2N−1∑
n=0

cnφ
n(z), (3)

where 2N is the number of trial functions along the z direction.
The expansion coefficients cn are the unknowns and φn are the set
of trial functions. Observe that we consider the displacement v in
eq. (1) as a series of trial functions plus a driving field eq. (2), which
represents a plane wave. Apart from this slight difference we follow
the derivations given in Geller & Ohminato (1994) and Geller &
Takeuchi (1995). If an antiplane stress field is applied on a direction
parallel to the y-axis, the 1-D strong form of the method of weight
residuals (MWR) for the elastic equation of motion, in Cartesian
coordinates, in the spectral domain (ω, kz, z) is given by∫ H

0
ξm

{
ρω2(v(0) + V ) + d

dz

[
µ

d(v(0) + V )

dz

]}
dz = 0, (4)

where v is the particle displacement in the y-direction given in
eq. (1), ρ is the density, µ is a Lamé constant corresponding to
the shear modulus (these parameters are depth-dependent), ω is the

C© 2003 RAS, GJI, 156, 222–236

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/156/2/222/597084 by guest on 21 Septem

ber 2022



224 U. Iturrarán-Viveros, F. J. Sánchez-Sesma and F. Janod

Figure 1. Layered medium subjected to an incident plane wave with an angle γ . The model is infinite along the x-axis. Elastic parameters are the density ρ i,
the shear modulus µi and the S-wave velocity, denoted by β i. These three parameters are functions of depth only. The parameters for the half-space are denoted
by ρ, µ and β. The boundary conditions are at z = 0, a free-surface boundary condition and at z = H , an absorbing boundary condition.

angular frequency and ξm are the weight functions. On the other
hand, when we consider the weak form of the equation of motion
we take ψn instead of φn in eq. (3) as follows:

ψn(z) =




cos
(nπ z

H

)
, 0 ≤ n ≤ N − 1,

sin

[
(n − N + 1)π z

H

]
, N ≤ n ≤ 2N − 1,

(5)

where H is the size of the model along z. Then the weak form is
given by

ω2

∫ H

0
ψmρV dz −

∫ H

0

dψm

dz
µ

dV

dz
dz − (ψmikzµV )z=H

= −ω2

∫ H

0
ψmρv(0) dz +

∫ H

0

dψm

dz
µ

dv(0)

dz
dz

−
(

ψmµ
dv(0)

dz

)
z=H

(m = 0, . . . , M − 1).

(6)

Note that in the weak form we are using trial and weight functions
as the same set of trigonometric functions. The requirement for the
existence of the integrals in eq. (6) is that both the solution v and
the weight functions ψ must be continuous, but no continuity re-
quirements are placed on the derivatives of these functions. The
equivalence between the strong and weak solutions of partial dif-
ferential equations is a well-known result (see Strang & Fix 1973,
pp. 10–13). Following Geller & Ohminato (1994) let us integrate
eq. (6) by parts to obtain eq. (4). Eq. (4) shows that natural boundary
conditions for the weak form operator are:

µ
d(v(0) + V )

dz
= 0, z = 0 free-surface BC (7)

µ
dV

dz
= −ikzµV, z = H absorbing BC. (8)

Eq. (6) can be written in matrix form as follows:

(ω2T − H + R)c = −(ω2T0 − H0 + R0), (9)

where T is the kinetic energy matrix, H is the potential energy
matrix and R the matrix operator that includes the natural boundary
conditions. The superscript ‘0’ represents the matrices where the
incident or reference field v(0) (or its derivative) is involved. The
explicit matrix and vector elements for the SH case are given by

Tmn =
∫ H

0
ψmρψn dz, T 0

m =
∫ H

0
ψmρv(0) dz (10)

Hmn = H (1)
mn + H (2)

mn , H 0
m = H 0(1)

m + H 0(2)
m , (11)

where

H (1)
mn =

∫ H

0
ψmµψn dz, H 0(1)

m =
∫ H

0
ψmµv(0) dz (12)

H (2)
mn =

∫ H

0

dψm

dz
µ

dψn

dz
dz, H 0(2)

m =
∫ H

0

dψm

dz
µ

dv(0)

dz
dz (13)

Rmn = −ikzψ
m(H )µ(H )ψn(H ) (14)

R0
m = ikzψ

m(H )µ(H )v(0)(H ). (15)

The next step is to compute the integrals and to solve a linear
system of equations to obtain the unknown coefficients in eq. (3).
We will use the DCT and the DST to compute integrals in eqs (10),
(12) and (13). In order to simplify computations we note that for
the particular case of having the free surface at z = 0 the set of trial
functions (5) can be replaced by

ψn(z) = cos
(nπ z

H

)
and V (z) =

N−1∑
n=0

cnψ
n(z), (16)

where N is the number of trial functions along the z direction. This
set of trial functions is complete in the interval (0, H), because the
cosines form an orthogonal basis and have null derivatives, both at
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z = 0 and z = H and therefore the boundary conditions (7) and (8)
do not hold generally. However, according to Strang & Fix (1973),
pp. 11–13, the space of admissible functions includes trial functions
such as eq. (16), which in the limit may give non-null derivatives at
the edges of the domain. In fact, the weak form of the equation of
motion (6) does not imply any requirement on the derivatives of the
trial functions at the boundary. Note that the originally proposed set
eq. (5) is composed of N orthogonal cosines and N orthogonal sines
and the boundary conditions could be explicitly enforced.

