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S U M M A R Y
The strong uncertainty inherent in the traveltime inversion of first arrivals from surface sources
is usually removed by using a priori constraints or regularization. This leads to the null-space
(data-independent model variability) being inadequately sampled, and consequently, model
uncertainties may be underestimated in traditional (such as checkerboard) resolution tests. To
measure the full null-space model uncertainties, we use unconstrained Monte Carlo inversion
and examine the statistics of the resulting model ensembles. In an application to 1-D first-
arrival traveltime inversion, the τ–p method is used to build a set of models that are equivalent
to the IASP91 model within small, ∼0.02 per cent, time deviations. The resulting velocity
variances are much larger, ∼2–3 per cent within the regions above the mantle discontinuities,
and are interpreted as being due to the null-space. Depth-variant depth averaging is required
for constraining the velocities within meaningful bounds, and the averaging scalelength could
also be used as a measure of depth resolution. Velocity variances show structure-dependent,
negative correlation with the depth-averaging scalelength. Neither the smoothest (Herglotz–
Wiechert) nor the mean velocity-depth functions reproduce the discontinuities in the IASP91
model; however, the discontinuities can be identified by the increased null-space velocity
(co-)variances. Although derived for a 1-D case, the above conclusions also relate to higher
dimensions.
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I N T RO D U C T I O N

The inversion of first-arrival traveltimes is a key element of trav-
eltime analysis that provides information on the velocity structures
required for both traveltime interpretation and waveform imaging.
However, it is well known that in most realistic cases with surface
sources and receivers, inversion of the first arrivals is inherently
non-unique (e.g. Aki & Richards 2002, Section 9.4). This non-
uniqueness arises from the possibility of low-velocity zones and
layers ‘hidden’ from the first arrivals by the velocities increasing
with depth (Healy 1963), the very same property that makes refrac-
tion imaging possible. An example of such a layer is the entire lower
crust in the IASP91 model that is hidden in the first arrivals by the
faster Moho arrival. Certain velocity structures have no expression
in the first-arrival traveltimes and thus belong to the null-space of
the forward problem (Menke 1989).

As a result of its ray geometry, the null space of surface refraction
traveltimes contains large model uncertainties that are significant for
interpretation. However, the existing first-arrival inversion methods
usually eliminate this null-space by using a priori constraints or
various types of regularization (e.g. Zelt 1999), and consequently
the resulting model variances may be strongly underestimated. Al-
though the a priori constraints may be justified in retrospect, by

the viability and significance of the resulting interpretations, it is
also desirable to assess the model variance and resolution afforded
by the traveltime data alone (or at least with minimal constraints).
Multivariate, non-linear optimization provides a suitable framework
for such assessment (e.g. Pullammanappallil & Louie 1994; Zhang
& Toksőz M.N. 1998).

In a form suitable for Monte Carlo analysis, the null-space, M0,
of a general traveltime problem is given by

M0 = limM(δt)|δt→0, (1)

where M(δt) is the set of models having traveltime misfits (mea-
sured using an appropriate norm) smaller than δt. In a linear, Gaus-
sian case, the distribution M(δt) can be characterized by the model
covariance matrix that is explicitly partitioned into a null-space con-
tribution and a projection of data errors on to the model space (cf.
Menke 1989, eq. 5.23):

[cov m] = [I − R] [cov ma] [I − R]T + G−g [cov t] G−gT . (2)

Here, cov ma is the a priori model covariance, cov t is the data
(traveltime) covariance, G−g is the generalized inverse, R = G−gG

is the resolution matrix, G is the forward modelling operator, and
T denotes the transpose. Expression (2), however, is not very use-
ful for the unconstrained, non-Gaussian first-arrival inversion for
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which ma and G−g are difficult to define meaningfully. Instead, we
use Monte Carlo analysis to estimate the null-space directly from
the general relation (1), by allowing small (∼0.02 per cent in the fol-
lowing examples) traveltime perturbations, collecting the solutions
that belong to M(δt), and measuring the resulting finite (∼2–3 per
cent) model variances.

