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Describing the Geometry of 3D Fracture Systems
by Correcting for Linear Sampling Bias1

Olivier Fouché2 and Jean Diebolt3

Analyzing the geometric bias inherent to linear sampling of natural fracture systems is a prerequisite
to any attempt of structural modeling. In this paper, the basic parameters of 1D-sampled fracture sets,
i.e. orientation, density, and size, are interpreted in terms of geometric probabilities. Weighting factors
are derived which allow the 3D restitution of a moderately variable fracture network from a single
borehole. The proposed method is applied to well core data from a granitic rock mass, and the efficiency
of the proposed corrections is illustrated through random disc simulations tested by virtual scanlines
analogous to the real borehole. This approach aims to reduce the prospecting effort in exploration,
and to criticize assumption of structural homogeneity by rigorously comparing fracture populations
collected from nonparallel boreholes. Then a parametric study of fracture size is performed and a
range of mean size leading to fully connected networks is identified.
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INTRODUCTION

Modeling the architecture of geological formations,i .e. their fracture arrange-
ment and hierarchy, has been a foreground task for some 20 years in various
disciplines, especially in hydrogeology (Black, 1994; Renshaw, 1998) and ge-
omechanics (Meyer, Einstein, and Ivanova, 1999). Indeed the fluid flow, rock
strength), and progressive deformation of rock masses are strongly affected by the
connectivity and anisotropy of the fracture network (Berkowitz, 1995; Berkowitz
and Adler, 1998). These two complex geometric features are not measurable in
a real fractured medium; but they are derivable from topological analysis of a
3D artificial network mimicking the real one (Halbwachs and others, 1996). Thus,
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they result from the manner in which basic parameters (fracture orientations, sizes,
and densities) have been inferred from field data and integrated in a chosen model
(Baecher, 1983).

Boring deep holes in order to investigate rock masses below the first decame-
ters is becoming more and more common in engineering practice, especially in
civil and mining projects. Due to the high cost of drilling (among other reasons), it
is often necessary for geologists to explore means of estimating fracture statistics
based on borehole-censored data collected in only one or two directions (Barnes
and others, 1997). The probability of cutting fractures within a small orientation
range by a borehole depends on the following geometric factors: the fracture ori-
entations, their shapes and sizes, and their abundance and positions in the volume
of the explored rock mass, with regard to the borehole orientation, dimensions
(length and diameter), and emplacement. For a given spatial arrangement of frac-
tures, the sampling probability is lower for a set lying at a closer angle with the
borehole axis, and characterized by less extended fractures or/and lower density.
Thus, the image of the fracture network is complexly biased. Moreover, borehole
data supply good orientation data but are very poor in their potential to inform
about the fracture size values and distribution.

The main purpose of the present paper is to provide usable analytical for-
mulas to correct borehole-sampling biases when estimating the basic parame-
ters of a stochastic 3D fracture network in a lithologically homogeneous rock
mass.

PROBLEMATIC AND METHODOLOGY

Knowledge of fracturing as a function of scale is critical to many geological
pursuits, including the estimation of groundwater flow in the low-permeability
rock masses that are candidates for the disposal of nuclear fuel wastes (Fouch´e
and Lacquement, 2001). As part of long-term radioactive waste management, the
feasibility of creating an underground research laboratory in a granito¨ıd pluton
overlain by a 150-m thick sedimentary cover has been studied in France (Lebon
and Mouroux, 1999). Preliminary field studies within a 225 km2 area referred to
as the Charroux–Civray Massif, including geophysical measures and description
of cores from 15 deep boreholes and analogous outcropping rocks, have suggested
that the structure of the intrusion is sufficiently consistent in character to be statisti-
cally treatable (Gros and Genter, 1997). The regional structural setting is favorable
to an assumption of homogeneity. The rock volume under study is 500 m in depth
and 500 m× 500 m in area. At this scale it is considered as lithologically homo-
geneous and it is not intersected by any first- or second-order weakness zone as
defined in Pusch (1998). In the selected site, the only in situ available structural data
were systematically collected from the drill cores of two nonparallel holes: Cha112
(vertical) and Cha212 (plunging 60◦), respectively, 580- and 1000-m long. For the
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first one, accounting for fractures conceivably sized between 1 m and 100 m, the
partition of the fracture population into orientation sets is stable with increasing
depth. Besides, the fracture frequency (i.e. number of fractures intersected per unit
length along the borehole) describes a sinusoidal curve around a stable mean value
(Fouché, 1999), with roughly a 100-m half-period. Therefore, based on fracture
frequency, the fracture network cannot be viewed as strictly homogeneous with
respect to depth at the 500-m scale. The same situation has been observed in the
second borehole but due to geometric biases inherent to 1D sampling, we can-
not directly infer that the mean orientation and 3D density of fracture sets (see
section Density Bias Correction for a precise definition) are the same in the two
boreholes. Actually, at this stage such a comparison is not straightforward. The
existence of regular cycles of fracture frequency in both boreholes only suggests
that the whole rock volume belongs to a global magmatic layering (Fouch´e and
Meilliez, submitted). Since we are mainly concerned with the structural homo-
geneity at the 500-m scale, it is of primary importance to first correct sampling
biases when performing the statistical analysis of the borehole-sampled fracture
population.

Our paper reports a methodology that we have developed to estimate the basic
geometric parameters relevant to the modeling of the in situ 3D fracture network,
with the limited help of a single borehole. The second borehole has only been used
as a reference to check the constructed model and discuss the homogeneity of the
real fracture network. In this paper, we do not intend to report the full study of a
natural site. Rather, our goal is to derive new simple analytical relations between
sample data and the parameters of a fracture network model.

The problem is treated through a conceptual model, where the fracture net-
work is simplified as the superposition of independent sets of random discontinu-
ities (discs) in space. In this conception, each set expresses both the orientation
variability and the irregularity of fracture surfaces. Our approach shortcuts the
Monte Carlo procedures that are generally used to tune parameters until the model
approximately matches the data. Here, we present in a first step how the orientation
of average plane of each biased set can be adequately corrected from the orienta-
tion bias. The second step consists in evaluating the 3D density of each fracture
set through an extrapolation based on the total fracture area measured within the
volume of cores. Finally, a stereological estimate of the density bias allows us to
propose a size hierarchy between the sets.

