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Using Bayesian Statistics to Capture the Effects
of Modelling Errors in Inverse Problems1

J. N. Carter2

When the parameters of a numerical model are adjusted, so that the predictions of the model match
measurements from the real system, we need to take account of two sources of errors. These being mea-
surement errors and modelling errors. Measurement errors are commonly considered, and a number of
different approaches are in general usage, the most common being the weighted sum of squares method.
In this paper the standard Bayesian equation, used for inverse problems, is reformulated so as to make
it more intuitive to use. This allows the inclusion of both a modelling error and correlations between
measurements to be carried out easily. The results are tested on a simple one-parameter numerical
model and a cross-sectional model of a petroleum reservoir. In the first case the proposed error model
appears to work well. In the second case it appears that the objective function is multimodal, leading to
multiple acceptable solutions. The results of this paper are important to those whose numerical models
are thought to contain significant modelling error. This encompasses many areas of modelling related
to earth science and engineering.
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INTRODUCTION

Any numerical model of a physical system is, in some sense, only an approxima-
tion. For example the model will often require simplifying assumptions, in which
detailed descriptions are replaced by averaged descriptions. What matters is how
well the predictions of the model compare with the behavior of the real system. In
other words, what is the uncertainty associated with each prediction?

The uncertainty in a prediction ultimately derives from one of three sources:
the simplifying assumptions used in the model; the measurements used to cali-
brate the free parameters of the model; and the numerical schemes used to solve
the equations that constitute the model. The first and last of these are usually as-
sociated with modelling error, the second is usually associated with measurement
error. Measurement error is generally well understood and quantified. Modelling
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errors however are almost impossible to quantify. For this reason it has become
common practice among many authors to only deal with the measurement errors
(e.g. Floris and others, 2001). The classic book that describes the application of
Bayesian statistics to inverse problems is by Tarantola (Tarantola, 1987). In which
the necessary functional forms are described for a range of measurement and mod-
elling errors. The weakness of the book appears to be that no method is given to
obtain an estimate of the parameters that describe the modelling error, or correla-
tions among the measurement data. There have recently been a number of papers
that attempt to quantify the modelling error (DeVolder and others, 2002; Glimm
and others, 2001), and the correlation among measurements (Aanonsen and others,
2002; Hauge, Arntzen, and Soleng, 2002; Wu, Reynolds, and Oliver, 1999).

In this paper the standard Bayesian formulation of the inverse problem, as
described by Tarantola, is reformulated in an iterative form. This then allows us
to construct estimates of both the modelling error and correlations among the
measurements.

The results of the calculations are tested on two simple models: the first is
a simple curve fitting problem involving the determination of one parameter; the
second is a cross-sectional model of an oil reservoir, which involves a sequence
of alternating good and poor quality sands and a fault. The unknowns are the sand
permeabilities and the throw on the fault.

BAYESIAN ANALYSIS

In a Bayesian framework we wish to calculate the following:

P(m | µn
o
, σ n,M) =

∫
P(m, µn

t
| µn

o
, σ n,M)dµn

t
(1)

WhereP(. | .) is a probability distribution function (pdf) that describes our beliefs
about a set of parameters given some information. The parameters for which we
wish to define the pdf arem, and the model to which they relate isM . This model
includes all of the information necessary to take an instance of the parameters,m,
and to generate a set of predictions for the real system behaviour. The combination
of an instance ofm andM will be referred to as a realization of the model. The
model includes things like: the algorithms used to construct the numerical model
from the parameters; controls that are used on the real system; the equations that
need to be solved; and the numerical algorithms that are used.µn

o
are the observed

measurements, andσ n are parameters that define the uncertainty in the associated
unobserved true measurements,µn

t
. It could be argued thatσ n is not needed until a

model for the measurement error is introduced. We prefer to includeσ n separately
as this enables us to be clear as to what information is available when defining a pdf,
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it is also assumed throughout that the statistical model describing the uncertainty
generated by the measuring device is known. The notation used is defined in the
nomenclature.

Using a combination of the product rule, Bayes rule, and the following
simplifications:

• P(m | µn
t
, µn

o
, σ n,M) = P(m | µn

t
,M),µn

o
is an estimate ofµn

t
and so can

be disregarded whenµn
t

is available.
• P(µn

o
| µn

t
, σ n,M) = P(µn

o
| µn

t
, σ n), the measurement error model does

not depend on the system model.
• P(µn

t
| σ n,M) = P(µn

t
| M), our prediction ofµn

t
does not depend on the

measurement device.

We can write, as shown in Appendix A,

P(m | µn
o
, σ n,M) = P(m | M)

∫ P
(
µn

t
| m,M

)
P
(
µn

o
| µn

t
, σ n

)
P
(
µn

o
| σ n,M

) dµn
t

(2)

This equation is equivalent to that given by Tarantola (Tarantola, 1987, Eq. 6,
page 61). The problem in using this equation can be the difficulty in defining the
correlations within the pdf’s, and carrying out the multidimensional integrations.

If we wish to include an additional measurement, and its uncertainty,µt,(n+1)

andσ(n+1), then

P
(
m | µn+1

o
, σ n+1,M

) = ∫ P
(
m, µt,(n+1) | µn

o
, σ n, µo,(n+1), σ(n+1),M

)
dµt,(n+1)

(3)
using a combination of the product rule, Bayes rule, and the following
simplifications:

• Sinceµo,(n+1) is an estimate ofµt,(n+1), then it can be disregarded when
µt,(n+1) is available, hence

P
(
m | µn

o
, σ n, µt,(n+1), µo,(n+1), σ(n+1),M

) = P
(
m | µn

o
, σ n, µt,(n+1),M

)
• Knowing the measurement device to be used does not help us to estimate

a value forµt,(n+1), therefore

P
(
µt,(n+1) | µn

o
, σ n, σ(n+1),M

) = P
(
µt,(n+1) | µn

o
, σ n,M

)
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• The measurement error model does not depend on previous measurements
or the system model, so