Below, Monte Carlo sampling is used to derive ensembles
of models that are practically equivalent to the IASP91 model
(Kennett & Engdahl 1991) in terms of their first-arrival travel-
times. The IASP91 model is an ideal example to study the uncer-
tainty of the first-arrival inversion, with the algorithm for accu-
rate traveltime computation available (Buland & Chapman 1983).
The resulting near-null space velocity variances are measured and
characterized through a model-dependent trade-off between the ve-
locity uncertainty and depth-averaging scalelength. The observed
limitations are related to the fundamental properties of the sur-
face first-arrival inversion and should remain valid for 2- and
3-D cases.

M A P P I N G T H E τ– p T R AV E LT I M E S T O
D E P T H

The ‘tau’ method (Bessonova et al. 1974; hereafter referred to as the
τ–p method; see also Pavlenkova 1982; Buland & Chapman 1983)
provides a convenient framework for 1-D traveltime inversion. The
method is based on a representation of the observed traveltime curve
as an envelope of a family of linear segments (head-waves) charac-
terized by their ray parameters, p, and intercept times, τ (Fig. 1).
For diving waves in a 1-D Earth, the values of τ always increase
with decreasing p, and the dependence τ (p) can be uniquely mod-
elled by a sequence of constant-velocity layers corresponding to the
individual (pi, τ i ) points (i = 1, 2, . . .):

vi = 1

pi
,

zi = 1

ϕi (pi+1)

[
τi+1 −

i−1∑
j=1

z jϕ j (pi+1)

]
, (3)

where zi ≥ 0 is the thickness of the ith layer (i ≥ 0), vi is its velocity,
and

ϕi (p) = 2

pvi

√
1 − (pvi )

2 (4)

Figure 1. Approximation of a traveltime curve by an envelope of a suite of
linear traveltime segments (head waves) t(x) = τ + px . The inset shows the
case of a velocity discontinuity, with an arbitrary set of layers with velocities
1/p (dashed lines; p1 > p > p2) hidden from the first arrivals by the deeper
and faster layer.

is the intercept time per unit of layer depth. The parameters above
are computed in a single pass from the top of the model to its bottom
(Fig. 1), and the resulting stack of layers reproduces the traveltimes
τ (p) exactly. If the value of τ 1 of the first τ (p) point is not zero
(Fig. 1), the velocity v0 of the uppermost layer has to be specified
from additional considerations.

Two sources of errors influence the first-arrival inversion (2). First,
the observed traveltimes can be approximated by the sequences of
(pi, τ i ) points in multiple ways. In particular, whenever a change of
traveltime moveout is observed (and normally interpreted as being
due to a velocity discontinuity), intermediate (pi, τ i ) points can be
introduced, with the corresponding head-waves hidden from the first
arrivals (Fig. 1, inset; cf. Healy 1963). In such a case, inversion (1)
would result in a set of velocity layers that are masked in the first
arrivals by the underlying high-velocity layer. Secondly, even for
smooth traveltime dependencies, different sampling sequences {pi}
can approximate the original traveltimes to acceptable degrees, with
each of them resulting in a significantly different velocity model.

Both of the above types of model uncertainties can be simulated by
multiple inversions (3) with randomized (pi, τ i ) parametrizations.
Random realizations are generated by starting with a parametriza-
tion that is finely (δ p = 1 × 10−4 s km−1) and uniformly sam-
pled in pi and decimating it by randomly dropping (pi, τ i ) points
as long as the resulting piecewise-linear traveltime curve remains
within the acceptable distance from all the data points (Fig. 2). In
the IASP91 example, the acceptable traveltime misfit was taken
50 ms in the L ∞ (the maximum absolute value deviation) sense.
The 50 ms L ∞ bracket was chosen as a very tight norm practically
hardly attainable in regional-scale investigations, and amounting to
only ∼0.02 per cent time errors (at ∼2000 km distances), and thus
the resulting model variance should be due predominantly to the
inversion null-space.

Note that dropping (τ , p) points from the convex traveltime
IASP91 curve always results in traveltime delays (Fig. 2). Also,
the scatter in t(x) patterns changes sharply near 1670 km of offset
(Fig. 2), corresponding to the depth of ∼120 km at which mantle
velocity starts increasing (and, as the inversion shows, hidden lay-
ers become abundant, Fig. 3). The increased number of degrees of
freedom below this depth leads to uneven sampling density of these
areas in our random parametrization.