The next step is to compute the integrals and solve the linear sys-
tem of equations given by eq. (9) to obtain the unknown coefficients
cn in eq. (16).

2.1 Using the DCT and the DST to speed up calculations

Since the trial functions used in this scheme are cosine basis func-
tions we are able to apply the discrete cosine transform (DCT) and
the discrete sine transform (DST) to compute integrals (10), (12) and
(13) in a faster way. Let N I be the number of integration points along
x or z. Using the discrete Fourier transform (DFT), the number of
operations to compute the integrals is of the order of O(N I log N I),
whereas with the other strategy it is of the order of O(N2

I). Here
we use the DCT-2, which uses cos[( j + 1

2 )k π

N ] (see Strang 1999).
This corresponds to a mid-point rule cosine transform (second-order
approximation rule). While it seems obvious that the power of the
DFT ought to be applicable to computing numerical integration that
involve sines and cosines (e.g.

∫ b
a cos(ωt)h(t)dt), doing so turns out

to be a surprisingly subtle matter. The problem lies in the oscillatory
nature of the integrand. The consequence is that the result becomes
systematically inaccurate as ω increases; see, e.g., Press et al. (1984)
and Briggs & Henson (1995). However, in our case since we use a
low order for the cosine basis functions (N ≤ N I ≤ 128) we do not
need to worry about those inaccuracies. This is supported by the
numerical comparisons shown in Section 4.

2.2 Choice of parameters

The solution is constructed with the trial functions ψn(z) = cos(π
nz/H ), where n = 0, 1, . . . , N − 1. The wavelength associated
with a function ψn is thus λn = 2H/n. To compute the solution for
frequencies as high as f max in a medium with velocities as low as
βmin, the number N of trial functions must be such that

2H

N
≤ λmin ≡ βmin

fmax
, (17)

which implies that

λmin ≥ 2�z, (18)

where H is the size of the model in one direction and N is the number
of trial functions in this same direction, i.e. H/N I = � z along z.

Moreover, the number N I of integration points, must be at least
N I ≥ N in agreement with Shannon’s principle (Shannon 1948). As
we introduce discontinuities in the medium, the integration must be
more accurate. Therefore, we must choose a larger value for N I.

Let N and M be the number of trial functions along the z and x
directions, respectively. Let p = NM be the product of the number
of trial functions along both directions, then the size of matrix (9)
is p × p. Thus in 2-D the size of the matrix to invert is p2, and the
cost of inversion of a full matrix is a p3 process. Thus an estimate
of the resolution times of our method grows (in 2-D) as the sixth
power of p. This is indeed a serious limitation, and explains why
we cannot practically use more than a few dozen trial functions. Eq.

(18) gives the maximum frequencies we can compute: the minimum
wavelength cannot be smaller than a few hundredth times the size
of the model.

2.3 Comparisons between the Haskell method
and the DSM for layered media

We show a 1-D numerical example to illustrate the feasibility and
the accuracy of the DSM applied to a layered medium with cosines
as basis functions. The example of an incident elastic plane wave
on a layered system is well known; e.g. Ewing et al. (1957), Aki
& Richards (1980). In particular, the propagator matrix formal-
ism proposed by Thomson (1950) and later corrected by Haskell
(1953) provides a systematic solution for the governing equations
of elastodynamics. The use of the DFT displays no inaccuracies
and computation is faster than when using traditional integration
schemes.

In Fig. 2 synthetic seismograms from frequency domain results
using the fast Fourier transform algorithm are displayed for 61
equally spaced receivers along z, the first receiver being that at the
free surface. Fig. 2(a) corresponds to results obtained using the DSM
and Fig. 2(b) corresponds to the Haskell results for the same scale. A
layered model contains three layers with the following properties: β 1

= 700 m s−1, ρ 1 = 1750 kg m−3, β 2 = 800 m s−1, ρ 2 = 2000 kg m−3,
β 3 = 1200 m s−1, ρ 3 = 3000 kg m−3 and β = 2000 m s−1, ρ =
5000 kg m−3. The layers are 300, 300 and 400 m thick, respectively.
The number of trial functions used in this experiment is N = 64.
Fig. 2(c) displays both solutions plotted together for station no 1.
Fig. 2(d) shows the excellent agreement between these two methods.
Here the percentage error at station no 1 located at (0, 0) is less than
1.2 per cent. The error is computed as

error(t) = (|a(t) − n(t)|/|a(t)|) × 100, (19)

where a(t) is the analytic displacement at time t and similarly n(t) is
the numerical displacement at time t computed with the DSM. No
reflection is seen in the lower boundary, as the absorbing boundary
conditions used are exact (we have perfect plane waves with known
wavenumbers in this case).