In order to check that our method of analysis actually yields accurate estimates
of the population parameters, we have run virtual scanlines through stochastic
simulations to provide a statistical sample of the possible outcomes. The inde-
termination of fracture size (disc diameter in the model) appears as a handicap
and requires a parametric study through the model in order to examine the in-
fluence of the mean radius on the connectivity of the network (Bour and Davy,
1998).
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ORIENTATION BIAS CORRECTION

The possibility of correcting geometric biases involves the existence of some
organization of the fracture orientation data. Identifying sets in a sample of fractures
requires the choice of 1. a grouping criterion of units (poles or dip-vectors), 2. a
rule to assign each unit to a set, 3. an optimal number of clusters to part the
whole population, 4. an orientation probability distribution of units within each
set, and 5. a weighting inverse procedure able to restore the in situ relative attitude
of the sets. The first three points and the fourth one may appeal respectively to
a variety of algorithms in contouring or cluster analysis and to different model
distributions, respecting as much as possible the degrees of uniformity, isotropy,
symmetry, or multimodality of the actual population. Here, these four points will
not be discussed. The first section of this paper is focused on the fifth point.

Studies on the borehole orientation bias (Priest, 1985; Wathugala, Kulatilake,
and Stephansson, 1990) almost entirely rely on Terzaghi’s method (1965), which
first gave special attention to this problem through an inverse approach. Mauldon
and Mauldon (1997) addressed the problem for circular fractures intersected by
a sampling cylinder infinitely long in relation to its diameter, so that end effects
could be ignored. They derived a correction factor as a function of the ratio between
the cylinder radius and the fracture radius and showed that Terzaghi’s correction
reduces to the special case of a zero ratio, i.e. when the cylinder is a scanline or a
borehole with negligible radius. Lately, the problem has been treated alternatively
by a forward approach in the particular case of the borehole-biased uniform distri-
bution, i.e. without identifying sets (Martel, 1999). In the present section, we aim
to improve Terzaghi’s method which has generally been used until now despite
some deficiencies.

First Approximation of the Orientation Weighting

The borehole (scanline) orientation bias basically leads to underestimate the
number of fractures of a specified orientation within the explored volume of the
rock mass. The technique proposed by Terzaghi (1965) to correct this bias consists
of a weighted counting polar diagram (Fig. 1(A). Poles of the fracture planes
sampled from one borehole are plotted on an hemispherical net with isogonic lines
drawn around the borehole axial point,θ denoting the angle between a fracture
pole and the borehole axis. For each counting cell, lying in a field between two
adjacent isogonic lines, she computes the ratio of the measured number of poles in
the cell to the average cosθ in this field. This corrected frequency is an estimation
of the number of fractures which would be orthogonally intersected by a diameter
of the unit sphere going through the cell, the unit being the length of the borehole.
It is implicitly admitted that fractures are parallel and define a constant spacing
within each cell. This correction produces a synthetic population which is larger
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Figure 1. (A): isogonic lines for poles of fractures intersecting a borehole plung-
ing 45◦ in stereographic projection; figures indicate approximate values of cosθ

for fractures represented by poles lying between same two lines, whereθ denotes
the acute angle between the pole-vector of the fracture and the borehole axis. (B):
a fracture data set from borehole Cha212 (78;60): the blind zone clearly appears
in the Wulff net.
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than the sample and brings a more realistic image of the 3D overall orientation
distribution. Following this operation, clusters are searched within the resultant
augmented population. This method involves two basic difficulties:

First, in the field called “blind zone” according to the lack of data in the
neighborhood of the blind 90◦-isogonic circle (Fig. 1(B) for an example), the
correction becomes unsecured since division by cosines close to zero leads to
overestimate the real abundance of fractures in this particular orientation range.
Therefore, grouping algorithms are likely to join together synthetic clusters lying
on opposite sides of the blind isogonic circle. This may result in the paradoxical
artifact of fracture sets with mean orientation strictly parallel to the borehole axis.
In practice, this difficulty is often empirically dealt with by 1. neglecting the data
within the “blind zone,” whose range (commonly± 20◦) may be determined from
the allowed weighting uncertainty and measurement accuracy, and 2. joining to-
gether several weighted counting diagrams associated with at least three variously
oriented boreholes into a collective weighted counting diagram (Fig. 2). Never-
theless, if such data were available, one should carefully compare each sample
with others before assuming structural homogeneity. Deservedly, orientation bi-
ases are often responsible for misleading conclusions when comparing samples
from nonparallel boreholes.

The second weakness of Terzaghi’s method is the choice of the cell size. The
counting cell must be large enough for each one to enclose a subset with a sufficient
number of poles. This is an implicit condition for the cosine correction to be appli-
cable. However, this goes against a good resolution of the cosθ fields. Moreover,
the real fracture sets (if they exist) generally have not the same dispersion. Since
they are still unknown at this stage of Terzaghi’s method, any chosen cell size is
hardly appropriate for all of them so that their subsequent identification may be
altered.

We now attempt to solve these difficulties by clarifying the respective in-
fluences of orientation and frequency over the linear sampling probability, and
showing that Terzaghi’s correction is a limit weighting whose validity is restricted
to samples with high number of fractures.

As a third weakness of Terzaghi’s method, note that fractures are considered
as persistent planes and that a possible correlation between orientation and size is
not taken into account: mutual stochastic independence of orientation and size is
implicitly assumed. We will briefly discuss this point.

Frequency-Dependent Orientation Weighting

To estimate the 1D sampling probability, it is helpful to consider an ideal
fracture subset model consisting of parallel and equally spaced fractures (Fig. 3).
Such an oversimplified model underlies Terzaghi’s line of reasoning. This subset is
intersected by a line OQ whose lengthL is measured between the first fracture and
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Figure 2. Blind zones associated to three orthogonal boreholes: B1, B2 and B3, each one
represented by its axis surrounded with a 10◦ cone. The poles lying at 90◦ with borehole
B1 are on a great circle containing the axes B2 and B3. This circle, which is referred to
as the blind circle of B1, is depicted by a dotted line. The poles lying at an acute angle of
70˚ with B1 are on two circles, parallel to the blind one, that are also depicted. They bound
the blind zone of B1. Idem for B2 and B3. The advantage of such an orthogonal system is
the absence of overlap between the three blind zones together, and thus no region of the
stereoplot is left with highly biased information.

the last one, thus providing an ideal sample ofn parallel fractures. Letθo denote
the acute angle between the common pole-vector of the subset and the borehole
axis. LetN be the number of fractures of this set which would be orthogonally
intersected by a line of the same lengthL. Our purpose is to express the sampling
probabilityn/N as a function ofn andθo.