For a fixed {pi, τ i} parametrization, another type of model error
arises from the possible low-velocity zones embedded within the
layers. To explore this non-uniqueness, the model is also randomized
by allowing a low-velocity zone of thickness γ i zi and velocity vi(1 −
η i ) near the bottom of each layer (0 ≤ γ i ≤ 1 and 0 ≤ η i ≤ 1). The
resulting depth model also accurately predicts the same traveltimes,
provided its zi are computed using eq. (3) with ϕ i (p) replaced with:

ϕ̃i (p) = (1 − γi ) ϕi (p) + γiϕi [p (1 − ηi )]. (5)

During this randomization, if solution (3) cannot be found for any
given γ i and η i , these values are reduced and the inversion repeated
until the value of zi becomes positive.

I N V E R S I O N O F T H E I A S P 9 1
F I R S T - A R R I VA L T R AV E LT I M E S

To generate an ensemble of models that are close to IASP91 in
the first-arrival sense, the randomizations and inversion (3) were
repeated 200 times. The resulting suite of solutions shows signifi-
cant scatter, in particular above the Moho and the 410 and 660 km
discontinuities where the hidden layers are likely (Fig. 3a; Healy
1963). Note that the finest (undecimated) τ–p parametrization of
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Figure 2. Traveltime misfits, relative to IASP91, of 50 (out of 200 generated) traveltime curves resulting from randomization of the regularly gridded τ I (pi)
dependencies. Note that all the models lie within 0–50 ms from the IASP91 first-arrival traveltimes (the peak values slightly exceed 50 ms due to an approximate
implementation of the L ∞ criterion) and thus they may be considered equally acceptable in terms of realistic first-arrival traveltime fit. Also note the change
in density of sampling after ∼1670 km, as discussed in the text.

Figure 3. (a) 20 models out of our suite of 200 models (thin lines) with first-arrival traveltimes deviating IASP91 (dashed line) by no more than 50 ms
(see Fig. 2), the smoothest (Herglotz–Wiechert) model (solid black line) and mean velocity (thick grey line); (b) velocity variance for three depth averaging
scalelengths: no averaging (dotted line), 50 km (dashed line) and 100 km (solid line). Note that the velocity variance decreases with increasing depth averaging.

the IASP91 traveltime curve leads to a smooth model (the Herglotz–
Wiechert solution) without first-order velocity discontinuities (black
solid line in Fig. 3a). By allowing up to 5 per cent additional velocity
decreases within half of the layer thickness (η i ≤ 0.05 and γ i ≤ 0.5
in eq. 5), we obtain yet stronger model uncertainty (Fig. 4).

Strong (∼2–3 per cent) velocity variations (Fig. 3), compared
with ∼0.02 per cent perturbations of the traveltimes, suggest that
the observed model variances are dominated by the null space (M0

in eq. 1). Repeating the above modelling with smaller, 10 and 30 ms
L ∞ traveltime misfits confirms that the observed model scatter is
nearly independent of data errors (Fig. 5).

From the standpoint of the first-arrival traveltime inversion, all
the models in Figs 3 and 4 are equally acceptable within the chosen
tight traveltime fit (Fig. 2). In particular, there is no reason to prefer
the smoothest model, as it is actually one of the most dissimilar to the

‘true’ IASP91 velocity profile. An alternative to giving preference
to a particular (constrained) inversion could be viewing the first-
arrival inversion as only constraining a set of possible solutions that
can be statistically characterized.

The attributes (statistics) used do describe the ensemble of pos-
sible models should include depth averaging. At almost any depth,
velocities are widely scattered (Figs 3 and 4), and depth averaging
would tighten their estimates. Also, only spatially averaged quanti-
ties are of significance for the interpretation of field refraction data.
The depth-averaging scalelength is thus a free attribute of the model,
and Figs 3(b) and 4(b) illustrate the dependence of velocity variance
on this attribute. Note that the ensemble mean velocities are close to
the Herglotz–Wiechert solution (only the mean values without depth
averaging are shown in Fig. 2a). Velocity variances (Figs 3b and
4b) show strong trade-off with the averaging scalelength. Without
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Figure 4. (a) 10 models out of 200 generated as in Fig. 3 but allowing 5 per cent low-velocity zones within each layer. (b) Velocity variance for these 200
models, using three averaging scalelengths as in Fig. 3.

