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Detecting Randomness in Spatial Point Patterns:
A “Stat-Geometrical” Alternative 1

Paulo Sérgio Lucio2 and Nilson Luiz Castelucio de Brito3

There are several methods to test the hypothesis of complete spatial randomness of point patterns.
This work involves a new geometrical-based strategy to detect spatial arrangements, which takes into
account both Euclidean and angular distances, defining a triangle-based network. An asymptotic test
based on the Kolmogorov–Smirnov statistic is proposed to accommodate this situation. To assess the
usefulness of this method (Stat-Geo), simulations based on Monte Carlo procedures, conducted using
SPLUSTM , give satisfactory results with a high degree of accuracy. As expected, the new technique
proposed in this paper, performs better than traditional ones like distance-based or angle-based, since
more information (combining distance and angle) is introduced in the decision-making system. This
approach is a very simple way to offer high efficiency results for a low computational cost. Furthermore,
this alternative method allows barycentric interpolation of the unsampled points into a two-dimensional
simplex (triangular) framework.

KEY WORDS: spatial pattern analysis, spatial clusters, triangulation, barycentric interpolation,
Kolmogorov–Smirnov test.

INTRODUCTION

Spatial point patterns can be observed in many natural phenomena. An important
task of the analysis of spatial point patterns is to examine the dependence between
points. Spatial data analysis is differentiated from typical data analysis by the in-
clusion of spatial information in models. Conventional statistical methods cannot
detect whether there is spatial dependence configuration in the observational units.
Point pattern data arise when locations themselves are the variable of interest. Spa-
tial point patterns consist of a finite number of locations observed in the space,
essentially planar region. Identification of spatial randomness, clustering, or regu-
larity is often the first analysis performed when looking at point patterns (Venables
and Ripley, 1999; S+SpatialStats, 2000). The standard against which spatial point
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patterns are compared is a complete spatial random process. The complete spatial
randomness (CSR) model uses some assumptions and several methods to ascertain
whether there is a tendency for events to exhibit a random, systematic or clustered
pattern (Fig. 1). Under CSR, events are independent and the number of events in
any specified area of fixed size is Poisson distributed (Gatrell and others, 1996).

Figure 1. Three spatial point patterns generated in [0, 1]2. Simulations of
200 points in (A), random field design by a Neyman–Scott stochastic process,
in (B), regular arrangement and in (C), clustered configuration by a Strauss
stochastic process.
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Figure 1. (Continued.)

Rejection of CSR is a prerequisite for any serious attempt to model any observed
pattern. Statistical tests are used to explore a set of data and assist in the formu-
lation of alternatives to CSR (Ripley, 1976; Besag and Newell, 1991; Bonetti and
Pagano, 2001; Rogerson, 1999). In this paper, various methods for the analysis of a
set of event locations are considered; many of these tests for CSR are well known.

One aim of modeling spatial-point pattern is to construct specific hypothesis
test to help explain observed patterns. A new tessellation-based strategy for the
detection of spatial clusters of arbitrary geometric form in a map of geo-referenced
populations and cases is proposed. The present work is based on two fundamen-
tal measures—distance and angle—used to facilitate barycentric interpolation in
preestablished influence zones. Thus, a geometrical tool is presented to analyze
spatial-point patterns. This analysis can be accomplished subdividing areas of a
region into triangles to assess if a spatial clustering structure exists. The basic ideas
of the test are given below.

The design of this study is first to construct elementary cells (simplex struc-
ture) by triangulation of the convex subregionS⊆ R. Next, to evaluate the CSR
hypothesis, test statistic is computed on the basis of the areas of each elemen-
tary triangle, taking into account angles and distances. The performance of the
simplex-based test is illustrated using simulated data.

This study deals with sparsely sampled point patterns. Some points are sam-
pled from an ensemble and the spatial pattern is studied through its local properties,
in the neighborhood of the sampled locations. To distinguish the sampled locations
or the observed occurrences from the arbitrary locations composing the ensemble
or the population, one calls the former events and the latter points.
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Two worked “live” examples where geosciences implications are clear are
included at the end of this paper, one in geomorphology and the other in seismology.