P
(
µo,(n+1) | µn

o
, σ n, µt,(n+1), σ(n+1),M

) = P
(
µo,(n+1) | µt,(n+1), σ(n+1)

)
We can obtain, as shown in Appendix B,

P
(
m | µn+1

o
, σ n+1,M

) = P(m | M)
n+1∏
i=1

Qi (4)

where

Qi =
∫ P

(
µt,(i ) | m, µi−1

o
, σ i−1,M

)
P
(
µo,(i ) | µt,(i ), σ(i )

)
P
(
µo,(i ) | µi−1

o
, σ i−1, σ(i ),M

) dµt,(i ) (5)

By comparing Equations 2 and 4, we can see that the multidimensional in-
tegral involving pdf’s, that may be correlated, has been reduced to a product of
one-dimensional integrals. This has been achieved using three very limited sim-
plifications, which means that the final result can be considered as equivalent to
the original version.

This change is important for practical problems where the number of mea-
surements may be in the 100’s to 1000’s. Carrying out these high-dimensional
integrals, as required by Equation 2, is difficult, as the pdf’s may be correlated. In
the reformulated version this problem has been circumvented. The consequence
of this modification will be considered later.

DEFINITION OF THE PDF’S

Each of the integrals,Qi , defined by Equation 5 contain three pdf’s whose
functional form needs to be selected before we can make use of Equation 4. In
this section we examine each of the pdf’s in turn and consider possible functional
forms. This will then allow us to test the proposed methodology in a later section.
Observation a prior pdf:

P
(
µo,(i ) | µt,(i ), σ(i )

)
This is the measurement error. It is commonly assumed to be Gaussian

P
(
µo,(i ) | µt,(i ), σ(i )

) = 1√
2πσ(i )

exp

(
−
(
µo,(i ) − µt,(i )

)2
2σ 2

(i )

)
(6)

P
(
µo,(i ) | µi−1

o
, σ i−1, σ(i ),M

)
We are allowed to use: all the previous measurements; we know the measurement
device and its statistics; we also know the system modelM , but not the system
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model parametersm. In setting this pdf we can use knowledge about the system,
such as when wells are shut-in, as well as more general knowledge.

Since this term is independent of bothm andµt,(i ), it will only appear as
a constant in any calculations. Provided that the measurement is not considered
completely implausible, then it will not have any effect on the analysis. The simplest
assumption that we can make is the pdf is a uniform distribution over some range.
Modelling errors pdf:

P
(
µo,(i ) | µi−1

o
, σ i−1, σ(i ),M

) = {ai µi min < µo,(i ) < µi max

0 otherwise
(7)

P
(
µt,(i ) | m, µi−1

o
, σ i−1,M

)
This is the pdf that should cause us problems. Since this is where all the issues

related to the correlations in Equation 2, and the modelling errors get placed. We are
asked to define a pdf for the true measurement given: the previous measurements;
the measurement uncertainty parameters; the prediction of the system model for
all previous measurements; and the prediction of the required measurement by
the system model. There are a number of error models that might be considered.
Below are those that we consider most useful.

No Modelling Error

The assumption here is that there is no modelling error and that the result of
using the system model (M andm) is exact. If we defineω(i ) to be the prediction
by the system model of the measurementµt,(i ), then

P
(
µt,(i ) | m, µi−1

o
, σ i−1,M

) = δ(ω(i ) − µt,(i )
)

(8)

The integral termQi therefore becomes

Qi = 1

ai

1√
2πσ(i )

exp

(
−
(
µo,(i ) − ω(i )

)2
2σ 2

(i )

)
(9)

It follows that Equation 4 can be written as

P
(
m | µn+1

o
, σ n+1,M

) = P(m | M)
n+1∏
i=1

1

ai

1√
2πσ(i )

exp

(
−
(
µo,(i ) − ω(i )

)2
2σ 2

(i )

)
(10)
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This implies that when the model is exact, we do not need to take into account
any correlation between the measurements. IfP(m | M) is a uniform pdf and
theσ(i ) are independent of the measured values, then by taking the logarithm of
P(m | µn+1

o
, σ n+1,M) one obtains a weighted sum of squares as the objective

function. This is the approach taken by many people when trying to fit a function
to some data, even if the assumption of the model being exact is unlikely to be
appropriate. (This assumption is considered by Tarantola (Tarantola, 1987, p. 57).

Uniform Distribution

The assumption here is that the true measurementµt,(i ), lies somewhere be-
tween a lower and an upper bound with uniform probability. Hence

P
(
µt,(i ) | m, µi−1

o
, σ i−1,M

) = {bi µi min < µt,(i ) < µi max

0 otherwise
(11)

andQi is hence given by

Qi = bi

ai

1√
2πσ(i )

∫ µi max

µi min

exp

(
−
(
µo,(i ) − µt,(i )

)2
2σ 2

(i )

)
dµt,(i ) (12)

Correlations between measurements is expressed in the choice of bounds.
The more correlated the measurements, then the narrower the range of integration.

Normal Distribution

The assumption here is that the modelling error is normally distributed around
the predicted value,

P
(
µt,(i ) | m, µi−1

o
, σ i−1,M

) = 1√
2πe1,(i )

exp

(
−
(
ω(i ) − µt,(i )

)2
2e2

1,(i )

)
(13)

andQi is hence given by

Qi = 1

ai

1

2πσ(i )e1,(i )

∫ ∞
−∞

exp

(
−
(
µo,(i ) − µt,(i )

)2
2σ 2

(i )

)

× exp

(
−
(
ω(i ) − µt,(i )

)2
2e2

1,(i )

)
dµt,(i ) (14)
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Wheree1,(i ) is a parameter of the modelling error model. For more correlated
measurements then a smaller value ofe1,(i ) should be selected. (This assumption
is considered by Tarantola (Tarantola, 1987, p. 58).