Mean orthogonal spacing for a set may be defined as the mean distance
between consecutive fractures that would be measured along a perpendicular
scanline or equivalently, except for end effects, the length of this scanline di-
vided by the number of fractures that would be intersected. Fracture frequency is
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Figure 3. A subset of nearly parallel and regularly spaced fractures intersected
by an oblique borehole and an orthogonal one, defining respectively the mean
apparent spacingsa and the mean orthogonal spacingso.

defined as the reciprocal of the mean spacing. In the above-described ideal subset
the mean apparent spacing issa = L/(n− 1), and taking the end effect into account
the mean orthogonal spacingso satisfiesL/N < so ≤ L/(N − 1) It follows that
(n− 1)/N < so/Sa ≤ (n− 1)/(N − 1), which can be split into the two following
inequalities by using the relationso = sa · cosθo:

(n− 1)/N < cosθo implying that (n− 1)/cosθo < N

and cosθo ≤ (n− 1)/(N − 1) implying that N ≤ 1+ (n− 1)/cosθo

Therefore, sinceN is an integer, we obtainN = 1+ 〈(n− 1)/cosθo|, where〈K |
denotes the largest integer≤ K , and the sampling probability for any subset of
angleθ is

Pn(θ ) = n

1+ 〈(n− 1)/cosθ | (1)

The frequency-dependent weighting factor that we propose is

wn(θ ) = 1/Pn(θ ) (2)

Note that Equation (1) can be approximated by the limiting expression asn→∞

P(θ ) = lim
n→∞

n

〈n/cosθ | = cosθ (3)
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Figure 4. Second-order polynomial approximation of the relative error on bias correc-
tion as a function ofn, number of fractures of the considered subset, andθ , acute angle
between the pole-vector and the borehole axis.

When using the limiting weighting factorw(θ ) = 1/P(θ ) known as
Terzaghi’s correction instead of Equation (2), the relative error is

1w(θ ) = [w(θ )− wn(θ )]/wn(θ ) (4)

For instance, assuming a measurement accuracy of 1 degree, the maximum value
of the relative error is1w(89◦), reached for the poles close to the blind circle: as
shown in Figure 4, forn ≥ 10 this value is smaller than 10%, and with decreasingn
this maximum value rapidly increases (up to 100% forn = 2). Since 1. the number
of datan is very small in a cell lying in the blind zone, and 2.1w is not proportional
to θ , it turns out that this error has a significant effect on a population of fractures.
This emphasizes the advisability of a systematic frequency-dependent weighting
of subsets.

If sets with a geological meaning actually exist, then their frontiers should
remain clear within the whole biased distribution. When the data are grouped
into clear-cut clusters, bias is likely to produce additional boundaries rather than
suppress existing ones. Consequently, any bias-correcting procedure should 1.
remove artificial boundaries, and 2. keep the true ones. We advocate that it is
sensible to first determine clusters, and then apply corrections within each cluster



P1: GAD

Mathematical Geology [mg] pp1107-matg-478591 February 10, 2004 15:14 Style file version June 25th, 2002
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to expand it towards the blind circle. Doing that is more consistent than first
increasing the number of points in the shadow zone of the stereoplot and then
applying a cluster analysis.

The method we use to correct for mean orientation of a cluster identified
as a fracture set is postponed till Appendix A. That method integrates a strong
assumption of independence between azimuth and plunge which is needed to
simultaneously correct for the density bias, as showed in the next
section.

We have analyzed the underlying assumptions of Terzaghi’s method and fo-
cused on the end effect. Whereas Terzaghi’s method needs borehole data gathered
in at least three directions to correct bias and finally identifies potential sets, we im-
prove the procedure by first separating the biased clusters from only one borehole
and then estimating their orientation parameters, accounting for the dispersion and
frequency of each fracture set.

DENSITY BIAS CORRECTION

The spatial probability distribution of fractures within each set is the second
basic attribute which contributes to the overall properties of a fracture network
(Karcz and Dickman, 1979). It is represented by some measure of fracture density
(Dershowitz and Herda, 1992; Mauldon, 1994), whose different definitions are
recalled below. Relationships between them are analyzed in order to quantify the
borehole density bias.

Definitions of Fracture Density

The measured 1D fracture frequency, i.e. the average number of intersected
fractures per unit length, and the measured 2D fracture density, i.e. the average
trace length per unit area, vary respectively with the orientation of the scanline or
the sampling plane, except in the case of an isotropic fracture distribution. The
measured 3D density of a given network, i.e. the average fracture area per unit rock
volume, depends (as the measured 2D density does) on the relative dimensions of
fractures and sampling regions.

In a region< with volumeV very large with respect to the areasaj of the J
fractures centered within<, the overall 3D density of the fracture network

AV = 1

V
·

J∑
j=1

aj = d3 · ā (5)

is determined from the bulk center intensityd3 and the mean fracture areāa,

d3 = J/V (6)
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and ā = 1

J
·

J∑
j=1

aj (7)

In the same way, in a plane region℘ with areaA cross-cuttingI fractures in
<, supposed to be very large with respect to theI trace lengthsl i centered within
℘, the overall 2D density of the trace network

L A = 1

A
·

I∑
i=1

l i = d2 · l̄ (8)

is determined from the area center intensityd2 and the mean trace length̄l ,

d2 = I /A (9)

and l̄ = 1

I
·

I∑
i=1

l i (10)

The different density parameters have been studied with the tools of geometric
probability theory and stereology (Santalo, 1976; Weibel, 1980). These studies
have revealed fundamental relations which were found useful in the field of fracture
network characterization and modeling when approximately isotropic uniform
random scanlines or boreholes are available (Hudson and Priest, 1983; Rouleau
and Gale, 1985). Here, we propose an approximate correction factor which allows
us to estimate the 3D density of each fracture set from a single borehole.

