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Geostatistical Mapping With Continuous
Moving Neighborhood1

Alexander Gribov2 and Konstantin Krivoruchko 2

An issue that often arises in such GIS applications as digital elevation modeling (DEM) is how to create
a continuous surface using a limited number of point observations. In hydrological applications, such
as estimating drainage areas, direction of water flow is easier to detect from a smooth DEM than
from a grid created using standard interpolation programs. Another reason for continuous mapping
is esthetic; like a picture, a map should be visually appealing, and for some GIS users this is more
important than map accuracy. There are many methods for local smoothing. Spline algorithms are
usually used to create a continuous map, because they minimize curvature of the surface. Geosta-
tistical models are commonly used approaches to spatial prediction and mapping in many scientific
disciplines, but classical kriging models produce noncontinuous surfaces when local neighborhood
is used. This motivated us to develop a continuous version of kriging. We propose a modification of
kriging that produces continuous prediction and prediction standard error surfaces. The idea is to
modify kriging systems so that data outside a specified distance from the prediction location have
zero weights. We discuss simple kriging and conditional geostatistical simulation, models that essen-
tially use information about mean value or trend surface. We also discuss how to modify ordinary
and universal kriging models to produce continuous predictions, and limitations using the proposed
models.

KEY WORDS: filtered interpolation and simulation, local neighborhood, smoothing kernel.

INTRODUCTION

Surface discontinuity is an undesirable effect in some applications, including a
digital elevation model (DEM), which must be continuous and have no artifacts
(Wilson and Gallant, 2000) to be used for hillshading and hydrological modeling.
A DEM is a grid of square cells, where each cell value represents elevation. In
hillshading, the illumination values for each cell in an elevation grid are calcu-
lated by evaluating the relationship between the position of the light source and
the direction and steepness of the terrain. In hydrological applications, such as
estimating drainage areas, direction of water flow is detected from DEM as a drop
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of water is followed from where it falls, to a stream, then to a river, and finally
to the sea. Water flow direction is defined perpendicular to the elevation isolines
in the direction to the steepest descent. Consequently, interpolation of the eleva-
tion measurements resulting in a DEM surface must be continuous to simplify the
analysis of hydrological processes.

After detecting and removing systematic and rough errors, users of geostatis-
tical software usually expect to see a continuous surface from continuous data, such
as temperature observations. However, kriging prediction and prediction standard
errors in nearby locations are significantly different if their local neighborhoods
are different. Consider simulated configuration and values of 10 points in a 20 by
20 units area, Figure 1. Positions of points were simulated from uniform distri-
bution, and values are from normal distribution with zero mean and exponential
covariance with the following parameters: nugget= 3, sill = 1, and effective
range= 30.

Consider prediction at two nearby points, represented as centers of two cir-
cles. Prediction to each point uses data inside each corresponding circle. The
only difference between local neighborhoods is inclusion or not of location with
value−3.60, and this may lead to discontinuity of the prediction and prediction
standard error surfaces between two points under consideration. Generally speak-
ing, kriging cannot produce continuous surfaces with local neighborhoods, but
breaks are clearly seen if data have significantly different values in nearby local
neighborhoods.

Figure 1. Simulated data for comparison of simple and conti-
nuous simple kriging.
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Figure 2. Data interpolation using three points on a line (A) using covariance (B).

Kriging prediction depends on data outside the range of correlation (Cressie,
1993; Gandin, 1963). Consider three points on a line, Figure 2(A), where distances
from point B to points A and C equalsd. Let Z(A), Z(B), and Z(C) be ran-
dom variables with meansE{Z(A)} = E{Z(B)} = E{Z(C)} = 0 and variances
var{Z(A)} = var{Z(B)} = var{Z(C)} = 1. Let range of the covariance model be
less than 2d and cov{Z(A), Z(B)} = cov{Z(B), Z(C)} = a; cov{Z(A), Z(C)} =
0. Figure 2(B) shows an example of the spherical covariance model with such
features.