3 T H E D I R E C T S O L U T I O N M E T H O D
F O R T H E 2 - D C A S E

We now consider a 2-D lattice to represent the inhomogeneous
medium. The elastic parameters will now be functions dependent on
x and z. As in the 1-D case the strong form for the elastic equation
of motion in the spectral domain (ω, x, z) could be defined. We will
only give details for the weak form operator. The incident field is
given by eq. (2) and v is as in eq. (1) but now with a dependence
on the spatial variables x and z. We write the driving field for this
case as v(0)(x ,z) = e−ikx x+ikz z . The displacement function V (x, z) is
of the form

V (x, z) =
N−1∑
n=0

M−1∑
m=0

cnmψn(z)ϕm(x), (20)

where

ψn(z) = cos
(nπ z

H

)
and ϕm(x) = cos

(mπx

L

)
, (21)

with H and L being the dimensions of the model along z and x,
respectively. The number of trial functions along z and x is N and M ,
respectively, and the expansion coefficients cnm are the unknowns.
The displacement v(x, z) is similar to eq. (1), but replacing function
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Figure 2. Synthetic seismograms showing the results of displacements obtained using (a) the DSM and (b) the Haskell method for three layers with the
following properties: β 1 = 700 m s−1, ρ1 = 1750 kg m−3, β 2 = 800 m s−1, ρ2 = 2000 kg m−3, β 3 = 1200 m s−1, ρ3 = 3000 kg m−3 and β = 2000 m s−1,
ρ = 5000 kg m−3. The layers have thickness of 300, 300 and 400 m, respectively. A set of 61 equally spaced receivers are located along the z-axis, the first
receiver being that at the free surface. The number of trial functions used in this experiment is N = 64. We can see the reflections in various layers, and the
amplification at the free surface. No reflection is seen in the lower boundary, as the absorbing boundary conditions used are exact (we have perfect plane waves
with known wavenumbers in this case). (c) Both solutions are plotted together for station no 1. (d) Of particular significance is the excellent agreement between
these two methods. Here the percentage error at station no 1 located at (0, 0) is less than 1.2 per cent.
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V (x, z) by eq. (20) and using the corresponding driving field v(0)(x,
z). For simplicity in the computation, as in the 1-D case, we are
using only cosines as basis functions. Let us define the following
auxiliary functions:

R(n, m) =
∫ L

0

[
ψn(H )µv,z(x, H ) − ψn(0)µv,z(x, 0)

]
ϕm(x) dx

(22)

and

P(m, n) =
∫ H

0

[
ϕm(L)µv,x (L , z) − ϕm(0)µv,x (0, z)

]
ψn(z) dz,

(23)

where the subscripts ‘, x’ and ‘, z’ denote differentiation with respect
to x and z, respectively. Using eqs (22) and (23), the weak form
operator (analogous to eq. 6) for the 2-D case is given by∫ L

0

∫ H

0
[ψnϕmρω2v − ψn

,zϕ
mµv,z − ψnϕm

,xµv,x ] dz dx (24)

+R(n, m) + P(m, n) = 0 (n = 0, . . . , N − 1;

m = 0, . . . , M − 1). (25)

As in the 1-D case integrating by parts (24), the strong form can
be obtained. The boundary conditions included in the weak form
operator are:

µ

(
∂V

∂x

)n

= iµV n(0, z) x = 0, left boundary, (26)

µ

(
∂V

∂x

)n

= −iµV n(L , z) x = L , right boundary, (27)

µ

(
∂V

∂z

)m

= iµV m(x, 0) z = 0, upper boundary, (28)

µ

(
∂V

∂z

)m

= −iµV m(x, H ) z = H, lower boundary, (29)

where V n and V m are given by

V n(x, z) =
M−1∑
m=0

cnmψn(z)ϕm(x)kn
x (30)

and

V m(x, z) =
N−1∑
n=0

cnmψn(z)ϕm(x)km
z (31)

with kn
x and km

z defined as

kn
x =

√
ω2

β2
− n2π 2

H 2
(32)

and

km
z =

√
ω2

β2
− m2π 2

L2
(33)

are the local wavenumbers. With an appropriate condition on the sign
of its imaginary part, so it corresponds to a wave that is not growing
in amplitude outside the domain of interest. Note that these condi-
tions are local, i.e. they are valid at the boundary for each term of the
cosines expansion, precisely as a consequence of using these func-
tions. The idea for these boundary conditions is to express, through

the normal derivative of the displacement (i.e. traction) at a given
boundary point, the outgoing radiation condition in terms of a linear
combination of boundary values. This concept links both Dirichlet
and Neumann boundary conditions. Thus the mathematical device
to describe this is called the Dirichlet-to-Neumann operator (DtN),
which is a term coined in the mathematical community (Givoli &
Keller 1990; Givoli 1991).

These absorbing boundary conditions at the outer boundary (z =
0, z = H , x = 0 and x = L) are implicitly included in the weak form
operator (24) and will then be naturally satisfied. These conditions
are verified exactly for a plane wave and a plane boundary. It turns
out that for the cosine basis that we are using, the same is true and
this is of more general validity, as shown in the Appendix.