Borehole-Measured 3D Density

Let us consider a cylindrical drill core of sectionπε2 (where the radiusε is
less than 5 cm) and lengthL samplingn fractures. In practice, one rarely observes
the boundary of a fracture within a core, and the condition 2ε/ cosθi ≤ Ei , where
Ei is the size of fracturei whose pole is at an acute angleθ i with the core axis, is
generally satisfied at the fracture scale considered for a repository for instance. We
make the assumption (H) that each fracturei fully contributes to the 3D density
measure. Under this assumption, the area of the portion of fracturei included in
the rock cylinder isπε2/cosθi . Based on Equation (5), we estimate the borehole-
measured 3D density under the assumption (H) indicated below by a tilde sign:

ÃV = 1

L · πε2
·

n∑
j=1

πε2

cosθ j
= 1

L
·

n∑
j=1

1

cosθ j
(11)
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We anticipate that assumption (H) leads to an overestimation of the 3D density
(i.e. ÃV ≥ AV ) since it is independent of fracture size. We now show that this
overestimation is systematic and controlled by a factorFn ≤ 1 such that, for each
given set considered with stochastic independence of azimuth and plunge:

AV ≈ Fn · ÃV , (12)

where Fn = n2

/(
n∑

j=1

cosθ j ·
n∑

j=1

1

cosθ j

)
(13)

Borehole-Measured 2D Density

A population ofJ fractures of this set within a region< is distributed into
subsets ofJα fractures lying in a narrow range of azimuthδα around average
azimuthα. For each subset, only one plane with azimuthα contains the borehole
axis. In this plane, focus on a square region℘α of side L, where the borehole
becomes the slot [L/2− ε ≤ x ≤ L/2+ ε; 0≤ y ≤ L] (Fig. 5). The fractures
which intersect℘α produceIα random segments (traces) of lengths 2ri and average
length 2̄rα (computed from Eq. (10)), lying at anglesθ i with theOxaxis, with their
centers (xi ; yi ) in ℘α. Remark that the angleθ i becomes the apparent plungeβ i

in this special configuration. We assume that the random variables plunge,B,and
semi-trace length,R, associated with probability density functionsf (β) andg(r )
respectively, are mutually independent, and that the horizontal distances between
the centers and the borehole axis are a 1D Poisson process. TheIα traces and the
nα portions of these traces which are intersected by the slot allow us to calculate
(L A)α and (L̃ A)α respectively. In view of Equation (8) and according to assumption
(H), the 2D density measured in the rectangular slot of lengthL and width2ε ¿ L
is (note the similitude with Eq. (11))

(L̃ A)α = 1

2εL
·

nα∑
i=1

2ε

cosβi
= 1

L
·

nα∑
i=1

1

cosβi
(14)

From Equations (8) and (9) it results that

Iα
L2
= (L A)α

2r̄α
(15)

In this 2D scheme, we wish to express the error made when estimating (L A)α by
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Figure 5. Intersection of traces of a fracture subset in a plane℘α by a 1D sampl-
ing slot. See the text in section Borehole-measured 2D density for comments.

(L̃ A)α, which from Equations (14) and (15) is equivalent to estimatingIα by

Ĩ α = L

2r̄α
·

nα∑
i=1

1

cosβi
(16)

The remaining part of our proof is postponed until Appendix B. Finally, in view
of Equation (16) and Equation (32) established in Appendix B, we find thatIα =
Fα · Ĩα, whereFα is defined from Equation (13) by replacingn with nα.

At this point, precise knowledge of the centers (xi ; yi ) probability distribution
is not necessary since theyi are not involved in the proof. Moreover, the correction
factor Fα remains roughly valid whenever theXi ’s can be approximately consid-
ered as uniform random variables on the studied interval. Also, no assumption is
needed concerning the form of the size probability distribution whereas the shape
of the discontinuity surfaces (discs or other plane convex shapes) has not to be
specified.
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From 2D Density to 3D Density

Since azimuth and plunge of fractures are assumed to be independent within
each set, the approximations proposed in Equations (30) and (31) (see Appendix
B) lead to the approximation that the values taken byFα are independent ofα
whenevernα is large enough. Therefore, a better estimate of the common value
of the Fα ’s is Fn given by Equation (13). Thus, we obtainIα ≈ Fn · Ĩα, already
noticed to be equivalent to

(L A)α ≈ Fn · (L̃ A)α (17)

According to Equations (11) and (14) and noting thatn =∑α nα, the summa-
tion

∑
α of Equation (17) on the whole range ofα for the considered set provides∑

α

(L A)α ≈ Fn ·
∑
α

(L̃ A)α = Fn · ÃV (18)

Finally, proving Equation (12) boils down to proving that∑
α

(L A)α ≈ AV (19)

Now, we have to assume an a priori model of disc-shaped fractures whose
centers are an isotropic 3D Poisson process with intensityd3 (defined in Eqs. (5)
and (6)). Fracture size is represented by disc diameterD. We suppose thatD is a
random variable independent from azimuth and plunge. Under our conditions, and
without assumption on the form of the diameter probability distribution, Warburton
(1980) establishes that

(d2)α = (d3)α · E(D) · cosγ (20)

and E(2R) = π

4
· E(D2)

E(D)
, (21)

where− δα
2 < γ < + δα

2 expresses the deviation of pole-vectors from the mean
plane of℘α. In our case whereγ ≈ 0, summation of Equation (20) leads to∑

α

(d2)α ≈ E(D) ·
∑
α

(d3)α (22)

Equation (5) implies (AV )α = (d3)α · āα, whereāα is computed from Equation (7)
by replacingJ with Jα. It follows from the mutual independence ofD andα and
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the A-E approximation (defined in Appendix B) that

AV =
∑
α

(AV )α ≈ E(π (D/2)2) ·
∑
α

(d3)α (23)

Equation (8) implies that (L A)α = (d2)α · 2r̄α. Since the spatial distribution of the
discs is isotropic, the expectation of trace length conditioned byα is independent
from α and it follows from the A-E approximation that∑

α

(L A)α ≈ E(2R) ·
∑
α

(d2)α (24)

Equations (22) and (24) together imply that∑
α

(L A)α ≈ E(2R) · E(D) ·
∑
α

(d3)α (25)

From Equations (23) and (25) it follows that

∑
α

(L A)α ≈ AV · E(2R) · E(D)

E(D2 · π/4)
(26)

Finally, we conclude from Equations (21) and (26) that Equation (19) is
established. Let us underline that Equation (12) is a rough approximation since
it heavily relies on both the mutual independence of azimuth, plunge, and size,
and the A-E approximation (see Appendix B) which means applying the law of
large numbers to limited samples. Nevertheless, the correction factorFn is likely
to provide a good estimate of the 3D density only depending on orientations and
frequencies measured in one borehole.