Constant Error

The assumption here is that there is a constant offset between model and true
measurement.

P
(
µt,(i ) | m, µi−1

o
, σ i−1,M

) = δ(ω(i ) + e2,(i ) − µt,(i )
)

(15)

henceQi is given by

Qi = 1

ai

1√
2πσ(i )

exp

(
−
(
µo,(i ) − e2,(i ) − ω(i )

)2
2σ 2

(i )

)
(16)

Wheree2,(i ) is a parameter of the modelling error model. This equation implies that
any correlations between measurements will be reflected by our ability to choose
the value ofe2,(i ).

Fractional Error

The assumption here is that the error is a constant fraction of the prediction

P
(
µt,(i ) | m, µi−1

o
, σ i−1,M

) = δ(ω(i )
(
1+ e2,(i )

)− µt,(i )
)

(17)

therefore

Qi = 1

ai

1√
2πσ(i )

exp

(
−
(
µo,(i ) − ω(i )

(
1+ e2,(i )

))2
2σ 2

(i )

)
(18)

Wheree2,(i ) is a parameter of the modelling error model. Again this implies that
any correlations between measurements will be reflected by our ability to choose
the value ofe2,(i ).

Constant+ Normal Error

Finally we consider a combination of a constant offset and a random Gaussian
error

P
(
µt,(i ) | m, µi−1

o
, σ i−1,M

) = 1√
2πe1,(i )

exp

(
−
(
ω(i ) + e2,(i ) − µt,(i )

)2
2e2

1,(i )

)
(19)
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andQi is hence given by

Qi = 1

ai

1

2πσ(i )e1,(i )

∫ ∞
−∞

exp

(
−
(
µo,(i ) − µt,(i )

)2
2σ 2

(i )

)

× exp

(
−
(
ω(i ) + e2,(i ) − µt,(i )

)2
2e2

1,(i )

)
dµt,(i ) (20)

Wheree1,(i ) and e2,(i ) are parameters of the modelling error model. This error
model is essentially the same as that described in equation 14, except the mean of
the distribution is now nonzero.

IDENTIFYING THE ERROR MODEL

In a strictly Bayesian framework the constants,e1,(i ) ande2,(i ), in the model
of the “modelling error,” would be handled as uncertain parameters. Whose ef-
fects would be dealt with through the normal “marginalization” framework. The
narrower the range of significantly nonzero pdf values, the more correlated the
measurements are. For the purposes of this paper we will seek a maximum likeli-
hood estimate for the constants, we are implicitly assuming that the measurements
are highly correlated, i.e. we seeke∗(i ) = (e∗1,(i ), e

∗
2,(i )) such that

P
(
e∗(i ) | µi−1

o
, σ i−1, E

) = maxP
(
e(i ) | µi−1

o
, σ i−1, E

)
(21)

where

E = error model+ system realization(M +m)

The pdf is given by

P
(
e(i ) | µi−1

o
, σ i−1, E

) = ∫ P
(
e(i ), µ

i−1
t
| µi−1

o
, σ i−1, E

)
dµi−1

t
(22)

which is equivalent to Equation 2, but with different parameters and model. We
can therefore write

P
(
e(i ) | µi−1

o
, σ i−1, E

) = P
(
e(i ) | E

) i−1∏
j=1

Rj (23)
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where

Rj =
∫ P

(
µt,( j ) | e(i ), µ

j−1
o
, σ j−1, E

)
P
(
µo,( j ) | µt,( j ), σ( j )

)
P
(
µo,( j ) | µ j−1

o
, σ j−1, σ( j ), E

) dµt,(i ) (24)

This time we would argue that the error model is exact, therefore

P
(
µt,( j ) | e(i ), µ

j−1
o
, σ j−1, E

) = δ(Ä( j ) − µt,( j )
)

(25)

whereÄ( j ) is the prediction ofµt,( j ) after applying both the system model and the
error model. Therefore

Rj = 1

cj

1√
2πσ( j )

exp

(
−
(
µo,( j ) −Ä( j )

)2
2σ 2

( j )

)
(26)

Given thate(i ) is of low order (one or two in our examples), it should be
relatively simple to obtain the maximum likelihood estimate.

NUMERICAL EXPERIMENT ON A ONE-DIMENSIONAL PROBLEM

To illustrate the value of accounting for the unknown modelling errors,
a simple one-parameter model is considered. From a known analytical model,
f (x) = (x2+ 0.1x)2, six function values were created, to these a random Gaussian
error was subtracted. The mean and the standard deviation of the error both being
5% of the function value, the data used is given in Table 1. It is then assumed that
the most appropriate model is of the formxy, wherey is a real number, and one
needs to obtain the likelihood function fory.

To use the standard Bayesian approach needs the pdf’s mentioned in
Equation 2 to be defined. The author, for one, does not feel confident about how

Table 1. Data for the One-Parameter Curve
Fitting Problem

x f (x) Measurement

2 17.64 17.103
3 86.49 78.951
4 268.96 254.320
5 650.25 642.377
6 1339.56 1254.231
7 2470.09 2367.028
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to define the correlated pdf’s required for this problem. Working with the revised
Bayesian approach as defined by Equation 4, seems easier to handle. We use
Equations 6 and 7 with the following simplifications:

P
(
µo,(i ) | µt,(i ), σ(i )

) = 1√
2π (0.05µt,(i ))

exp

(
−
(
µo,(i ) − µt,(i )

)2
2
(
0.05µt,(i )

)2
)

(27)

which implies that the standard deviation of the error model associated with a
measurement is 5% of the unobserved true measurement.

P
(
µo,(i ) | µi−1

o
, σ i−1, σ(i ),Y

) = ai (28)

which is a uniform pdf for the measurementµo,(i ) given all the previous mea-
surements and a realization,Y, of the proposed model. We consider two possible
situations: the first uses the naive approach of assuming an exact model, which
will be similar to a weighted sum of squares approach; the second will assume that
the error is a fraction of the predicted value, this was chosen since in the author’s
opinion this is likely to be a good error model to choose for this problem.