TESTS FOR CSR

CSR is defined by the following criteria: the intensity (the expected number of
points per unit area) of the point pattern does not vary over the bounded sampling
region, A. Hence, the hypothesis of complete spatial randomness (CSR) for a
spatial-point pattern asserts thatH0: The number of events m in any planar region
A with area|A| follows a homogeneous Poisson distribution with meanλ|A|,where
the expected constant intensity isλ. The distribution function is given by

fλ|A|(m) = e−λ|A|(λ|A|)m

m!
. (1)

Them events inA constitute an independent random sample onA and the first-
order properties (the expected intensity) of a spatial point process describe how the
mean number of points per unit area varies through space. Well-known methods
for detecting CSR include Quadrat test, Nearest-Neighbor test, and Angle tests.
Notice that the angle-based tests are useful in regions with terrains that make
distance measurements difficult.

SIMPLE QUADRAT TESTS

The dataset comprise counts of events (m1,m2, . . . ,mk) in k quadrats. A
simple test statistics uses the Poisson distribution characteristics of equal mean
and variance and computes the sample variance-to-mean ratio, or the index of
dispersion (Bailey and Gatrel, 1995; Diggle, 1983; Okabe and Yamada, 2001):

s2
m/m̄,

given by

I = (k− 1)s2
m

m̄
=

∑
n=1,k

(mn − m̄)2

m̄
. (2)

Under CSR,I ∼ χ2
k−1. Hence,I can be compared with percentage points ofχ2

k−1.
Significant large values indicate clustering or aggregation, whereas small values
indicate regularity. However, the main limitation of the quadrats-based test is the
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losts of spatial information: it takes no account the position of quadrats or events
within quadrats and there is no information about the neighborhood.

It is known that the neighborhood information is crucial in geology (locations
of rock-type), seismology (epicenters of earthquakes in space–time clustering anal-
ysis), volcanology (locations of craters in a volcanic field), climatology (occur-
rences of spatial climate extremes), ecology (locations of seedlings in a forest), or
sociology (locations of criminality indices). Hence, concerning to these fields and
several others, the initial exploratory analysis of point patterns frequently requires
a reliable test of the CSR hypothesis.

NEAREST-NEIGHBOR TESTS

In the nearest-neighborhood test, the empirical distribution function of the
point-to-point (or the origin-to-point) nearest-neighbor distances is determined.
Under CSR, the theoretical distribution function is given by Equation (1), where
the intensity (the number of points per unit area) isλ, d is the distance between
events (Besag and Cleaves, 1973; Hines and Hines, 1979), andπd2 is the area of the
circle centered on the target event. Then the probability that no events fall within
a circle of radiusd around any randomly chosen point ise−λπd2

. The distribution
function,F0(m), of nearest neighbor point–event distances for CSR is given by

F0(m) = P{X ≤ m} = 1− e−λπd2
. (3)

The area of the circle,πd2, follows an exponential distribution with parameter
λ. Therefore 2πλ d2 ∼ χ2

2 and 2πλ
∑

d2
i ∼ χ2

2k. The distribution theory for this
test is based on the assumption of independence ofk nearest-neighbor measure-
ments randomly sampled from a regionR. This assumption of independence may
be violated in the case of small numbers of events and if the proportion of them
is large (Diggle, 1983; Diggle, Besag, and Gleaves, 1976). Since the distribution
theory assumes independence, situations in which distances are not independent
will promote inappropriate rejection of the null hypothesis of CSR. In particular,
nearest-neighbor distances for events near the boundary will be biased, so it be-
comes important to apply edge corrections. Nearest-neighbor tests of CSR include
those of Clarke–Evans, Hopkins, Blyth–Ripley; as well as those based on Ripley’s
K function.

Distance sampling refers to a class of methods where the basic sampling unit
is the sample point and the configuration’s information is obtained from distances
to the nearest events. In practice, the proportion of points on a grid that is within
a preestablished distance of the nearest point is computed. For a CSR process
without edge effects, the theoretical distribution of this proportion is given by
F0(d), where the intensity is the number of points per unit area (Bailey and Gatrell,
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Figure 2. Illustrative scheme for the distance-based and the angle-
based CSR tests. In the distance-based tests, the spatial neighbors are the
nearest neighbors on the basis of the distances calculated using the point
locations. The angle-based tests are adaptations of the nearest-neighbor
test and are based on the smallest angle between two vectors that link the
target event (O) to their two nearest neighbors. A slight modification
of the angle-based tests incorporates the information concerning the
third- and the fourth-nearest-neighbor events.