DENSITY BIAS, DISPERSION, AND SIZE

We now wish to gain some insight into the mean fracture size and reduce
the vagueness on this third basic parameter. A fundamental relation of stereology
states that an estimate of the 3D global densityAV is twice the average linear
frequencyN̄L measured in a large array of isotropic uniform random scanlines.
For one fracture set of knownAV the borehole frequency bias is expressed as the
ratiobθ increasing withθ :

bθ = (NLθ − N̄L)/N̄L = (2 · NLθ − AV )/AV (27)
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Table 1. Comparison Mode of Two SetsSandT

If σT < σS If σT ≈ σS If σT > σS

And δT < δS ET ≈ ES ET > ES ET ¿ ES

And δT ≈ δS ET < ES ET ≈ ES ET > ES

And δT > δS ET ¿ ES ET < ES ET ≈ ES

WhenNLθ coincides withN̄L, there is no bias andbθ = 0. The bias is positive if
NLθ > N̄L (overestimation of frequency) and negative in the other case (underes-
timation of frequency).

Let us consider, as a reference model for a fracture set, a series of parallel
infinite planes, whose mean normal vector makes an angleθ with the borehole
axis. In this model, Equations (6) and (8) lead toAV = ÃV = NLθ /cosθ and the
bias is

b(θ ) = NLθ ·
(

2− 1

cosθ

)
· cosθ

NLθ
= 2 cosθ − 1 (28)

If one usesb(θ ) as an approximation tobθ (defined in Eq. (27)) for each set, the
gap between the real fracture distribution and its equivalent parallel infinite model
is characterized byδ(θ ) = |b(θ )− bθ |. Then we can class the sets according to this
gap. Comparing the sets by pairs and accounting for their parallelism default (each
set having known dispersionσ ), one can deduce fromδ some semiquantitative
arguments on their relative mean sizes. This comparison method of two setsS
andT is summarized in Table 1. For instance, considering two sets with the same
dispersion (see column 2 of Table 1), a lowerδ would imply a higher size. In
the case of a pair having the sameδ (see line 2 of Table 1), for the two sets to
display the same gap with the parallel infinite model, a lower dispersion should be
compensated by a lower size.

ILLUSTRATION IN A STOCHASTIC MODEL

Our methodology was applied to a fault population sampled from the two
boreholes implanted in a selected site, part from the Charroux–Civray granite mas-
sif already mentioned in the Problematic and Methodology section. The number of
sets, requiring independent characterization to create the network, was determined
by analyzing the core data on faults (i.e. fractures that exhibit indicators of shear)
with both visual inspection of stereoplots and a grouping algorithm. The six-sets
configuration obtained from the vertical borehole Cha112 is stable for 400 m in
depth: is it the same configuration in both Cha112 and Cha212 after correcting
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Table 2. Primary (P) and Weighted (W) Orientation Parameters of the Six Identified Sets

Number of Mean Mean std deviation Mean std deviation
fractures per set P-azimuth P-plunge P-plunge W-plunge W-plunge

1: 17 108 32.5 11.0 32.7 9.4
2: 74 248 63.2 17.7 75.7 23.5
3: 36 307 60.1 12.8 65.2 15.9
4: 57 166 54.1 13.4 57.8 14.4
5: 18 24 70.5 7.5 74.0 7.9
6: 34 107 74.4 7.9 81.0 10.9

for the orientation bias? The departure of our corrected mean orientation from the
unweighted one was currently valued between 1◦ and 12◦ for each set of Cha112
(Table 2). This effect could be sufficient to explain the difference between the
stereograms of the two boreholes (Figs. 1(B) and 6(A)). Our modeling approach
aims to control the validity of our corrections and to question the homogeneity of
the fault network between the two boreholes.

In order to generate a realistic network of discontinuities for a statistically
homogeneous region of the site in question, we use the Boolean model of random
flat discs described by Aler, Du Mouza, and Arnould (1996), which is adapted
from the principles introduced by Baecher, Lanney, and Einstein (1977). One
major advantage is its flexibility in terms of size (diameter) distribution.

Scale of Study and Process of Fault Position Within a Set

To be consistent with the assumptions on which our corrections are based, the
distribution of orientations in each set was modeled by independent azimuth and
plunge. Orientation of discs was generated from uniform or normal distributions
calculated from observed dip azimuth and plunge (see Appendix A). Once the
optimum selection of sets and their statistical parameters are obtained, the relevant
modeling scale of the network of superposed sets is determined from the order of
magnitude of both fault frequency and size.

Based on core and field observations of their morphology, three classes of
fractures were distinguished and faults were characterized with an empirical rela-
tion between size and infill width (Fouch´e, Cojean, and Arnould, 2001). The size
hierarchy obtained from this relation, mean half-size (disc radius) of the six fault
sets taking values (Table 3) in the interval [3 m; 12 m], was discussed and confirmed
with the help of the estimateδ(θ ) defined in the previous section. According to
this estimated size range, the modeling scale should be at least 20–30 m. At the
low level of information inherent to borehole data, fault sizeE may be modeled by
a truncated negative-exponential distribution, whose parameterλ is simply related
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Figure 6. Visual comparison of actual borehole-sampled and virtual
scanline-sampled distributions of fracture orientations: density contours in
equal-area projection, with step= 1.4. (A): Poles of faults in the vertical
borehole Cha112 (236 units, 260 m): Dimitrijevic counter: 2994 points. (B):
Poles of discs in 26 vertical virtual scanlines of length 10 m (227 units, mean
frequency= 0.87/m)—Six sets stochastic simulation within a cubic volume:
Dimitrijevic counter: 2850 points.
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Table 3. Primary and Corrected Density Parameters and Size of the Six Modified Sets

Number of Frequency 3D density Correction Mean Intensity
fractures per set NL (/m) AV (/m) factorF radius (m) d3 (10 m)−3

1: 16 0.07 0.08 0.984 3.0 2.8
2: 50 0.21 0.82 0.573 11.5 1.1
3: 33 0.15 0.33 0.823 9.8 0.9
4: 46 0.20 0.41 0.804 8.5 1.5
5: 15 0.06 0.21 0.782 4.8 2.3
6: 29 0.12 0.62 0.668 10.7 1.2

Total: 189 Total: 0.81 Total: 2.47 — Global: 9.1 Total: 9.7

to the mean valuēE and the minimum valueEm: 1/λ = Ē − Em. Also, this choice
makes it easier to analyze spacing and size relationships since we further choose
the same type of distribution for spacing.

Decreasing the length of a gliding window from 100 to 10 m allowed us
to determine the critical scale where second-order variations of fault frequency
appear (here, 20 m), the main features remaining unchanged (Fouch´e, 1999). Con-
sequently, we are interested in the fault network within local cubic boxes of typical
edge size 20 m. A thresholdYs of spacing values under which two consecutive
faults are not distinguishable was specified as a percentage of the study scale (here
Ys = 0.01× 20 m= 20 cm). At this scale, we can treat closely spaced multiple-
segment fractures as single units (Vermilye and Scholtz, 1995) by applying the
spacing threshold and eliminating redundant data (this explains why the number
of faults within each set is lower in Table 3 than in Table 2). Then, we observe that
the spacing distribution is modified towards a negative-exponential model. This
property has been assumed to hold for all other directions.