1. The first being the assumption of there being no modelling error. Then the
pdf is given by

P
(
y | µn

o
, σ n,Y

) = P(y | Y)

×
n∏

i=1

{
1

ai

1√
2π
(
0.05ω(i )

) exp

(
−
(
µo,(i ) − ω(i )

)2
2
(
0.05ω(i )

)2
)}
(29)

The resulting pdf fory is given in Figure 1.
2. The second to be considered, is that for the error to be a constant factor of

the prediction. Therefore

P
(
µt,(i ) | y, µi−1

o
, σ i−1,Y

) = δ(ω(i )
(
1+ e∗2,(i )

)− µt,(i )
)

(30)

wheree∗2,(i ) is a maximum likelihood estimate based on the previous (i − 1)
measurements. Therefore

Qi = 1

ai

∫
δ
(
ω(i )

(
1+ e∗2,(i )

)− µt,(i )
)

× 1√
2π
(
0.05

(
1+ e∗2,(i )

)
ω(i )

) exp

(
−
(
µo,(i ) − µt,(i )

)2
2
(
0.05µt,(i )

)2
)

dµt,(i )

(31)
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Figure 1. (A) The posterior pdf’s obtained for the one-parameter model, (B) the maximum
likelihood estimate of the error model parameter,y.

it follows that

P
(
y | µn

o
, σ n,Y

) = P(y | Y)×
n∏

i=1

{
1

ai

1√
2π
(
0.05

(
1+ e∗2,(i )

)
ω(i )

)
× exp

(
−
(
µo,(i ) −

(
1+ e∗2,(i )

)
ω(i )

)2
2
(
0.05

(
1+ e∗2,(i )

)
ω(i )

)2
)}

(32)

Wheree∗2,(i ) is chosen such that

P
(
e∗2,(i ) | µi−1

o
, σ i−1, E

) = maxP
(
e2,(i ) | µi−1

o
, σ i−1, E

)
(33)

and E = error model+ function realization (y+ Y). Using Equation 4
we can write this as

P
(
e2,(i ) | µi−1

o
, σ i−1, E

) = P
(
e2,(i ) | E

) i−1∏
j=1

Rj (34)

where

Rj =
∫ P

(
µt,( j ) | e2,(i ), µ

j−1
o
, σ j−1, E

)
P
(
µo,( j ) | µt,( j ), σ( j )

)
P
(
µo,( j ) | µ j−1

o
, σ j−1, σ( j ), E

) dµt,( j )

(35)
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This time we assume that the error model is exact, hence

P
(
µt,( j ) | e2,(i ), µ

j−1
o
, σ j−1, E

) = δ(Ä( j ) − µt,( j )
)

(36)

and hence

Rj = 1

aj

1√
2π
(
0.05

(
1+ e2,( j )

)
ω( j )

) exp

(
−
(
µo,( j ) −

(
1+ e2,( j )

)
ω( j )

)2
2
(
0.05

(
1+ e2,( j )

)
ω( j )

)2
)

(37)

The pdf obtained is shown in Figure 1.

From Figure 1(A) one can see that when no account is taken of the modelling
error we obtain a very localized pdf. The wider pdf comes from the second method
of analysis. The maximum likelihood estimate obtained from method 1 isy =
3.996, using this value we obtain a prediction off (10)≈ 9908. The true value
being f (10)= 10201. The maximum likelihood estimate gained from method 2
is y = 4.092, with the modelling error parameter (obtained from the maximum
likelihood estimate using all but one of the measurements) having a value ofe∗ =
−0.17769, the maximum likelihood estimate,e∗, for a range of model parameter,
y, is given in Figure 1(B). The prediction, using this value ofe∗ is f (10)≈ 10163.

On the left hand side of Figure 2 is a plot of the cumulative probability function
plotted against the prediction forf (10). One can see that method 2 is predicting a
much narrower range forf (10) compared to method 1, despite method 2 having
a much wider range of nonzero pdf values. On the right hand side of the figure we
see how the prediction forf (10) varies over the same range fory. The horizontal
line is the true value (10201), the highly sloping line is the method 1 estimate, and

Figure 2. (A) The cumulative probability distributions for the prediction off (10), (B) prediction
of the f (10) for a range of parameter values.
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the gently sloping line is the method 2 estimate. We can see that method 2 gives
a much narrower range than method 1. The probabilistic expectation forf (10)
is: for method 1〈 f (10)〉 = 9939.32, with a standard deviationσ = 316.50; for
method 2〈 f (10)〉 = 10187.24, with a standard deviationσ = 263.51.

NUMERICAL EXPERIMENT ON A CROSS-SECTION MODEL

The second example that we consider is a cross-sectional model of a simple
layered reservoir with a simple fault, containing just oil and water, as illustrated
in Figure 3. We use the same approaches to estimate the model parameters as
were used in the first example. Method 1 is retained as this is the simple approach
that would be used by many people when faced with this problem. Method 2
is retained because in the opinion of the author it is the error model, of the six
discussed previously, that is most likely to be useful (as we shall see, it turns out
not to be the error model that we need).

The geological model consists of six layers of alternating good and poor
quality sands. The three good quality layers have identical properties, and the
three poor quality layers have a different set of identical properties (details can be
found in Appendix C). The thickness of the layers has an arithmetic progression,
with the top layer having a thickness of 12.5 ft, the bottom layer a thickness of

Figure 3. Schematic of a realization of the IC Fault Model, showing the alternating good and
poor sands and the fault.
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7.5 ft, and a total thickness of 60 feet. The width of the model is 1000 feet, with a
simple fault at the midpoint, which offsets the layers. There is a water injector well
at the left-hand edge, and a producer well on the right-hand edge. Both wells are
completed on all layers, and operated at fixed bottom hole pressures (as described
in Appendix C).