1995). Powerful tests, based on distance from the nearest neighbors, are generated
by theT2 method proposed by Besag and Gleaves (1973) and their modifications
suggested by Hines and Hines (1979).

One can describe the idea of theT2 method, following the scheme shown
in Figure 2, whereO is the target event,P and Q are the first- and the second-
nearest neighbors ofO, and the eventT is denoted by theT2 neighbor, the nearest
neighbor ofP under the constraint that the angleOP̂T is not inferior toπ/2. This
method uses the squared distance betweenOP andPT to calculate the statistics
for the CSR test (Assun¸cão and Reis, 2000; Diggle, Besag, and Gleaves, 1976).

ANGLE TESTS

Whenm≥ 3 events are sampled inside a convex subregionS⊆ R, they span
at leastm measures of anglesθ for each point. Withn sampled points in the
two-dimensional space distributed over a regionR, the sample intensity is defined
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by m/n(m< n). If the intensity is less than 10%, the angles can be considered
independent (Diggle, 1983; Diggle, Besag, and Gleaves, 1976); under CSR,θi ∼
U [0, π ], and the hypothesis can be tested using the Kolmogorov–Smirnov (K–S)
procedure. In clustered patterns, the angle will tend to be smaller than expected
under CSR, whereas in regular patterns, the angle will tend to be larger than
expected under CSR.

The angle test (Assun¸cão, 1994) is an adaptation of the nearest-neighbor test
and is based on the smallest anglePÔ Q, denoted byθ , between two vectors that
link the target event to their two nearest neighbors. Under CSR configurations,
θ ∼ U [0, π ]. Assunção and Reis (2000) propose a modification of the angle test
that incorporates the information concerning the third- and the fourth-nearest-
neighbor events. The eventO is randomly selected,P is its nearest neighbor,
Q, G, andH are the second-, third-, and fourth-nearest-neighbor events, respec-
tively, andT is theT2 neighbor ofP. The additional events span two tests: the
first one uses the anglesθ, θ1 and the second one uses the anglesθ, θ2, θ3. Un-
der CSR conditions, they are uniformly distributed on [0, π ] and independent
(Fig. 2).

An adaptation of the angle test and its modification are very efficient for
determining the structure of a spatial point pattern. However, it is possible to
think of a trivial adaptation of these tests using measures based on Euclidian and
angular distances, taking into account the construction of a tessellated network and
the barycentric coordinates. Hence, in the present work a geometrical alternative
is adopted using the areas of a region subdivided in triangles (elementary cells) to
detect the spatial pattern of an ensemble of points. Here, the spatial-point pattern
pertains to the structural distribution of an ensemble of punctual phenomena or
its triangulated network. The Voronoi region of an object is the region of space
closer to the given object than to any other object of the sample. The set of Voronoi
triangulations for a set of spatial objects, called a Voronoi diagram (also known
as a Dirichlet tessellation or Thiessen polygons), provides a partition of a point
pattern according to its spatial structure. Features of this kind can also be used for
analysis of the underlying point process.

In practice, the triangulated network of a subregion of the two-dimensional
convex envelope must be determined. Letm≥ 3 eventsof a random sample over
a subregionS⊆ R and assume that the two-dimensional convex hull of this sub-
region has area|A| and that the partition produces (M = 2m− ν − 2) triangles,
whereν is the number of extreme points of the two-dimensional partition of the
unity A, with areas|A1|, |A2|, . . . , |A2m−ν−2|, respectively. Under CSR, these ar-
eas are independent and uniformly distributed over the convexA. A sample ofm
punctual events from a population ofn points is required to construct the empirical
distribution of trianglesF̂ M (x). The K-S test is used in a Monte Carlo fashion to
test the hypothesis of CSR; that is, the values of the empirical distribution of the tri-
angles are computed and the maximum deviation betweenF0(x)—the distribution
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under H0—and F̂M (x) is determined:

DM = supx|F̂M (x)− F0(x)|. (4)

Equation (4) can be modified to accommodate a sample size correction factor
√

M
as follows (Appendix):

DM =
√

Msupx|F̂M (x)− F0(x)|. (5)

In the preceding equations,̂F M (x) is the empirical distribution function and
F0(x) = x

A, x ∈ [0, A], where x is the area of each one of the triangles of the
subregion under study. If the points have a regular pattern, these areas will trend
to have equal values, whereas if the points have a cluster pattern, these areas will
tend to have many small values and a few number of large values or vice-versa.