So, we focus on second-order variations of the fault frequency within each
20-m box where we can model the fault center distribution of a set by a stationary
point process characterized by the local mean value of the 3D density. At this scale,
based on stationarity and exponential distribution of spacing, it is reasonable to
assume that the spatial distribution of disc centers within each set of the model
is a 3D Poisson process of intensityd3 (Eq. (5) and Table 3) combined with a
representative sampling of fault orientations.

Verification and Comparison Through Stochastic Simulations

The efficiency of our corrections for orientation and density was confirmed by
applying cluster analysis, hemispheric projection, and density measures to samples
of virtual scanlines in the simulated regions. We aim to verify whether scanline
samples from stochastic networks simulated with corrected parameters return the
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Figure 7. Histogram of measured and simulated frequencies in a 10-m gliding window
(about 100 data). When the outliers are removed, this histogram is compatible with
a rescaled 1D Poisson distribution which arises from a 3D Poisson point process.
This argues in favor of modeling the fracture center distribution with a 3D Poisson
point process. Outliers, or redundant fractures, are rather nuisances than proper data.
We decided to remove it, which results in a better fitting of empirical and generated
histograms with a same Poisson-type distribution.

same biased distributions as the real single borehole. The physical resemblance of
the simulated geometry to that of the actual rock mass is one of the main criteria
for assessing the degree of confidence in the results produced.

The virtual scanlines, when traced vertically, give samples very similar to the
real vertical borehole Cha112 (Figs. 6(A) and 6(B)). This leads to the conclusion
that we have produced the correct number of sub-vertical faults with the correct
azimuths. The local variations of frequency are displayed in Figure 7 together with
values of frequency from a series of 20-m long virtual scanlines through the 3D
Poisson model. This empirical distribution indeed looks like a Poisson distribution
of the same mean value, except for the influence of extreme data which moves the
distribution to the left.

When traced obliquely, the virtual scanlines give samples similar to the real
oblique borehole Cha212 except for two features: a 15◦ rotation of the overall
distribution of poles appears in the stereoplot, and we observe that one of the six
fault sets identified within the actual population of Cha112 (set n◦4) still exists in
the oblique virtual scanlines, despite the orientation bias, whereas it is not visible
in Cha212 (Figs. 1(B) and 6(A)). Hence, the differences between the vertical
borehole and the oblique one could not be reduced to an effect of the orientation
bias through an homogeneous network. These divergences confirm that mixing the
data of the two boreholes at the beginning of our modeling process would have
meant an unjustified hypothesis of homogeneity.
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Fault Size and Connectivity of the Network

Once the computer has simulated all the discs in space, the mutual intersec-
tions are examined through topological analysis. These intersections give rise to
the formation of traces (intersection of at least two discs), vertices (intersection of
at least three traces), edges (segment of a trace terminated at each end by vertices),
and faces (a surface bounded by edges and vertices). These various elements are
analyzed to determine the pathways and blocks that are possibly formed through
the network. Parts of planes that do not contribute to isolate complete blocks are
identified. The program then calculates the block volume distribution of all the
completely formed blocks. A full discussion of this 3D modeling program can be
found in Xu and Cojean (1990).

A parametric study of the influence of fault size (disc diameter) was performed
in the case of 10-m long virtual scanlines, which represent the scale of a gallery
for a possible underground laboratory. Each line of Table 4 displays results from
a Monte Carlo simulation experiment with 26 replications for a given value of the
mean radius of generated discs. The mean values and standard deviation have been
obtained by averaging over the 26 replications. The first model scheme displays
overestimated values ofNL10 andAV10 because the ratio of minimum size to mean
size Em/Ē becomes too large. Except for this case, the obtained values ofNL10

andAV10 are the correct ones, i.e. the same as in the real borehole (compare with
total values in Table 3). Note that our estimated mean fault size was about 18 m,
which is close to the second model scheme. The results about the cubic root of the
mean block volume illustrate the consistency of the model when the mean fault
radius varies in the approximate range [5–30] m. These results suggest that: 1. The
bias corrections are efficient, 2. The model is not sensible to the uncertainty on the
mean radius since values of̄E/2 are admissible in a large range. Moreover, in our

Table 4. Density Results of Stochastic Simulations for Several Values of Mean Radius (Half-Size):
Mean Values and Standard Deviation (Indicated in Brackets)

Mean Mean Median
radius (m) NL10 (/m) AV10 (m2/m3) NI discs NC discs BVD (m) BVD (m3)

4.2 1.1 (0.3) 3.2 (1.4) 157 (10) 46 (6) 0.46 (0.05) 2.29 (0.71)
7.6 0.9 (0.3) 2.6 (1.1) 84 (9) 12 (2) 0.53 (0.07) 2.13 (0.79)

16.7 0.9 (0.3) 2.6 (1.2) 58 (9) 4 (2) 0.55 (0.11) 1.76 (0.41)
32.9 0.8 (0.4) 2.4 (1.0) 50 (8) 1 (1) 0.56 (0.12) 1.81 (0.49)

Note. NL10 is the fracture frequency measured in a 10-m virtual scanline.AV10 is the 3D fracture
density measured in a 10-m virtual scanline.NI discs is the number of discs intersecting the simulation
domain.NC discs is the number of discs centered within the simulation domain. MeanBVD is the
cubic root of the mean value of the Block Volume Distribution. MedianBVD is the median value
of the Block Volume Distribution. Minimum radius= 0.5 m—Volume of the simulation domain=
1000 m3 (cube of edge 10 m).
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model, the number of discs that do not contribute to form blocks was systematically
less than 5% of the total number of the discs intersecting the simulated network,
whatever the mean radius in the range [5; 30] m. This result reveals that the network
can be viewed as fully connected in a realistic range of fault sizes. Let us recall
that this conclusion is supported by geological arguments, such as the ubiquity of
calcite filling that crystallized throughout the fractured granite rock mass during a
late water circulation event.

DISCUSSION

Here, our purpose is not to discuss different fracture network models (Chil`es
and de Marsily, 1993; Dershowitz and Einstein, 1988) from a realistic geological
point of view.