In order to write the matrix form expressions for eq. (24) we
define the following auxiliary functions:

R̂(n, s, m, r ) =∫ L

0

[
ψn(H )µψ s

,z(H ) − ψn(0)µψ s
,z(0)

]
ϕm(x)ϕr (x) dx, (34)

and

R̂0(n, m) =∫ L

0

[
ψn(H )µv(0)

,z (x, H ) − ψn(0)µv(0)
,z (x, 0)

]
ϕm(x) dx, (35)

for integration along x. Similarly for the variable z we have

P̂(m, r, n, s) =∫ H

0

[
ϕm(L)µϕr

,x (L) − ϕm(0)µϕr
,x (0)

]
ψn(z)ψ s(z) dz, (36)

and

P̂0(m, n) =∫ H

0

[
ϕm(L)µv(0)

,x (L , z) − ϕm(0)µv(0)
,x (0, z)

]
ψn(z) dz. (37)

Hence, in matrix form eq. (24) can be written as in eq. (9) where
the explicit matrices and vector for the 2-D case are given by

Tmn,rs =
∫ H

0

∫ L

0
ψnϕmρψ sϕr dx dz,

T 0
mn =

∫ H

0

∫ L

0
ψnϕmρv(0) dx dz, (38)

Hmn,rs =
∫ H

0

∫ L

0

[
ψn

,zϕ
mµψ s

,zϕ
r + ψnϕm

,xµψ sϕr
,x

]
dx dz, (39)

H 0
mn =

∫ H

0

∫ L

0

[
ψn

,zϕ
mµv(0)

,z + ψnϕm
,xµv(0)

,x

]
dx dz, (40)

Rmn,rs = R̂(n, s, m, r ) + P̂(m, r, n, s), (41)

R0
mn = R̂0(n, m) + P̂0(m, n). (42)

Let p = NM be the product of the number of both trial functions
(along z and x). Note that in eqs (38), (39) and (41) we have two
double indices, which correspond to p × p matrices.

The efficient computation of the coefficients of the T and H
matrices requires the use of mixed cosine/sine transforms in the x
and z directions.
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228 U. Iturrarán-Viveros, F. J. Sánchez-Sesma and F. Janod

Figure 3. The stiffness approach is used to impose free-surface and absorbing boundary conditions. The vector n normal to the boundary S and the region
under scrutiny depend on the case under study. (a) Stiffness for a three-quarter-space corresponds to the absorbing boundary condition for one corner of the
domain. (b) Stiffness for a quarter-space corresponds to the free surface. In this case r1 =

√
(z − ξ )2 + x2 and r2 =

√
(z + ξ )2 + x2 and the Green’s function

is given by G(x, x0, ω) = 1
4iµ {H (2)

0 (kr1) + H (2)
0 (kr2)}.

3.1 Computation of the stiffness

Inspired by Kausel & Roesset (1981) and their interpretation of
half-space stiffness as being equivalent to a perfect absorber, we
develop a method to correct spurious reflections created at the cor-
ners of the computational domain. The idea is to relate in a discrete
sense the tractions and displacements at the surface of a domain
(which is exterior to the numerical grid) with the stiffness matrix.
When we calculate the tractions given by the integral in eq. (A9),
we approximate this value since the computation is with discrete
values. Therefore, there is an error produced by the discretization.
To reduce this error we compute the stiffness matrix of the exte-
rior region using the indirect boundary element method (IBEM).
For further details on the IBEM see Sánchez-Sesma & Campillo
(1991).

In order to compute the stiffness using the IBEM consider a corner
of the discretized model, with homogeneous elastic properties. The
associated integral equations are given by

v(x) =
∫

S
G(x, ξ )φ(ξ ) d Sξ (43)

and

t(x) = 1

2
φ(x) +

∫
S

T (x, ξ )φ(ξ ) d Sξ , (44)

where v is the displacement on the boundary S, G (x, ξ ) is Green’s
function given by

G(x, x0) = 1

4iµ
H (2)

0

(
ωr

β

)
(45)

with r = | x − x0|, x the observer and x0 denotes the source point.
H (2)

0 (·) is the Hankel function of the second kind and order 0. The
traction at the boundary is given by t, T(x, ξ ) is the traction Green’s
function, which is normally oriented outward (relative to the exterior
domain, see Fig. 3a) and φ is the force density. It follows that

t =
(

1

2
I + T

)
G−1v. (46)

We then obtain, the stiffness matrix K:

K =
(

1

2
I + T

)
G−1. (47)

The same approach can be applied to impose the free-surface
boundary conditions that correspond to a half-space. We follow the
same analysis but instead of keeping in view a three-quarter-space
we consider only a quarter-space (see Fig. 3b). We start from the
same equations, but divide the interfaces into three domains (as
indicated in Fig. 3b). As in eq. (43) we write for x on E, the exterior
domain:

v(x) =
∫

S
G(x, ξ )φ(ξ ) d Sξ (48)

now with S running along the positive values of z at x = 0 and the
Green’s function given by