Finally, a significance levelα is chosen that determines the solutionkα in the
following equation:

P{DM ≥ kα|F̂M (x) = F0(x)} ≤ α ⇒ PH0{DM ≥ kα} ≤ α. (6)

An attractive feature of this test is that the distribution of the K-S test statistic
itself does not depend on the underlying cumulative distribution function being
tested. Another advantage is that it is an exact test. Despite these advantages, the
K-S test has two important restrictions:

(1) It applies only to continuous distributions and,
(2) It tends to be more sensitive near the centre of the distribution than at the

tails.

As a consequence of these limitations, many analysts prefer to use the
Anderson–Darling (A–D) goodness-of-fit test. However, the A–D test is avail-
able only for a few specific distributions. Furthermore, one considers the precision
of the K-S is to be satisfactory.

For the numerical implementation, the Delaunay’s triangulation scheme was
used as a tessellation tool whose vertices are events, with the property that no point
falls in the interior of the circle that passes through all three vertices of any triangle
in the triangulated network. The numerical algorithm was adapted to produce the
counterclockwise orientation of the angles around their own barycenter.

TESSELLATION AND ORIENTED AREAS

A closed ensembleK of then-dimensional space<n is convex if for anyx ∈
K , y ∈ K and 0≤ λ ≤ 1, the linear combination{λx + (1− λ)y ∈ K }. A point
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w ∈ K is an extreme point ofK if it may not be written as a convex combination
of k different elements ofw. A two-dimensional convex envelope of a finite set
C = {p1, p2, . . . , pm} of m events of<n is defined as the set of all the convex
combinations of elements ofC:

conv (C) =
{ m∑

i=1

λi pi |λi ≥ 0 and
n∑

i=1

λi = 1

}
. (7)

The polygonC = {p1, p2, . . . , pm} is convex if, and only if, each internal
angle is convex, i.e., if each trianglepi−1, pi , pi+1 has the same polygon orien-
tation. A triangle defines a coordinate system in the plane (Farin, 1993). Let us
considerpi−1, pi , pi+1 noncollinear events onto a triangle1 ⊂ <2. Each point
p ∈ 1 ⊂ <2 can be written as a unique linear combination satisfying

{ 3∑
i=1

λi pi : λi ≥ 0 and
3∑

i=1

λi = 1

}
. (8)

The parameters (λ1, λ2, λ3) are the barycentric coordinates ofp (the relative cen-
troids) in relation to (pi−1, pi , pi+1). For (p, pi−1, pi , pi+1) with p = (x, y) and
pj = (xji , yji ), j = i − 1, i, i + 1, the parameters (λi−1, λi , λi+1) satisfying some
initial conditions are solutions of the system represented below:

λi−1xi−1+ λi xi + λi+1xi+1 = x

λi i−1yi−1+ λi yi + λi+1yi+1 = y

λi−1+ λi + λi+1 = 1

. (9)

The determinant (1) of the solution matrix of the system above is the scalar
2S,

1 =

∣∣∣∣∣∣∣
xi−1 xi xi+1

yi−1 yi yi+1

1 1 1

∣∣∣∣∣∣∣ = 2S, (10)

whereS is the area of the triangle (pi−1, pi , pi+1). The values of each one of the
elements (λi−1, λi , λi+1) can be determined by Cramer’s rule:

λi−1 = Sppi pi+1

Sp′−1 pi pi+1

= Si−1

S
, λi =

Spi−1 ppi+1

Spi−1 pi pi+1

= Si

S
,

λi+1 =
Sp′−1 pi p

Spi−1 pi pi+1

= Si+1

S
. (11)
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Figure 3. Oriented area for an ensemble of three events (Pi−1, Pi , Pi+1) and the relative
barycentric coordinates (λi−1, λi , λi+1) to determine whether unsampled georeferenced
points are inside the triangle defined by the three sampled events and the weights for the
barycentric interpolation.

The system (9) determines oriented areas. The weightsλ j , j = i − 1, i, i + 1
will be positive if and only ifSj , j = i − 1, i, i + 1, andS has the same orienta-
tion (signal). On the basis of barycentric coordinates, it can be determined whether
points are inside a triangle, because if a point is interior its barycentric coordinates
are all positive (Fig. 3). The barycentric linear interpolation can be used to deter-
mine, for continuous phenomena, the unknown values at unsampled points in the
spatial point pattern.