Abundant literature, including our case study, provides evidence for the real-
ism of a negative-exponential form for the spacing distribution of fractures along a
scanline (Ferguson, 1985). The question of the size distribution of fractures in
space is not tackled here although it is undoubtedly important (LaPointe and
Hudson, 1985). Our choice of a negative-exponential form for this unknown
parameter is plausible while we admit that it is somewhat arbitrary. Since ge-
ological evidence of a simple relation between fracture size and spacing ex-
ists, the regular spacing condition introduced in the section named Frequency-
dependent orientation weighting (Fig. 3) may be satisfied if each iso-orientation
subset is separated into approximately iso-size subsets. Whereas this “disaggre-
gate characterization” (Gillespie and others, 1993) would lead to subsets with
few data, the commonly implicit use of the law of large numbers in correcting
for the orientation bias is a source of error which we have estimated and proved
significant.

We do not try to model each orientation cluster with some parametric fam-
ily of distributions. Instead, we only describe a cluster in terms of its two first
empirical moments. The bias-correction only concerns the first moment of each
cluster and we also provide an approximate corrected value of empirical disper-
sion. Therefore, we do not have to fit orientation distributions based on censored
populations. Actually, testing the goodness-of-fit of various distribution families
(Fisher, Bingham, etc.) on clusters of data is tedious and often fails (Kulatilake,
Wathugala, and Stephansson, 1993; Starzec and Andersson, 2002). The only basic
assumption that we make is the independence ofα andβ within each set: this cor-
responds to a nonparametric approach which keeps open a large range of flexible
distribution forms. The robustness of the latter hypothesis could be further studied
through Monte Carlo numerical simulations.

Otherwise, a radically different alternative approach would be to estimate
the parameters of a mixture of distributions from some parametric family (with
unknown number of components) based on censored data in a general missing data
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framework, using the Expectation Maximization algorithm. But this is the subject
of a forthcoming paper.

We have assumed that within each set the random variableθ can be parted
into two independent variablesα andβ. Considering the overall distribution of
orientation as a finite mixture of distributions, this assumption means that each
component distribution is the product of a distribution onα and a distribution onβ.
Such an assumption is obviously not rotationally invariant and does not reflect the
genesis of fracture sets (Marrett, 1996). Mechanical intuition indeed suggests that
initiation and propagation of fractures over time lead to interdependent fractures
(and even interdependent sets). Our assumption should rather be understood as
part of our modeling approach, which requires simplifications and approximations.
Such an assumption lies at the same simplification level as assuming that the point
process of the centers is Poisson, or that the fracture network is a superposition of
independent sets of random discontinuities. Besides, when looking at the (α, β)’s
within each set in our case study (Fouch´e, 1999), it turns out that our independence
assumption cannot be clearly rejected. Actually, the modulus of the correlation
betweenα andβ never exceeds 0.4 and is often much smaller.

We are conscious that fracture size could be significantly correlated with ori-
entation within each set. In such a case, we would have to replacef (b) · g(r ) with
f (b) · g(r |b) in Equation (28 bis), whereg(r |b) denotes the conditional probability
density function ofR (sizer ) given B (plungeβ). Intricate mathematical deriva-
tions could then be pursued and numerical computations could be made. However,
it is impossible to conjecture whatg(r |b) should be, based on borehole sampling:
we would face a typical ill-posed problem. Moreover, we have some reasons to
suspect thatR andB are approximately independent within each set: 1. Based on
the natural assumption that fracture size and width are correlated (Vermilye and
Scholtz, 1995), we can expect that the existence of a correlation between size and
orientation would entail correlation between width and orientation. But the latter
is not supported by available data (Fouch´e, 1999). 2. The outcomes of simulations
and confrontation with the data issued from the second borehole seem to con-
firm the validity of our bias-correction formulas. It is worth noting that whereas
we assume independence of size and orientation within each set, the superposi-
tion of several independent sets having different mean fracture sizes results in a
strong dependence structure between size and orientation throughout the whole
network.

Examining what situations tend to make an ordinary fracture a conductive
one, we envisage the two following ones: large fractures have higher probability
of intersecting other fractures and fractures that have experienced some shear
probably have enhanced permeability. The indetermination of fracture size, which
appeared as a handicap at the beginning of the study, has been shown to be of
minor influence on the connectivity as far as the ratio of mean radius to minimum
radius is large enough.
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We only have shown the results of simulations for the regions of the borehole
where the mean values of frequency and density prevail. In other regions of the
borehole, the local mean frequency is lower and thus the network could be no
longer fully connected. In those regions, the connectivity study would require
more precise characterizations. Hence, the study of the network connectivity has
to be further pursued.

The proposed model including bias corrections is robust with respect to the
mean fracture size when disc radius is modeled as a truncated negative exponen-
tial distribution. Further robustness studies are recommended in order to test the
sensibility of the model to the type of size distribution, the ratio of mean radius to
minimum radius, and the assumption of independence of azimuth and plunge of
dip vector.

CONCLUSIONS

In this paper, an improved output from 1D sampling through fracture networks
is provided by introducing three complementary tools based on the probabilistic
nature of finite fracture sets. Underlying is the ignorance of the fracture size or
even the trace length distribution. In the view of a model conditioned by measured
information (Andersson, Shapiro, and Bear, 1984), these tools based on simplifying
assumptions only depend on the orientation-related frequency of the fractures
observed in one borehole.

First, we have revisited Terzaghi’s correction for the orientation bias. Some
difficulties encountered with this classical method in the identification of direc-
tional sets from borehole data and in the discussion of homogeneity have been
solved by formulating a frequency-dependent weighting applied to nearly parallel
fracture subsets with necessary a quite regular spacing. Our formulas allow us to
make a more reliable estimate of the mean value of fracture set dip.

Second, a correction factor of 2D density has been generalized by explicitly
appealing to the law of large numbers, under the assumptions that the borehole
diameter is negligible in comparison to trace lengths, and that azimuths and
plunges of fractures are independent random variables. Then, assuming that frac-
tures are disc-shaped and their positions follow an isotropic 3D Poisson process,
the correction factor has been extrapolated to 3D, remembering stereology re-
sults. In this a priori model, anisotropy only results from the relative attitude of
the sets.

Third, a major deficiency of current methods is their inability to analyze spatial
distributions in relation to fracture sizes. Here, the departure of each identified set
from a parallel infinite planes model has been quantified by a factor based on a
stereological estimate. Comparison between the sets with regards to dispersion
and size serves to control the hierarchy of mean size values estimated from the
width of the infill material. This half-quantitative approach of size would be the
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basis for a study of the specific influence of each set on the connectivity of the
whole network.