G(x, x0, ω) = 1

4iµ

{
H (2)

0 (kr1) + H (2)
0 (kr2)

}
, (49)

where r1 = √
(z − ξ )2 + x2 and r2 = √

(z + ξ )2 + x2. In this way
the surface x > 0, z = 0 is traction-free. We construct Green’s
function using the images method. Along the boundary S (x = 0,
z > 0) the tractions are given by eq. (44), but

T = µ
∂G

∂n

∣∣∣∣
x=0

= −µ
∂G

∂z

∣∣∣∣
x=0

= 0 (50)

and then from eqs (48) and (44) we can write

t = 1

2
G−1v (51)

and the stiffness matrix is simply

K = 1

2
G−1. (52)

We use the stiffness matrix approach for a quarter-space to im-
pose free-surface boundary conditions. The model consists of a
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Scattering of elastic waves using the DSM 229

Figure 4. We use the stiffness matrix approach for a quarter-space to impose free-surface boundary conditions. The model consists of a rectangular prominence
over a half-space of 0.2 m in height subjected to an incident plane wave with an incident angle γ = 30◦. (a) Snapshots for a square grid of 128 × 128 equally
spaced receivers. The time variation of the incoming wavefield is a Ricker wavelet with a characteristic period t p = 1/β s. We have used 32 × 32 trial cosine
functions, 128 × 128 integration points and L = H = 1 m. (b) Synthetic seismograms for 32 equally spaced receivers located along the z-axis. Note that the
amplitude of the SH waveform at the free surface is exactly twice that of incident and reflected waves. This illustrates the accuracy of the free-surface boundary
condition. (c) Synthetic seismograms for 32 equally spaced receivers located along the x-axis.

rectangular prominence over a half-space of 0.2 m in height sub-
jected to an incident plane wave with an incident angle γ = 30◦.
In Fig. 4(a) a set of snapshots is computed from the frequency-
domain results using the FFT. We have a mesh of 128 × 128
equally spaced receivers. In Fig. 4(b) we have synthetic seismo-
grams for 32 equally spaced receivers along the line z = 0.5. Sim-
ilarly in Fig. 4(c) we have synthetic seismograms for receivers
along the line x = 0.5. We can see reflections produced at the
free surface and reflections and diffraction at the corners of the
prominence.

3.1.1 Advantages and disadvantages of the use
of the stiffness matrix

We reduced spurious reflections produced at the corners using the
stiffness matrix for a three-quarter-space. Computing the stiffness
matrix for a quarter-space enables us to impose free-surface bound-
ary conditions. One approach to test the efficiency of the stiffness
matrix is that of Fig. 5. A line source is applied at the centre of (i.e.
(0, 0)) a homogeneous medium with β = 1 m s−1 and ρ = 1 kg m−3.
The results obtained with the DSM plus the stiffness matrix and only
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Figure 5. The use of the stiffness approach enhances the absorbing boundaries. A line source is applied at the centre of (i.e. (0, 0)) a homogeneous medium
with β = 1 m s−1 and ρ = 1 kg m−3. The results obtained with the DSM plus the stiffness matrix and with the DSM are compared with those generated with

the analytical solution G(x, x0, ω) = (1/4iµ) H (2)
0 (ω r/β), where r = | x − x0|. A set of 11 equally spaced receivers is located along the line z = x . The

time variation of the incoming wavefield is a Ricker wavelet with characteristic period t p = 1/2βs, with L = H = 1 m. When using the absorbing boundary
conditions (26)–(29) the oscillations are very strong. When appropriately adding the stiffness matrix the oscillations are reduced especially for stations located
close to the corners.

Figure 6. Top, the analytical solution given by Green’s function G(x, x0, ω) = (1/4iµ) H (2)
0 (ωr/β), where r = | x − x0|. Bottom, snapshots for the

corresponding solution obtained using the DSM. A line source is being applied at the point (0.25 m, 0.25 m) within a homogeneous medium (with β = 1 m s−1

and ρ = 1 kg m−3), the origin is at the lower left-hand corner. A mesh of 101 × 101 equally spaced receivers is located within a 1 m square. Even though there
are some spurious reflections, the results show a fair agreement with the analytic solution.
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Scattering of elastic waves using the DSM 231

Figure 7. (a) Results obtained using the DSM for one cylinder within a square of size H = L = 4 m. The elastic parameters for the surrounding medium are
β = 2 m s−1, ρ = 2 kg m−3, and for the cylinder β R = 1.5 m s−1, ρ R = ρ radius r = 1.5 m. We used 52 × 52 cosine trial functions and 128 × 128 integration
points. Snapshots for a mesh of 101 × 101 equally spaced receivers. The incident time signal is a Ricker wavelet with characteristic period t p = 0.75 s. We
note a good agreement between the analytical and the numerical solution. (b) Comparison between the analytical solution and the DSM solution for a line of
receivers located along y = 0 and x ∈ [− 2, 2]. The stations close to x = 0 have a delay due to the fact that the velocity inside the cylinder is less than in the
surrounding medium.