The simulation model is 100× 12 grid blocks, with each geological layer
divided into two simulation layers with equal thicknesses, each grid block is 10 ft
wide. The model is constructed such that the vertical positions of the wells are
kept constant and equal, even when different fault throws are considered. The well
depth is 8325 ft to 8385 ft.

To generate historical data a slightly heterogeneous reservoir realization was
created, with a throw of 10.3 ft. The porosity and permeabilities in each grid
block were randomly drawn from uniform distributions with no correlations. The
range for the porosities was±10% of the mean value, while the range for the
permeabilities was±1% of the mean value. The means for the porosities were:
good quality sand, 0.30; poor quality sand, 0.15. The means of the permeabilities
were: good quality sand, 158.6 mD; poor quality sand, 2.0 mD.

The simulation was then run, using the ECLIPSE simulator, for 36 months,
with three quantities (water production rate,Qwp, oil production rate,Qop, and
water injection rate,Qwi) being recorded at the end of each month. To each truth
value, random Gaussian noise, with mean zero and standard deviation of 3%
of the truth value (a minimum of 0.01 was allowed), was added. The resulting
measurement was then truncated after one decimal place, the values obtained and
used in the analysis are in Table 2.

The model used to try and match the results was identical, except it was
assumed that the good/poor quality sands were homogeneous. The porosities
of the two sands were set to 0.30 or 0.15 as appropriate. It was assumed that
the two permeabilities and the fault throw were the unknowns that needed to be
found.

A previous study using this model (Bush and Carter, 1996) had demon-
strated that it is difficult to obtain a history match using simple optimization
methods. Therefore the approach used for this study was to generate a large num-
ber of realizations, 159645 were produced, which could be searched to find the
best match according to the criteria chosen. The values of the three parameters
were drawn independently from uniform distributions with ranges: fault throw,
h ∈ (0, 60); good quality permeability,Kgood∈ (100, 200); poor quality perme-
ability, Kpoor∈ (0, 50). Whilst this approach does not guarantee finding the global
optimum, one should be able to get sufficiently close. One should also be able to
identify local optima of the objective function should they exist.

In Table 3 are the results of applying method 1, we can see that there are at least
two optima among the best six realizations. If theh = 34.6 realization is assumed
to be the maximum likelihood estimate, then theh = 0.1 realization has a pdf
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Table 2. Observations of Production for the IC Fault Model

Date Qpo Qwp Qwi Date Qop Qwp Qwi

31 JAN 1 464.9 0.0 767.1 31 JUL 2 530.0 0.0 903.9
28 FEB 1 511.4 0.0 860.0 31 AUG 2 573.6 0.0 861.0
31 MAR 1 525.0 0.0 827.5 30 SEP 2 558.8 0.0 919.7
30 APR 1 544.4 0.0 908.5 31 OCT 2 571.9 0.0 856.2
31 MAY 1 550.1 0.0 871.8 30 NOV 2 539.6 0.0 916.0
30 JUN 1 542.6 0.0 910.5 31 DEC 2 563.6 0.0 929.3
31 JUL 1 568.3 0.0 903.4 31 JAN 3 572.4 0.0 885.7
31 AUG 1 529.2 0.0 920.4 28 FEB 3 559.5 0.0 886.7
30 SEP 1 561.2 0.0 932.0 31 MAR 3 553.3 0.0 908.0
31 OCT 1 568.8 0.0 921.1 30 APR 3 565.5 0.4 928.1
30 NOV 1 561.9 0.0 884.1 31 MAY 3 517.0 40.8 907.6
31 DEC 1 543.4 0.0 900.7 30 JUN 3 527.3 112.0 943.4
31 JAN 2 578.6 0.0 908.4 31 JUL 3 492.4 149.1 852.1
28 FEB 2 566.0 0.0 916.7 31 AUG 3 454.9 177.0 943.8
31 MAR 2 533.9 0.0 919.1 30 SEP 3 457.5 206.8 922.3
30 APR 2 574.8 0.0 901.6 31 OCT 3 460.3 205.0 898.9
31 MAY 2 578.7 0.0 910.9 30 NOV 3 414.0 227.6 944.2
30 JUN 2 553.3 0.0 877.1 31 DEC 3 387.5 298.3 917.2

value which is significantly smaller. In Figure 4 we plot the realization estimates
against the measured data. The two realizations clearly match the measurements
quite well. The only place where they substantially disagree is in the estimate for
the last two months of production. The a priori realization uses the true mean values
as the parameters (h = 10.30, Kgood= 158.6, Kpoor= 2.0), it is quite unable to
estimate the measurements. The actual values of production rates at 48 months
are: Qop(48)= 171.4, Qwp(48)= 681.4 and Qwi(48)= 962.0. As we can see
from the value in Table 3, theh = 34.6 realization is a poor predictor. Theh = 0.1
realization is much better at predicting, but we have little reason to choose it in
preference to theh = 34.6 realization.

Table 3. Results for Method 1 Applied to the Cross-Sectional Model

h Kgood Kpoor Qop(48) Qwp(48) Qwi (48) ln(P(m))

34.6 140.8 2.6 246.4 603.3 995.0 −7.14× 102

31.0 137.3 1.8 244.1 543.3 949.2 −7.23× 102

38.1 139.0 2.5 243.4 567.9 970.4 −7.28× 102

0.1 130.2 1.3 145.2 708.9 960.7 −7.29× 102

34.6 139.4 2.2 244.9 571.4 971.2 −7.31× 102

1.0 129.7 3.7 193.0 646.1 979.1 −7.40× 102
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Figure 4. (A) Oil production rateQop, (B) water production rateQwp,
(C) water injection rateQwi .

We can make the following observations:

• Within the Bayesian framework one of our realizations is significantly
more likely than any of the others. However, a visual comparison of the
two realizations does not give the same impression.
• Neither of the two realizations appear to be related to the truth case. It

therefore seems likely that we are not able to recover a realization that is a
good representation of the truth.
• If we were to have good quality data which provide a strong prior pdf, then

it may not be possible to match the measurements.