BARYCENTRIC INTERPOLATION

Neighbor relationships can also be weighted. Weights based on barycentric
coordinates are the subject of this section. Given an ensembleC = {x1, x2, . . . , xm}
of events and real valuesf (xi ), i = 1, . . . ,m, a piecewise linear functionF , de-
fined inside an adequate domainD, such asF(x) =∑ f (xi ), i = 1, . . . ,m, can
be obtained. The natural choice for this domainD is a conv(C). However, given
a pointx ∈ conv(C), the calculation ofF(x) is not obvious. The basic idea is to
write x ∈ conv(C) as a disjoint union of an ensemble of triangles (the simplex).
On the basis of the construction of this triangle network, givenx ∈ conv(C), it can
be determined whetherx belongs to a particular trianglepi−1, pi , pi+1, and then
F(x) can be computed using Equations (9), (10), and (11).
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The fundamental step in this approach consists of solving the related problem
of the triangulation of an ensembleC = {x1, x2, . . . , xm} based on the construction
of conv(C). Notice that, on a two-dimensional space, the triangulation does not
exhibit the property of unicity (i.e. there are several ways to triangulate a convex
network). However, it is possible to determine the optimal number of triangles on
the conv(C).

DATA SIMULATIONS AND ANALYSES

The data simulation, construction, and visualization of the two-dimensional
convex, including the ordering of the points, construction of the triangulated net-
work, execution of the Stat-Geo test, and computing the power function are ac-
complished using SPLUSTM. For the simulation set-up,n points are generated
inside an area of a two-dimensional space andm events are randomly sampled
with which to test the CSR hypothesis. The power of the test is obtained through
Monte Carlo simulation of two types of point processes.

Processes with irregular patterns are generated according to a Strauss process
(Strauss, 1975). This process involves a parameter called the inhibition radius. Two
events are considered neighbors if their distance is smaller than this parameter.
Another parameter is the reflected inhibition, 0≤ c ≤ 1; randomness is indicated
when c = 0 (Fig. 4). The Strauss aggregated patterns are producing using the
following procedure: the parent points are distributed randomly in the study region
according to a homogeneous Poisson process with densityλ per unit area; each
parent independently produces a random number of children, following a Poisson
distribution with meanµ¿ λ. For each value of the parameters, 200 realizations
of the punctual process are generated. In each realization, 20 sample points are
independently chosen and the area is standardized. The sample sizes are selected
in such way to keep the sample intensity smaller than 10%, guaranteeing that
observations from different sample points can be considered independent (Diggle,
Besag, and Gleaves, 1976). In the graphics “coordnova” denotes the barycentric
coordinates and the “areat” the areas of each triangle of the network.

Illustration “I”

In this case a binomial process generates a spatially random pattern of 200
points within the given boundary. In essence it is a homogeneous Poisson process
conditional on the given number of points. A random sample of 20 events is selected
(Fig. 5). On the basis of the area of each triangle (total number of triangles is 30 on a
convex constructed with 8 boundary vertices) the modified Kolmogorov-Smirnov
test can be applied. The statistics of the one-sample Kolmogorov-Smirnov test with
hypothesized distribution given by a uniform [0,A = 0.932] distribution isks=
0.2, p value= 0.5941. The null hypothesis is not rejected (i.e., the true cumulative
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Figure 4. Generating spatial point patterns from a Strauss process of nonrandom point designs with
the inhibition radiusr = 0.1, from (A), (the inhibition parameterc = 0.) apparent regularity pattern
to (D) (the inhibition parameterc = 1.) indicating clusters. Two Strauss aggregated cluster pattern on
(E) and (F), where the spatial pattern configurations are immediately obvious.
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distribution function of the triangulated network hasU ∼ [0, A = 0.952], which
means that there is evidence that the original process has a CSR pattern over the
study region). For the alternative pure significance test, the critical value obtained
is 2.165516> 1.96, which means that the hypothesis that the true value of the
distribution parameter is 0.567, the area of the triangulated network, is rejected.
Concerning the power function, the power forθ0 = 0.567 is 0.02037775< 0.05,
which is acceptable (Fig. 5).