Figure 5. Ensembles of first-arrival traveltime models using 50-(Fig. 3), 30- and 10-ms L ∞ traveltime misfits. Although some sensitivity to data errors is
present, the model distributions are close, suggesting that they are dominated by the null-space term in eq. (2).

averaging, velocity uncertainties above the Moho and both transition
zone discontinuities are approximately 0.2 (Fig. 3b) or 0.3 km s−1

if low-velocity layers are considered (Fig. 4b), and drop to accept-
able values of 0.1 km s−1 when 50 km depth averaging is applied
(Fig. 3b). Note that as the velocity uncertainties increase above the
discontinuities and near 160 km depth where the velocity gradient
starts increasing (Fig. 3b), the optimal depth averaging could also
be depth-dependent.

D I S C U S S I O N

The statistical interpretation of first-arrival traveltime inversion im-
plies that its results could only be interpreted in terms of ensemble-
and depth-averaged velocity values. Spatial averaging is common
to all geophysical measurements, and in seismics, this averaging
is required primarily by wave phenomena. In ray-theoretical inver-
sion, the finite-bandwidth effects can be approximated by simulat-

ing ray multipathing within Fresnel tubes (Yomogida 1992). For
surface refraction first-arrival traveltimes, multipathing results in
depth-velocity model uncertainties enhanced by layers hidden above
the velocity discontinuities (Fig. 3) and particularly when moderate
low-velocity sublayering is allowed (Fig. 4). The resulting models
are thus sensitive to the procedures of their derivation and a priori
constraints, and the statistical approach aims at characterizing this
sensitivity.

The extents of the areas of velocity uncertainties caused by the
discontinuities in Fig. 3 suggest heuristic scaling relationships use-
ful for estimation of approximate depth-velocity uncertainties. Both
the velocity δv) and depth extents (δz) of the scatter regions above a
discontinuity (Fig. 3b) should be roughly proportional to the veloc-
ity contrast (�v) across it, with δz also being inversely proportional
to the average velocity gradient (of course, this approximation can
be valid for positive velocity gradients only). By choosing the ap-
propriate dimensionless constants to match the results in Fig. 3, we
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Figure 6. Resolution test by perturbing the velocities of four layers (indicated in a) in the model by: (b) 1 per cent, (c) 2 per cent, (d) 3 per cent, (e) 3 per
cent, with 1 per cent contributions of stochastic low- velocity zones, as in Fig. 4. Note the dependence of resolution on the velocity gradient and perturbation
amplitude. Arrows indicate the artefacts due to non-linearity of the inversion.

Figure 7. Velocity covariance matrix for the suite of models shown in Fig. 3 smoothed using a 50 km depth scalelength. Grey shading corresponds to the
square root of the covariance: δv(z1, z2) = sgn[cov(z1, z2)]

√|cov(z1, z2)|. Left: negative covariances corresponding to anticorrelated velocity uncertainties;
right: positive covariances. Note the extended off-diagonal regions of anticorrelated velocity uncertainties across the discontinuities. The background of patchy
low-amplitude noise is due to a limited Monte Carlo sampling of the covariance.

estimate:

δv ≈ 0.3�v,

δz ≈ 0.5
�v

dv/dz
.

(6)

Hence, for an average crust (�v ≈ 1 km s−1 near the Moho, dv/dz
≈ 0.03 s−1; Christensen & Mooney 1995), the Moho would mask
∼17 km of the lower crust from the first arrivals. The resulting
velocity scatter would be of approximately 0.3 km s−1 that could
be reduced by an appropriate choice of depth averaging (Fig. 3b).
To account for these differences in the imaging environments of the

upper and lower crust, depth-variant averaging and/or regularization
could be used (Schueller et al. 1997).

Surface first-arrival traveltime inversion is both underconstrained
and non-linear, and thus its results depend on the a priori con-
straints or algorithm parameters. Impulse-response resolution and
variance estimates, such as the checkerboard tests commonly used
in traveltime tomography, may significantly underestimate velocity
uncertainties. These tests actually measure the linear response of the
chosen inversion algorithm to data perturbations (the second term
in eq. 2) and do not sample the null space.
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To illustrate this problem, consider a 1-D impulse-response reso-
lution test using 1, 2 and 3 per cent velocity increases (low-velocity
layers of <3 per cent velocity contrasts are not reproduced at all)
within selected layers followed by forward τ–p modelling and in-
version (Fig. 6). As a result of the use of the regularized algorithm
(without (τ p) decimation and resulting in the smooth solution in
Fig. 3), velocity perturbations are reproduced reasonably well. How-
ever, the 2–3 per cent null-space velocity variance occurring (practi-
cally) without data perturbations (Figs 3–5) would overwhelm these
responses. Thus, the ability of a regularized (i.e. ignoring the null-
space) algorithm to resolve a particular model feature still does not
mean that this feature can be unambiguously constrained from the
data. Although described in 1-D, a similar null-space should also be
present in greater dimensions.