Table 4. Results for Method 2 Applied to the Cross-Sectional Model

h Kgood Kpoor Qop(48) Qwp(48) Qwi (48) e∗po e∗pw e∗iw

28.8 136.6 0.5 297.4 444.4 941.8 0.24 −0.04 0.11
44.8 138.2 1.3 236.1 685.3 948.2 0.01 0.44 0.09
44.6 138.7 1.6 234.8 682.8 948.3 0.003 0.37 0.08
27.1 143.3 0.4 292.2 471.1 954.4 0.17 0.02 0.10
41.2 135.4 1.4 233.7 679.7 945.0 −0.004 0.36 0.07
45.3 131.7 0.6 261.7 666.0 953.0 0.15 0.72 0.26
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In Table 4 we give the same results using method 2. We also give the max-
imum likelihood estimate of the modelling errors for each of the three measured
quantities. Again we have identified at least two local optima among the best six
realizations. But these are different from those obtained by method 1. One of the
two optima appears to match the water production quite well (implied by the small
value ofe∗pw) but has a poor match to the oil production. The second appears to
match the oil production but not the water production. The predictions are again
poor, so we conclude that our error model estimates have not been able to com-
pensate for the bias introduced by the choice of model for the history matching
process.

Examining Figure 4 suggests that the most appropriate error model might be
a combination of a linear offset and fractional error (sections and), i.e.

P
(
µt,(i ) | m, µi−1

o
, σ i−1,M

) = δ(ω(i )
(
1+ e2,(i )

)+ e1,(i ) − µt,(i )
)

(38)

with only the previous 6 months used to define the error model parameters.
A consequence of this would be that our model would have limited predictive
capability.

CONCLUSIONS

In this paper we have rewritten the standard Bayesian equations, used to solve
inverse problems, in an alternative form. The standard form requires the user to
define the correlations between measurements and to carry out difficult multidi-
mensional integrations. In the author’s experience these requirements have largely
limited the application of the method to idealized test models. When the method
is applied to practical problems simplifying assumptions are used, even if these
assumptions are of doubtful validity. The alternative form presented in this paper
has the equation written as the product of many one-dimensional integrals. The
advantage of this form is that the integrations can be carried out reasonably easily,
and that the inclusion of information about the error model and the correlations is
done in a more intuitive way.

Two examples have been considered. The first was a simple curve fitting
problem involving the determination of one parameter, using six data points. Us-
ing the proposed form of the Bayesian equations we were able to introduce an
appropriate error model and estimate the correlation between measurements. The
result of this was a better predictive capability. The second example was an inverse
problem based on a petroleum reservoir. It was shown that if one assumes an exact
reservoir model, then we can obtain at least two matches to the production data.
Neither of the matches were consistent with the a priori data. When the second
error model was applied, the situation did not improve. It has been suggested that
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a simple deterministic error model matched to the measurements over a limited
window might provide the best approach.

NOMENCLATURE

P(. | .) a probability distribution function (pdf) that describes our beliefs about a
set of parameters given some information.

M our model of the real system, it includes things like: the algorithms used to
construct the numerical model from the parameters; controls that are used
on the real system; the equations that need to be solved; and the numerical
algorithms that are used.

m the parameters of our system model.
µt,(i ) the i th true, but unobserved, measurement.
µn

t
a vector ofn true measurements.

µo,(i ) the i th observed measurement.
µn

o
a vector ofn observed measurements.

σ(i ) the uncertainty parameter associated with thei th measurement.
σ n a vector of n uncertainty parameters associated with then observed

measurements.
Qi an integral that defines a pdf associated with thei th measurement.

e1,(i ) a parameter used to define the modelling error model associated with the
i th measurement.

e2,(i ) a parameter used to define the modelling error model associated with the
i th measurement.

E the modelling error model.
e∗1,(i ) the maximum likelihood estimate ofe1,(i ).
e∗2,(i ) the maximum likelihood estimate ofe2,(i ).

e(i ) a vector of parameters used to define the modelling error model associated
with the i th measurement.

Ri an integral that defines a pdf associated with the modelling error at thei th
measurement.

x the ordinate used in the first example.
f (x) the function used in the first example.
Ä the unknown parameter used in the first example.
y the model parameter used in the first example.
Y a realization in the first example.
h a parameter in the second example.

Kgood a parameter in the second example.
Kpoor a parameter in the second example.
Qop oil production rate.
Qwp water production rate.
Qwi water injection rate.



P1: GAD

Mathematical Geology [mg] pp1141-matg-480065 March 9, 2004 18:41 Style file version June 25th, 2002

Using Bayesian Statistics to Capture the Effects of Modelling Errors 205

e∗po maximum likelihood estimate for the oil production modelling error
parameter.

e∗pw maximum likelihood estimate for the water production modelling error
parameter.

e∗iw maximum likelihood estimate for the water injection modelling error
parameter.
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APPENDIX A: STANDARD ANALYSIS

For those unfamiliar with Bayesian statistics, a good introduction is provided
by Sivia (Sivia, 1996). Starting from the standard Bayesian statement

P
(
m | µn

o
, σ n,M

) = ∫ P
(
m, µn

t
| µn

o
, σ n,M

)
dµn

t
(A1)

we can use the product rule to obtain

P
(
m | µn

o
, σ n,M

) = ∫ P
(
m | µn

t
, µn

o
, σ n,M

)
P
(
µn

t
| µn

o
, σ n,M

)
dµn

t
(A2)
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Then using Bayes Rule, we get

P
(
m | µn

o
, σ n,M

)
=
∫

P
(
m | µn

t
, µn

o
, σ n,M

) P
(
µn

o
| µn

t
, σ n,M

)
P
(
µn

t
| σ n,M

)
P
(
µn

o
| σ n,M

) dµn
t

(A3)