A robust first-order scheme based on barycentric coordinates is used to in-
terpolate the observations at elementary cell vertices on a denser grid. For each
unsampled location, the values are evaluated and updated by linear interpolation
using the values at the vertices of the triangle. Notice that the precision of the linear
interpolation can be estimated with the same properties as the kriging methodol-
ogy; and without loss of generality the variogram model can be considered linear.

So, concerning the interpolation letP = (0, 0). This point is clearly inside the
triangle with verticesPi−1 = (0.084,−0.0456),Pi = (0.056, 0.276) andPi+1 =
(−0.074, 0.088), with area equal to 0.047. The barycentric coordinates satisfy the
system (9), and the output of the program gives the solution (12):λ1 = 0.4, λ2 =
0.07,λ3 = 0.53. Taking an associated continuous function into account, one can
obtain an estimate for each point using barycentric interpolation. This value is given
by the expressionT(x) =∑i+1

j=i−1 λ j T(xj ), whereT(xj ) is the attribute onPj .

Illustration “II”

This is the case where a regular lattice process in<2 generates a pattern of
points within the given boundary. In essence this is a regular spatial process. A
random sample of 20 events was selected (Fig. 6). The modified K-S test is applied
to the empirical distribution of the triangle areas (total of 30) to test the hypothesis
that the distribution is uniform [0,A = 0.932]. The test yieldsks= 0.8793 andp
value= 0.0299, suggesting no CSR pattern.

Illustration “III”

A random sample of 20 points is selected from an aggregated spatial process
with a parent from a Poisson distribution with mean equal to 15 and a “big” radius
(r = 0.1). The triangulation pattern resulting from the subdivision of the region
under study (the simplex) is shown in Figure 7. Applying the modified K-S test to
the empirical distribution of the triangle areas producesks= 0.8929 andp value=
0.0396. The hypothesis of CSR is rejected.

Illustration “IV”

A random sample of 20 points is selected from a configuration generated by
the Strauss process with “small” radius (r = 0.01), shown in Figure 8. The K-S test
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Figure 5. Simulating spatial-point patterns from a binomial process, to guarantee randomness. It is
supposed to span a spatially random stochastic process (A),n = 200 points sampled (the intensity
λ = 214.67 points per unity area) on (B), them= 20 events (λ = 35.27 per unity area) under the
new barycentric coordinates, on (C), the triangulated network, on (D), and on (E), the comparison
between the empirical distribution of the triangle areas and the uniform distribution [0, 0.931653],
on (F), the power function over the convex with area 0.57, where the supposed area for each triangle
under uniform distribution is 0.0285.
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Figure 6. Simulating spatial point patterns from a regular lattice process, to guarantee nonrandomness
by means the regularity. It is supposed to span a spatially nonrandom stochastic process (A),n = 200
points sampled (the intensityλ = 227.92 points per unity area) on (B), them= 20 events (λ = 34.63
per unity area) under the new barycentric coordinates, on (C), the triangulated network, on (D), and on
(E), the comparison between the empirical distribution of the triangle areas and the uniform distribution
[0, 0.932], on (F), the power function over the convex with area 0.60, where the supposed area for each
triangle under uniform distribution is 0.02.
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Figure 7. Simulating spatial-point patterns from a cluster process, to guarantee nonrandomness by
means the spatially agglomerated pattern. It is supposed to span a spatially nonrandom stochastic
process (A),n = 200 points sampled (the intensityλ = 315.88 points per unity area) on (B), the
m= 20 events (λ = 41.20 per unity area), on (C), the triangulated network, on (D), the comparison
between the empirical distribution of the triangle areas and the uniform distribution [0, 0.633].

of hypothesis that the triangle areas of the simplex have uniform distribution, yields
ks= 0.6333 andp value= 0.0065. The hypothesis of CSR is rejected suggesting
the test is capable of detecting the spatial nonrandomness even in complex patterns.

TWO APPLICATIONS

The preceding methodology leads to similar results when applied to “live”
data situations.

Case-Study “I”—Geomorphology

In a situation involving limestone karst (hazard assessment associated with
sinkhole occurring in several regions of California (Rowlingson and Diggle, 1993;
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Figure 8. Simulating spatial-point patterns from a cluster process, to guarantee non-randomness by
means the spatially agglomerated pattern. It is supposed to span a spatially nonrandom stochas-
tic process (A),n = 200 points sampled (the intensityλ = 368.04 points per unity area) on (B),
the m= 20 events (λ = 41.89 per unity area), on (C), the triangulated network, on (D), the
comparison between the empirical distribution of the triangle areas and the uniform distribution
[0, 0.596].