Prediction and prediction variance at the point A using point B only are

Ẑ(A) = a · Z(B) and E{(Ẑ(A)− Z(A))2} = 1− a2.

Prediction and prediction variance at the point A using point C only are

Ẑ(A) = 0 and E{(Ẑ(A)− Z(A))2} = 1.

Prediction and prediction variance in the point A using both points B and C
are

Ẑ(A) = a

1− a2
· Z(B)− a2

1− a2
· Z(C) and E{(Ẑ(A)− Z(A))2} = 1− 2a2

1− a2
.

Thus, data outside range influence on prediction if at least one datum at distance
less than a range of correlation exists.

Continuous surfaces can be produced using global neighborhood with all
input data. However, there are two main reasons why prediction using local neigh-
borhood should be preferred in practice. First, kriging with large number of points
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(larger than 100–200 observations) leads to the computational problem of solving
a large system of linear equations. Second, in practice true covariance is estimated,
and measurements include uncertainty, and this uncertainty is not known exactly.
Then it is possible that interpolation with a large number of neighbors produces
larger mean-squared prediction error than interpolation with a relatively small
number of neighbors.

In GIS, a continuous surface is usually produced by predicting values on a
regular grid and then using smoothing filters. This is equivalent to adding (often
uncontrollable) noise to the prediction. Then prediction and prediction standard
error surfaces do not match, which could be a problem if they are used in the
decision-making. Another method of continuous mapping is spline interpolation.
For instance, Hutchinson (1997), implemented splines in tension in the ANUDEM
program, which interpolates “the elevation data onto a regular grid by minimizing
a suitably weak roughness penalty on the fitted grid values.” Resulting surfaces
are over smooth, and the best parametric covariance model to describe the spatial
structure of the DEM is Gaussian. DEM is used as input data in many applica-
tions. However, many geostatisticians recommend that the Gaussian covariance
model not to be used for practical applications; see for example Wackernagel
(1998).

We propose modification of kriging to produce continuous, without breaks,
prediction and prediction standard error surfaces. The idea is to modify krig-
ing system so that data outside a specified distance from the prediction loca-
tion have zero weights. We discuss simple kriging and conditional geostatis-
tical simulation, models that essentially use information about mean value or
trend surface. We also discuss how to modify ordinary and universal kriging
models to produce continuous predictions, and limitations using the proposed
models.

CONTINUOUS SIMPLE KRIGING

Consider spatial dataZi , measured at the locationssi . In most applications,
data include measurement error, and our goal is to predict signalY(s) at many
new locationss using the dataZi , that is, we are using filtering to remove noise
or measurement error if they exist. If there is no measurement error, prediction
to the data locations gives exact measurements:Ŷ(si ) = Zi . We use the following
simple kriging model for signalY(s) (Cressie, 1993; Gandin, 1963; Krivoruchko,
Gribov, and Ver Hoef, 2000):

Y(s) = m(s)+ S(s), (1)

wherem(s) is a large scale variation (trend) andS(s) is a random process with
zero mean and known covariance (small scale variation).
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Measurement at the locationssi is a sum of the signal and the independent
random error with zero mean and known variance.

Zi = Y(si )+ εi , i = 1, n, (2)

wheren is a number of measurements. Formula (2) allows for more than one mea-
surement at the same data location; see the discussion on the difference between
exact and filtered kriging models in Krivoruchko, Gribov, and Ver Hoef (2000).
Exact kriging cannot be used when there are different measurements at the same
location.

Simple kriging (also called simple filtered kriging) uses a linear combina-
tion of the dataŶ(s) = m(s)+∑n

i=1 λi (s) · (Zi −m(si )) and finds the weights
that minimize the mean-squared prediction errorE{(Ŷ(s)− Y(s))2}. The optimal
weights

λ(s) =


λ1(s)

λ2(s)
...