with the DSM are compared with those generated with the analyti-
cal solution given by eq. (45). A set of 11 equally spaced receivers
is located along the line z = x . The time variation of the incoming
wavefield is a Ricker wavelet with the characteristic period t p =
1/2β s, where L = H = 1 m. In another approach one uses the
absorbing boundary conditions (26)–(29). The oscillations are very
strong, whereas, when appropriately adding the stiffness matrix, the
oscillations are drastically reduced. The correction is noticeable in
particular for receivers located close to the corners where there are
considerable differences in oscillations. When computing the inte-
grals in eqs (41) and (42), i.e. when we apply the absorbing boundary
conditions, we are assuming that the values of the tractions (defined
as t0

y) along the boundary are well approximated. However, we can
see some undesirable oscillations in Fig. 5. In order to compute in-

tegrals in eqs (41) and (42) it is necessary to integrate by parts. In
this process we note that a product of two pairs of trial functions
(say ϕmψn and ϕrψ s) contributes to these integrals. By examin-
ing the value of this product at the corners we conclude that the
factor

c = 1 + (−1)s+n + (−1)m+r + (−1)m+n+r+s (53)

is the input of each corner to the tractions (t0
y) computed in eqs (26)–

(29). When replacing the expressions in eqs (41) and (42), that
involve this particular product with ty − ct0

y (where ty are the tractions
computed with the IBEM) we obtain an appropriate correction for
each corner. This reduces the spurious reflections.

Nevertheless, it is important to point out that the stiffness matrix
is frequency dependent. Since we only need to compute a few values
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232 U. Iturrarán-Viveros, F. J. Sánchez-Sesma and F. Janod

Figure 8. (a) The solution obtained with the DSM for the elastic cylinder in Fig. 7 is plotted with the analytical solution for station no 1. In order to measure
the error we have plotted (b) the percentage error at station no 1 located at (−2, 0) where we can see that the biggest difference is less than 8 per cent. Station
no 1 was chosen because the biggest differences are shown at receivers located close to x = ± 2.

near the corners we believe it is possible to find a strategy to compute
it only once and use the result as an approximation for all the needed
frequencies. However, this is a subject of further work.

4 N U M E R I C A L R E S U LT S

We test the method with two simple problems for which analytical
solutions are known. The first problem consists of a homogeneous
medium with an impulsive line source. The analytical solution for
this problem is given by the Green’s function (45). Fig. 6 at the top,
displays the analytical solution given by eq. (45) for a line source
applied at (0.25 m, 0.25 m). The results obtained using the DSM are
shown at the bottom in Fig. 6. We compute snapshots for a mesh with
101 × 101 equally spaced receivers located within a 1 m long square.
The results are encouraging since both solutions are similar and the
absorbing boundaries are acting as expected. The second problem
concerns a cylindrical inclusion within a homogeneous medium the
size of which is H = L = 4 m. This is a classic solution based on a
Bessel series expansion (the reader is referred to Mow & Pao 1971).
In Fig. 7(a) we have results obtained using the DSM for one cylinder
within a square of size H = L = 4 m. The elastic parameters for
the surrounding medium are β = 2 m s−1, ρ = 2 kg m−3, and for
the cylinder β R = 1.5 m s−1, ρ R = ρ, ratio r = 1.5 m. We compute
snapshots for a mesh with 101 × 101 equally spaced receivers, using
52 × 52 cosine trial functions and 128 × 128 integration points. The
incident time signal is a Ricker wavelet with characteristic period
t p = 0.75 s.

In Fig. 7(b) a comparison between the analytical solution and the
DSM solution for a line of receivers located along y = 0 and x ∈
[− 2, 2] is shown. The stations close to x = 0 have a delay due
to the fact that the velocity inside the cylinder is less than in the

surrounding medium. We see small differences, although these are
greater at receivers located close to x = ± 2. In order to measure
the error we have plotted the percentage error at station no 1 (the
corresponding synthetic seismogram is in Fig. 8a) located at (−2,
0) we can see in Fig. 8(b) that the biggest difference is less than
8 per cent. The percentage error at each time t in the synthetics
was computed as in eq. (19). In this example the diffraction is no-
ticeable when the wave reaches the cylinder and the wave front is
curved due to the presence of the inclusion with smaller velocity.
Note that the agreement between the analytical and numerical so-
lutions is good and the error in the worst cases is less than 8 per
cent. Therefore, the method reproduces the physical phenomena
accurately.

The next experiment is a set of vugs or inclusions with the same
elastic properties different from the surrounding medium and dif-
ferent sizes. In Fig. 9 we have four elastic cylinders within a square
medium of size H = L = 4 m. The elastic parameters are β =
1 m s−1, ρ = 1 kg m−3 (the surrounding medium), for the cylinders
β 1 = β 2 = β 3 = β 4 = 0.8 m s−1, ρ 1 = ρ 2 = ρ 3 = ρ 4 = ρ, ratios
r 1 = 0.4 m, r 2 = 0.52 m, r 3 = 0.8 m and r 4 = 0.72 m. We used 55
× 55 cosine trial functions and 128 × 128 integration points. Note
that the cylinders at the top act as a barrier that attenuates the wave
that reaches the second row of heterogeneities. Part of the energy
trapped inside each cylinder comes out and produces diffraction,
the rest produces diffraction that bounces backwards and forwards
until the energy is lost. As time increases the wave front recovers
and the scattering effect caused by the inclusions on the plane wave
diminishes.