Vincent, 1987). An initial random sample of 200 events was selected (Fig. 9) and
subsequently reduced to 20 events. The modified K-S test applied to the empirical
distribution of the areas of the constructed triangles (total of 34) resulted inks=
0.8529 andp value= 0.01935, when the underlying distribution was assumed to
be uniform [0,A = 545]. The hypothesis of CSR was rejected.

Case-Study “II”—Seismology

A similar analysis was conducted on the coordinates of the earthquakes oc-
curring in the San Francisco Bay area from 1962 to 1981.

Initially, a random sample of 200 events was selected (Fig. 10) and subse-
quently reduced to 20. Applying the modified K-S test to the empirical distribution
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Figure 9. Pattern of sinkhole locations in several regions of limestone karst (rock consisting mainly
of calcium carbonate) formations in a sinkhole database of 2360 points were sampled (A), into an
established region and from 200 one has kept 20 events. The conclusion follows the simulation setup
section. There is evidence that the original process has no CSR pattern.

of the constructed triangles (total of 34), again assuming the underlying distribution
to be uniform [0,A =3,347], results inks=0.529 andp value=0.00282. The null
hypothesis is rejected, suggesting there is no evidence for CSR pattern, moreover
the temporal quake processes is clustered in space.
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Figure 10. Pattern of the earthquakes occurring in the San Francisco Bay area from 1962 to 1981. The
database of 2049 points were sampled A, into an established region over a target period and from 200
one has kept 20 representing the latest 3 years. The conclusion follows the simulation setup section.
The null hypothesis is rejected, i.e., there is evidence that the original kept process (200 points) has no
CSR pattern, besides the quake processes is clustering.

CONCLUSIONS

The asymptotic tests that have been proposed, present satisfactory results with
a high accuracy, accepting the CSR hypothesis when the data has effectively this
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configuration, and rejecting the CSR otherwise. This approach seems to be robust
and offer a high efficiency results for a low computational cost in comparison
with the classical and traditional CSR detection. Moreover, our method allows us
to determine an interpolation criterion, similar to kriging methodology since the
variogram has to be linear, based on the barycentric coordinates in influence zones.
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APPENDIX

Often, decisions have to be made in situations where spatial variation plays
an important role and it is crucial to determine the range of an intrinsic influence
concerning cluster-shape patterns.

On the basis of the scope of the statistical test, the null hypothesis H0 of CSR
is founded on the supposition that the spatial stochastic process generated has a
Poisson probability functionY ∼ ℘(λ|A|) that describes the number of points on
the domainA with intensityλ, i.e. the standard models for CSR assume that the
number of eventsY(A) follows a homogeneous Poisson process over the region
A, with expectancy equal toE(Y(A)) = λ|A|. Considering a stationary process
Y(Ai ) ∼ ℘(λ|Ai |), the maximum-likelihood estimator (MLE) of the parameter
λ|Ai | is the sample mean̄Y(Ai ). One can estimate the parameterλ(A), using
statistical tests.

Taking into account the asymptotic properties of the maximum-likelihood
estimators,̂λ|A| ∼ N(λ|A|, I −1

λ|A|) where Iλ|A| is the Fisher’s information, under
H0

Z = λ̂|A| − λ|A|√
Iλ|A|

∼ N(0, 1), (A1)

with Iλ|A| = λ|A|
m andm the number of events inA. The rejection of H0 happens if∣∣Ȳ|A| − λ0|A|

∣∣
λ0|A|

√
m> kα, (A2)

whereλ̂|A|MLE = Ȳ|A| the intensity into the areaA, λ0 is the value ofλ under H0

andkα is the critical value preestablished depending on the significance levelα of
the test, such as

α = P

(
Ȳ|A| − λ|A|√

λ|A|
√

m> kα|H0

)
. (A3)

The power function of this test is given by:

η(λ|A|) = P

(
Z > c+ Ȳ|A| − λ|A|√

λ|A|
√

m||λ|A|
)
. (A4)

In fact, one is interested in the null hypothesis H0, from which a certain
functionF0(x) is the spatial distribution of a triangulated punctual (network) pop-
ulation. Such a hypothesis arises from a theoretical consideration, as a Poisson
spatial process.