We now introduce the first simplification
Simplification: P

(
m | µn

t
, µn

o
, σ n,M

) = P
(
m | µn

t
,M

)
Where the assumption is that if we were to know the true measurements, then we
would not make any use of the observed measurements or the associated uncertainty
parameters. Which lets us write

P
(
m | µn

o
, σ n,M

) = ∫ P
(
m | µn

t
,M

) P
(
µn

o
| µn

t
, σ n,M

)
P
(
µn

t
| σ n,M

)
P
(
µn

o
| σ n,M

) dµn
t

(A4)
Using Bayes Rule this then becomes

P
(
m | µn

o
, σ n,M

) = ∫ P
(
µn

t
| m,M

)
P
(
m | M

)
P
(
µn

t
| M

)
× P

(
µn

o
| µn

t
, σ n,M

)
P
(
µn

t
| σ n,M

)
P
(
µn

o
| σ n,M

) dµn
t

(A5)

We now introduce two further simplifications.
Simplification: P

(
µn

o
| µn

t
, σ n,M

) = P
(
µn

o
| µn

t
, σ n

)
where we are assuming that the measurement error model is independent of the
system model.
Simplification: P

(
µn

t
| σ n,M

) = P
(
µn

t
| M

)
where we are assuming that in the absence of observed measurements that knowl-
edge of the uncertainty in those measurements is of no value. Hence we obtain the
standard result

P
(
m | µn

o
, σ n,M

) = P
(
m | M

) ∫ P
(
µn

t
| m,M

)
P
(
µn

o
| µn

t
, σ n

)
P
(
µn

o
| σ n,M

) dµn
t

(A6)
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APPENDIX B: ITERATIVE ANALYSIS

Starting from the standard Bayesian statement

P
(
m | µn+1

o
, σ n+1,M

) = ∫ P
(
m, µt,(n+1) | µn

o
, σ n, µo,(n+1), σ(n+1),M

)
dµt,(n+1)

(A7)

Using the product rule we can obtain

P
(
m | µn+1

o
, σ n+1,M

) = ∫ P
(
m | µn

o
, σ n, µt,(n+1), µo,(n+1), σ(n+1),M

)
×P(µt,(n+1) | µn

o
, σ n, µo,(n+1), σ(n+1),M

)
dµt,(n+1)

(A8)

Introducing the first simplification.

Simplification:

P
(
m | µn

o
, σ n, µt,(n+1), µo,(n+1), σ(n+1),M

) = P
(
m | µn

o
, σ n, µt,(n+1),M

)
where the assumption is that if we know the true value of the (n+ 1)th measure-
ment, we gain no additional information from knowing its observed value and the
associated uncertainty. Hence we can obtain

P
(
m | µn+1

o
, σ n+1,M

) = ∫ P
(
m | µn

o
, σ n, µt,(n+1),M

)
×P

(
µt,(n+1) | µn

o
, σ n, µo,(n+1), σ(n+1),M

)
dµt,(n+1)

(A9)

Using Bayes Rule on both pdf’s we get

P
(
m | µn+1

o
, σ n+1,M

) = ∫ P
(
µt,(n+1) | m, µn

o
, σ n,M

)
P
(
m | µn

o
, σ n,M

)
P
(
µt,(n+1) | µn

o
, σ n,M

)
×P

(
µo,(n+1) | µn

o
, σ n, µt,(n+1), σ(n+1),M

)
× P

(
µt,(n+1) | µn

o
, σ n, σ(n+1),M

)
P
(
µo,(n+1) | µn

o
, σ n, σ(n+1),M

)dµt,(n+1) (A10)
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Introducing two more simplifications.

Simplification:

P
(
µt,(n+1) | µn

o
, σ n, σ(n+1),M

) = P
(
µt,(n+1) | µn

o
, σ n,M

)
where we are assuming that in the absence of the observed measurement that
knowledge of the uncertainty in that measurement is of no value.

Simplification:

P
(
µo,(n+1) | µn

o
, σ n, µt,(n+1), σ(n+1),M

) = P
(
µo,(n+1) | µt,(n+1), σ(n+1))

where we are assuming that the measurement error model is independent of the
previous measurements.
Therefore

P
(
m | µn+1

o
, σ n+1,M

) = P
(
m | µn

o
, σ n,M

)
×
∫ P

(
µt,(n+1) | m, µn

o
, σ n,M

)
P
(
µo,(n+1) | µt,(n+1), σ(n+1))

P
(
µo,(n+1) | µn

o
, σ n, σ(n+1),M

) dµt,(n+1)

(A11)

This can be written as

P
(
m | µn+1

o
, σ n+1,M

) = P
(
m | µn

o
, σ n,M

)× Qn+1 (A12)

where

Qn+1 =
∫ P

(
µt,(n+1) | m, µn

o
, σ n,M

)
P
(
µo,(n+1) | µt,(n+1), σ(n+1)

)
P
(
µo,(n+1) | µn

o
, σ n, σ(n+1),M

) dµt,(n+1)

(A13)

This clearly suggests that we can use an iterative formulation. Hence the required
pdf can be written as

P
(
m | µn+1

o
, σ n+1,M

) = P
(
m | M

) n+1∏
i=1

Qi (A14)

where

Qi =
∫ P

(
µt,(i ) | m, µi−1

o
, σ i−1,M

)
P
(
µo,(i ) | µt,(i ), σ(i )

)
P
(
µo,(i ) | µi−1

o
, σ i−1, σ(i ),M

) dµt,(i ) (A15)
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APPENDIX C: DESCRIPTION OF THE IC FAULT MODEL

When designing this test model the objectives were: the model should be
sufficiently complex that all the obvious symmetries should be avoided; it should
be possible for the user to introduce and control the level of modelling and mea-
surement errors; the model should be of sufficiently low dimension that it was
feasible to understand the complete parameter space. The model chosen was: a
simple cross-section model; with two homogeneous sand types in a layer cake
formation; a simple vertical fault; an injector/producer pair operated at constant
bottom hole pressures; no oil–water or gas–oil contacts; and three unknowns: the
fault throw; and the two permeabilities. All other properties are kept constant, an
ECLIPSE data file for the model is given below. The user can control the errors
introduced in a number of ways: the models used to generate measurement data
can be made different from the model used for solving the inverse problem; and
measurement errors can be added. The user has complete control over the type and
level of errors introduced.