Note that if we have an infinite and complete basis then we ob-
tain (in this limit) the correct solution, even if all of the trial func-
tions are such that the natural boundary condition of continuity of
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Scattering of elastic waves using the DSM 233

Figure 9. Snapshots for a mesh of 101 × 101 equally spaced receivers. Four cylinders within a square medium of size H = L = 4 m. The elastic parameters
are β= m s−1, ρ = 1 kg m−3 (the surrounding medium), for the cylinders β 1 = β 2 = β 3 = β 4 = 0.8 m s−1, ρ1 = ρ2 = ρ3 = ρ4 = ρ, ratios r 1 = 0.4 m, r 2

= 0.52 m, r 3 = 0.8 m and r 4 = 0.72 m. We used 55 × 55 cosine trial functions and 128 × 128 integration points. The wave front attenuates while traversing
the cylinders as do the interactions between the scattered waves.

traction cannot be rigorously satisfied at the lithological boundaries.
On the other hand, we obviously always have a finite basis in any
real computation. The numerical solutions of the present approach
will therefore always be subject to error due to the failure to sat-
isfy continuity of traction at the boundaries of the cylinders and

the surrounding media. This is a problem of all discrete numerical
techniques. However, for a desired resolution one can increase the
number of trial functions and this will obviously increase the com-
putational cost. For the example given in Fig. 9 medium parameters
are not realistic, this is again a problem of costs. Provided a large
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number of trial functions we could still have good agreement for
realistic cases.

Numerical examples given in Figs 4, 7 and 9 were the most ex-
pensive computations, generated on a Pentium 4, 1.7 MHZ taking
40 h of CPU time.

5 C O N C L U S I O N S

We have shown the feasibility of simulate wave propagation in het-
erogeneous media using the DSM. Applying the stiffness matrix
for a three-quarter-space we are able to reduce spurious reflections
generated at the corners. This strategy improves the solution com-
pared with that obtained using regular absorbing boundaries given
by eqs (26)–(29). When computing the stiffness matrix for a quarter-
space we have managed to impose free-surface boundary conditions.
It should be pointed out that, since the stiffness matrix is frequency
dependent, computational costs could be high. We also note that
either by increasing the number of trial functions or by using the
stiffness matrix we obtain an improved solution. However, both ap-
proaches are expensive. Reducing these costs is a subject of further
scrutiny.

A current limitation of this method is the fact that the minimum
wavelength used has to be at least twice the size of the model divided
by the number of trial functions. This limits the resolution because
the size and number of heterogeneities together with its elastic prop-
erties are constrained by the number of trial functions used. If more
trial functions are needed the resulting systems of linear equations
become very large. Parallel computing for methods in the frequency
domain is much simpler than time domain computation based on
domain decomposition. This is an advantage of the DSM and it will
help to reduce this problem. The use of cosine basis functions allows
us to use the fast Fourier transform to compute more efficiently the
integrals needed to fill the matrix corresponding to the linear sys-
tem to be solved. This helps alleviate the computational burden.
However, we should point out that the number of trial functions p is
increasing strongly with the number of heterogeneities. The com-
putation time is proportional to p3. Therefore, for a really complex
medium containing small-scale heterogeneities (for example, a ran-
dom medium), the computational time would be huge (even using
the DCT/DST). Thus the method would not be appropriate for mod-
elling 2-D multiscale complex media, in comparison with standard
finite-difference techniques.

Numerical results from the application of the stiffness concept
are encouraging and, even though there are still some spurious
reflections generated at the corners, the improvement is signifi-
cant. The physical phenomena are well reproduced in all the tested
cases.
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A P P E N D I X : A B S O R B I N G B O U N DA RY
C O N D I T I O N S A N D T H E
W E B E R – S C H A F H E I T L I N I N T E G R A L

For a given wavenumber kx ∈] − ∞, + ∞[ the general solution for
the wave equation in a homogeneous isotropic medium for the SH
case is of the form

v(x, z, t) = [
Aeikz z + Be−ikz z

]
e−ikx x e+iωt , (A1)

where A and B are constants and kz and kx are the vertical and
horizontal wavenumbers related to the characteristic equation k2

x

+ k2
z = ω2/β2. When z is positive downgoing, the first term in

eq. (A1) corresponds to upgoing and the second term corresponds
to downgoing waves. In order to ensure absorption at the lower
boundaries, Geller & Ohminato (1994) proposed to cancel upgoing
waves by imposing the following condition:

dv

dz
= −ikzv. (A2)