It is possible to draw the following conclusions based on the results of vali-
dation attempts.

The proposed corrections are applicable to fracture networks regular enough
at a specified scale to be modeled by a Poisson process. Their validity has been
briefly illustrated through stochastic simulation and testing on a real example
relative to a granitic rock mass. These corrections result in a cumulated influ-
ence on anisotropy and connectivity of the network. They allow to discuss the
homogeneity of the geological structure in the region between two boreholes,
here at the 500-m scale. The considered population of fractures, of metric to
pluri-decametric order in size, can play the role of low conductivity connec-
tion between the hectometer-order faults which are present in the studied rock
mass.

Our methodology was initially applied to natural fractures and directed to-
wards rock engineering problems, especially to avoid abusive and unwarranted
amalgamation of biased data, and to reduce the prospecting effort in geological
exploration through well boring. We expect that it will turn out to be useful in
the fundamental fields of structural geology and petrology, textural mineralogy, or
geomorphology. As a perspective, we intend to apply our methodology to sets of
cracks produced in a rock sample under controlled mechanical loading (Fouch´e
and others, in press) in order to gain in our understanding of deformation and
percolation in the excavation-disturbed zone around a laboratory for long-term
testing of nuclear waste storage.
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APPENDIX A: CORRECTION FOR MEAN ORIENTATION OF A
FRACTURE SET AND SIMULATION

According to the assumption of independence between azimuth and plunge,
and working in the borehole-based reference frame where the borehole axis is
the z-axis, the apparent azimuth within a set remains unbiased whereas the ap-
parent plunge is biased and must be weighted independently. This suggests to
split the fracture pole-vectorV (or the dip-vector) into two components: the
azimuth-vectorVα may be represented in the (x; y) plane orthogonal toz, and
the plunge-vectorVβ may be represented in the (Vα; z) plane. The conversion of
V to the geographic reference frame, if needed, may be done later using a rotation
matrix.

For each set, treated independently, averaging theVα ’s directly provides the
unbiased mean azimuth-vector, but we have to choose an adequate length for the
counting interval of plunge values. Then, in each interval, we apply the frequency-
dependent weighting based on Equations (1) and (2) to theVβ ’s, with θ the av-
erage apparent plunge in the interval: the weighted sum of all theVβ ’s provides
the corrected mean plunge-vectorV̄β . The approximate dispersion of theVβ ’s
with V̄β is computed from only theVβ ’s which do not lie between̄Vβ and the
blind circle. Finally, knowing the corrected mean value and standard deviation,
the distributions of the apparentα’s andβ ’s are selected via the Kolmogorov–
Smirnov goodness-of-fit test, the most common being of normal or uniform type.
The simulation of a set is performed in its borehole reference frame as a prod-
uct sampling of the distribution fitted onVα and the distribution fitted onVβ .
The apparentα andβ are converted into Cartesian coordinates. An example of a
fracture set (no. 6 of Table 2) simulated according to this method is displayed in
Figure A1.

APPENDIX B: SLOT SAMPLING PROBABILITY

This reduces to expressing the probability that a 2D Poisson segment is cross-
cut by the slot. To each segmenti we associate the projected interval [xi − ri cosβi ;
xi + ri cosβi ] whose length is 2ri cosβi . We consider that all these intervals
are included in [0;L] since r̄α < L/2. If 1(K) denotes the indicator function
of K, the proportionnα/Iα of the projected intervals including the segment



P1: GAD

Mathematical Geology [mg] pp1107-matg-478591 February 10, 2004 15:14 Style file version June 25th, 2002

Describing the Geometry of 3D Fracture Systems 61

Figure A1. Distribution of fracture poles within a set model characterized by
stochastic independence of azimuth and plunge. This model aims to represent
set n◦6 described in Table 2. A stochastic sample of this model is displayed
in Figure 7(B) together with five other sets.

[L/2− ε; L/2+ ε] is

p = 1

Iα
·

I∑
i=1

1([L/2− ε; L/2+ ε] ⊂ [xi − ri cosβi ; xi + ri cosβi ])

By the strong law of large numbers, this proportion converges almost surely (a.s.)
to

P([L/2− ε; L/2+ ε] ⊂ [X − R · cosB; X + R · cosB]) as Iα →∞

Since

[L/2− ε; L/2+ ε] ⊂ [x − r cosβ; x + r cosβ]

⇔ x ∈ [L/2+ ε − r cosβ; L/2− ε + r cosβ]
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we obtain that the proportionp converges a.s. to

P(X ∈ [L/2+ ε − R · cosB; L/2− ε + R · cosB]) as Iα →∞

where this probability may be expressed as

P =
∫
r

∫
θ

P(x ∈ [L/2+ ε − r cosβ; L/2− ε + r cosβ]) · f (β) · g(r ) · dβ · dr

A helpful theorem on Poisson processes (Ross, 1983) states that givenI the
number of events until timet , the I arrival times have the same distribution as the
order statistics corresponding toI independent variables uniformly distributed on
the interval [0;t ]. In our case, under the condition thatIα events have occurred on
the interval [0;L], the Iα positionsXi are unordered independent random variables
distributed uniformly on [0;L]. Therefore, on any interval [a− ω; b+ ω] included
in [0; L] whereÄ is the random variableR · cosB, the variableX has a uniform
distribution:

P =
∫
r

∫
β

(b+ ω)− (a− ω)

L
· f (β) · g(r ) · dβ · dr

Sinceε is very small compared to the expectationE(Ä) it results that

P=
∫
r

∫
β

2r cosβ − 2ε

L
· f (β) · g(r ) · dβ · dr ≈ 2

L
·
∫
ω

ω · f (ω) · dω = 2E(Ä)

L

Since the random variablesR andB are independent,

P ≈ 2

L
·
∫
r

r · g(r ) · dr ·
∫
β

cosβ · f (β) · dβ (29)

Let us assume thatIα andnα are so large that the following approximations of
expectation by average are valid (it is further referred as A-E approximation):

∫
r

r · g(r ) · dr = 1

Iα

Iα∑
i=1

ri = r̄α (30)

∫
β

cosβ · f (β) · dβ = 1

nα

nα∑
i=1

cosβi and
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∫
β

1

cosβ
· f (β) · dβ = 1

nα

nα∑
i=1

1

cosβi
(31)

Since for Iα large enough, the proportionnα/Iα is approximately equal toP, it
follows that

Iα ≈ nα
P
≈
(

L · n2
α

2r̄α

)/ nα∑
i=1

cosβi (32)