The base case reservoir realization used in this paper has heterogeneous poros-
ity and permeability fields. The variations have been kept small and uncorrelated,
the measurement errors have also been kept small. The measurement data used in
this paper is given in Table 2.

ECLIPSE Data File

RUNSPEC

GRID

INCLUDE

‘PERM.INC‘ \

\

INCLUDE

‘PORO.INC‘ \

\

MULTIPLY
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’PORO’ 0.15 1 100 1 1 1 2 /

’PORO’ 0.3 1 100 1 1 3 4 /

’PORO’ 0.15 1 100 1 1 5 6 /

’PORO’ 0.3 1 100 1 1 7 8 /

’PORO’ 0.15 1 100 1 1 9 10 /

’PORO’ 0.3 1 100 1 1 11 12 /

’PERMX’ 1.0 1 100 1 1 1 2 /

’PERMX’ 100 1 100 1 1 3 4 /

’PERMX’ 1.0 1 100 1 1 5 6 /

’PERMX’ 100 1 100 1 1 7 8 /

’PERMX’ 1.0 1 100 1 1 9 10 /

’PERMX’ 100 1 100 1 1 11 12 /

/

COPY

’PERMX’ ’PERMY’ 1 100 1 1 1 12 /

’PERMX’ ’PERMZ’ /

/

MULTIPLY

’PERMX’ 2.000000 1 100 1 1 1 2 /

’PERMX’ 2.000000 1 100 1 1 5 6 /

’PERMX’ 2.000000 1 100 1 1 9 10 /
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’PERMX’ 1.586000 1 100 1 1 3 4 /

’PERMX’ 1.586000 1 100 1 1 7 8 /

’PERMX’ 1.586000 1 100 1 1 11 12 /

/

NEWTRAN

INCLUDE

’COORD.INC’

/

INCLUDE

’ZCORN.INC’

/

PROPS

SWFN

0.1 0.000 0

0.2 0.012 0

0.3 0.049 0

0.4 0.111 0

0.5 0.197 0

0.6 0.308 0

0.7 0.444 0

0.8 0.605 0
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0.9 0.790 0

1.0 1.000 0 /

SOF2

0.2 0.000

0.3 0.016

0.4 0.065

0.5 0.147

0.6 0.261

0.7 0.408

0.8 0.588

0.9 0.800 /

-- PVT PROPERTIES OF WATER

-- REF. PRES. REF. FVF COMPRESSIBILITY REF VISCOSITY
VISCOSIBILITY

PVTW

4014.7 1.029 3.13D-6 0.31 0 /

-- ROCK COMPRESSIBILITY

-- REF. PRES COMPRESSIBILITY

ROCK

14.7 3.0D-6 /

-- SURFACE DENSITIES OF RESERVOIR FLUIDS

-- OIL WATER GAS
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DENSITY

49.1 64.79 0.06054 /

-- POIL FVFO VISO

PVDO

4014.7 1.695 0.51

5014.7 1.671 0.549

9014.7 1.579 0.74

/

RSCONST

1.270 4014.7 /

SOLUTION

-- DATUM DATUM OWC OWC GOC GOC RSVD RVVD SOLN

-- DEPTH PRESS DEPTH PCOW DEPTH PCOG TABLE TABLE METH

EQUIL

8400 4500 8500 0 8200 0 1 0 0 /

SUMMARY

WOPR

’PRODUCER’ /

WWPR

’PRODUCER’ /

WWIR



P1: GAD

Mathematical Geology [mg] pp1141-matg-480065 March 9, 2004 18:41 Style file version June 25th, 2002

214 Carter

’INJECTOR’ /

SCHEDULE

DRSDT

0 /

-- WELL GROUP LOCATION BHP PI

-- NAME NAME I J DEPTH DEFN

WELSPECS

’PRODUCER’ ’G’ 100 1 8400 ’OIL’ /

’INJECTOR’ ’G’ 1 1 8335 ’WATER’ /

/

-- COMPLETION SPECIFICATION DATA

-- WELL -LOCATION- OPEN/ SAT CONN WELL

-- NAME I J K1 K2 SHUT TAB FACT DIAM

COMPDAT

’PRODUCER’ 100 1 1 12 ’OPEN’ 0 -1 0.5 /

’INJECTOR’ 1 1 1 12 ’OPEN’ 1 -1 0.5 /

/

-- PRODUCTION WELL CONTROLS

-- WELL OPEN/ CNTL OIL WATER GAS LIQU RES BHP

-- NAME SHUT MODE RATE RATE RATE RATE RATE

WCONPROD
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’PRODUCER’ ’OPEN’ ’BHP’ 100000 4* 4300 /

/

-- INJECTION WELL CONTROLS

-- WELL INJ OPEN/ CNTL FLOW

-- NAME TYPE SHUT MODE RATE

WCONINJ

’INJECTOR’ ’WATER’ ’OPEN’ ’BHP’ 4* 4700 /

/

DATES

31 ’JAN’ 1 /

28 ’FEB’ 1 /

31 ’MAR’ 1 /

30 ’APR’ 1 /

31 ’MAY’ 1 /

30 ’JUN’ 1 /

31 ’JUL’ 1 /

31 ’AUG’ 1 /

30 ’SEP’ 1 /

31 ’OCT’ 1 /

30 ’NOV’ 1 /

31 ’DEC’ 1 /
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:

31 ’DEC’ 4 /

/

END