For the general case of a laterally heterogeneous medium, the wave-
field in terms of plane waves is given by

v(x, zN ) =
∑

l

Ale
−ikl

x x , (A3)

where kl
x = lπ/xN and Al is the amplitude of each plane wave

component. The proposed absorbing boundary condition is

∂v

∂z
=

∑
l

[
−ikl

z Ale
−ikl

x x
]
. (A4)

In Geller & Ohminato (1994) the horizontal dependence of the
trial functions is given in terms of plane waves. The result can
be extended to the case of trial functions which do not have
their horizontal dependency given by plane waves. Since the
purpose of this paper is to use cosine basis functions as trial
functions we need to prove that the result holds for the more
general case. Consider the plane wave given in eq. (2), where
kx is the horizontal wavenumber and kz = √

ω2/β2 − k2
x is the

vertical wavenumber. The partial derivative of eq. (2) with re-
spect to z is given by eq. (A2). Note that in the frequency–
wavenumber (ω, k) spectral domain the absorbing boundary con-
dition is given by simply multiplying eq. (2) by −ikz. Now con-
sider the upper half-space with normal nT = (nx, nz) = (0, 1),
then the traction on the boundary is

ty(x ; ω, kx ) = µ
∂v

∂z
= −iµkzv, (A5)

where µ = ρβ2 is the shear elastic modulus, ρ is the density of the
medium, and Im(kz) ≥ 0. Eq. (A5) can be rewritten as

ty = Kv. (A6)

This shows the relationship between the surface traction and dis-
placement. In many engineering applications the operator K in
eq. (A6) is called the stiffness matrix. Following Kausel (1992),
we interpret this condition as the mechanical equivalent of the ab-
sorbing condition, and define the stiffness as

K (ω; kx ) = −iµkz = K R(ω; kx ) + i KI(ω; kx ). (A7)

Using the Fourier transform it is possible to write the stiffness matrix
in the frequency-space (ω, x) spectral domain as

K (ω; x) = 1

2π

∫ +∞

−∞
K (ω; kx )e+ikx x dkx . (A8)

Let v(ω, x) = e−ikx x , then the traction ty in the spectral domain
(ω, x) is

ty(ω; x) =
∫ +∞

−∞
K (ω; x − ξ )v(ω, ξ ) dξ

=
∫ +∞

−∞
K (ω; ξ )v(ω, x − ξ ) dξ

= e−ikx x

∫ +∞

−∞
K (ω; ξ )eikx ξ. (A9)

Considering the symmetry of K (ω, ξ ) with respect to ξ , the last
integral in eq. (A9) can be written as∫ +∞

−∞
K (ω; ξ ) cos(k0ξ )

=
∫ +∞

−∞
[K R(ω, ξ ) + i KI(ω, ξ )] cos(k0ξ ) = µikz (A10)

in which the discontinuous behaviour of both the real and imaginary
parts of the stiffness integral is clear.

In the frequency-space spectral domain, eq. (A6) is transformed
into a spatial convolution that gives the traction at a given point in
terms of all boundary values. Except for the constant µ, eq. (A9)
also gives the DtN operator.

Following the analysis of Sánchez-Sesma & Vai (1998), the imag-
inary part of the stiffness matrix in the spectral domain (ω, x) is given
by

KI(ω; x) = − 1

2π

∫ ω/2

−ω/2
µ

ω

β

√
1 − k2

x

ω2/β2
e+ikx x dkx

= −1

2
ωρβ

J1(ω|x |/β)

|x | , (A11)

where J 1(·) is the Bessel function of the first kind and order one.
In order to compute the traction (A9) for the spectral domain

(ω, x), consider the imaginary part of eq. (A10)∫ +∞

−∞
KI(ω; ξ ) cos(k0ξ ) dξ

=

µ

√
ω2/β2 − k2

0v0(ω) cos(k0x), |k0| < |ω/β|
0, |k0| ≥ |ω/β|.

(A12)

This result is a special case of the Weber–Schafheitlin integrals
(Abramowitz & Stegun 1970) [11.4.40].

For the real part of the stiffness matrix KR we have

K R(ω; x) = µ

π

∫ ∞

ω/β

√
k2

x − ω2

β2
cos(kx x) dkx . (A13)
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This leads to the identity∫ +∞

−∞
K R(ω; ξ ) cos(k0ξ ) dξ

=
{

0, |k0| ≤ |ω/β|
µ

√
k2

0 − ω2/β2v0(ω) cos(k0x), |k0| > |ω/β|,
(A14)

which is the real counterpart of eq. (A12). The integrals in eqs (A12)
and (A14) may seem straightforward as they reproduce the trac-
tions for harmonic plane waves. However, subtleties have to be

addressed: homogeneous plane waves are accounted for entirely
by the imaginary part of the stiffness, while the real part is re-
lated to inhomogeneous waves. In the frequency-space domain these
waves are a mathematical artefact related to the Cartesian reference
system. However, in some cases, the free-surface and interfaces
induce surface waves with significant participation of inhomoge-
neous waves. This structure also explains why viscous dampers are
used with success in various problems for which it is reasonable
to accept that almost all diffracted waves are homogeneous plane
waves.
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