The fidelity of reproduction of trial velocity perturbations
(Fig. 6a) appears to be higher where the velocity gradients are
stronger, whereas depth smearing is also increased in the same areas
(Figs 6b–d). With ∼2 per cent velocity perturbations, non-linear be-
haviour of the resolution matrix becomes apparent, and secondary
lobes appear in low-gradient areas (marked with arrows in Figs 6c
and d). The addition of 1 per cent, randomly distributed low-velocity
zones (eq. 5) also introduces approximately 1 per cent of scatter into
the resolution kernel (Fig. 6e). Since the multiparameter τ–p inver-
sion (5) is relatively free from a priori constraints, these observations
should relate to surface first-arrival inversion in general.

Reduction of the ensembles of alternative models to a set of
depth-dependent summary attributes helps to visualize the depth
dependence of the velocities and their uncertainties (Figs 3 and
4). However, such representation still does not reflect the null-
space velocity covariances at different depth levels. For a se-
lected depth-averaging scalelength, these covariances can be esti-
mated through ensemble averages (denoted by 〈· · ·〉): cov(z1, z2) =
〈[v(z1) − 〈v(z1)〉][v(z2) − 〈v(z2)〉]〉. Although covariances also rep-
resent only a part of the velocity trade-off in model (3), they reveal
the dominant correlations between the velocities at different depth
levels. Note that the velocities anticorrelate across the discontinu-
ities in the IASP91 model (Fig. 7, left).

Both the smoothest and ensemble-mean solutions (thick curves
in Fig. 3) suggest that first-order velocity discontinuities cannot be
imaged from the first arrivals alone. Additional constraints, such as
the maximum velocity gradients, reflections or partitioning of the
model into layers including the positions of the associated cross-over
points (Dobrin & Savit 1988) are needed to resolve the hidden layers
above the discontinuities. Nevertheless, velocity variances (Fig. 3b)
and covariances (Fig. 7) show correlations with the discontinuities
in the true model—velocity variance increases above the disconti-
nuities while the negative covariance is increased across them. Note
that the ‘true’ IASP91 velocity profile could be loosely described
as the low-velocity envelope of the distribution of the first-arrival
models (Fig. 3). Velocity variance also increases in the areas of in-
creased velocity gradients (near 130–180 km depth in Fig. 3), and
thus it could be a good indicator of velocity and velocity gradient
contrasts that may be less apparent from the individual inversions.

The discussion above showed that with a priori constraints re-
laxed, surface first-arrival inversion exhibits strong uncertainty that
can be characterized statistically via Monte Carlo parameter test-
ing. Re-evaluation of some of the existing interpretations may be
required in order to estimate the extent and implications of this
problem in inversions of real data. More tests are needed to refine
the estimates (6) and to establish the character of velocity uncer-
tainties in 2- and 3-D cases. Reflections add critical constraints to
traveltime interpretations; however, even with reflection traveltimes

included, significant uncertainties caused by hidden (including the
low-velocity) layers still remain.

C O N C L U S I O N S

Null-space of surface first-arrival inversion has a major impact on
the resulting model variance, as illustrated on the example of 1-D
IASP91 model. Although in a checkerboard test, regularized in-
version appears to reproduce positive velocity perturbations ade-
quately; null-space velocity fluctuations exceed these responses in
many cases of interest. Consequently, the amount of model detail
recoverable from the data by regularized and linearized tomography
may be overestimated. In contrast, non-linear, unconstrained, Monte
Carlo inversion allows quantitative assessment of the full model vari-
ance, including the null-space contribution. Velocity variances trade
off with the depth averaging scalelength and depend on the velocity
structure, with increasing variances above velocity discontinuities.
Although velocity discontinuities cannot be established from a sin-
gle unconstrained inversion of the first-arrival traveltimes, they can
be associated with the zones of increased velocity variance. The
results derived for 1-D should remain applicable to the first-arrival
traveltime inversion in higher dimensions.
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