λn(s)


are a solution of the following system:

var{S(s1)} + var{ε1} cov{S(s1), S(s2)} · · · cov{S(s1), S(sn)}
cov{S(s2), S(s1)} var{S(s2)} + var{ε2} · · · cov{S(s2), S(sn)}

...
...

...
...

cov{S(sn), S(s1)} cov{S(sn), S(s2)} · · · var{S(sn)} + var{εn}



×


λ1(s)

λ2(s)
...

λn(s)

 =


cov{S(s), S(s1)}
cov{S(s), S(s2)}

...

cov{S(s), S(sn)}


There are no differences between exact and filtered models when predicting at
locations where data have not been observed. If data are not precise, kriging can
filter out measurement error at the data location.

Because the data outside the range of correlation do influence prediction, we
propose to use kernel function to smooth local fluctuations so that the influence
of measurements far from the prediction location is reduced and starting from
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some specified distance data weights equal to zero. However, instead of using this
smoother after the kriging surface is produced, we derive a new predictor that
incorporates this desired feature: continuous prediction and prediction standard
error surfaces.

The following is one possible way to modify the data for simple kriging
prediction at the locations:

Z∗i (s) = w(si − s, s) · (Zi −m(si ))+
√

1− w2(si − s, s) · σi · ηi , (3)

where|w(si − s, s)| = |w(r, s)| ≤ 1 is a kernel function;w(0, s) = 1∀s and such
distanceχ (s) exists, thatw(r, s) = 0∀||r || ≥ χ (s); σ 2

i = var{Zi } = var{S(si )} +
var{εi }; ηi is an independent random variable with zero mean and variance
one.

We definedw(r, s) as a two-parameter function, because ideally the distance
where kernel becomes equal to zero should depend on location. For example,
w(r, s) may be anisotropic, depend on data density, or be function of the ex-
planatory variable. However, in this paper, we consider a simple situation where
w(r, s) = w(r ) is a function of distance between two locations only andχ (s) is
a constant,χ (s) = χ . Functionw(r ) is close to 1 nearr = 0 such that at least
several data are unchanged. One such kernel function, which will be used in the
simulation study below, is the following:

w(r ) =


1, ‖r ‖ ≤ 7.5

156.25− 84.375· ‖r ‖ + 18 · ‖r ‖2− 1.88 · ‖r ‖3
+ 0.096· ‖r ‖4− 0.00192· ‖r ‖5, 7.5< ‖r ‖ < 12.5

0, ‖r ‖ ≥ 12.5

(4)

Figure 3(A) shows transect of this kernel.
Then covariance between modified data is

cov{Z∗i (s), Z∗j (s)} =
{

w(si − s) · w(sj − s) · cov{S(si ), S(sj )}, i 6= j

σ 2
i , i = j

(5)

Variance of the modified data remains the same as variance of the original data,
while covariance decreases such that modified data outside distanceχ do not corre-
late. The same is true for covariance between datum and prediction
location:

cov{Y(s), Z∗j (s)} = w(sj − s) · cov{S(s), S(sj )}.
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The continuous version of a simple kriging prediction of the signal is

Ŷ(s) = m(s)+
n∑

i=1

λi (s) · Z∗i (s), (6)

where weights

λ(s) =


λ1(s)
λ2(s)

...
λn(s)


are the solution of the following system:

A(s)× λ(s) = b(s), (7)

where

A(s) =
var{S(s1)} + var{ε1}

w(s2 − s) · w(s1 − s) · cov{S(s2), S(s1)}
...

w(sn − s) · w(s1 − s) · cov{S(sn), S(s1)}
w(s1 − s) · w(s2 − s) · cov{S(s1), S(s2)} · · · w(s1 − s) · w(sn − s) · cov{S(s1), S(sn)}

var{S(s2)} + var{ε2} · · · w(s2 − s) · w(sn − s) · cov{S(s2), S(sn)}
...

...
...

w(sn − s) · w(s2 − s) · cov{S(sn), S(s2)} · · · var{S(sn)} + var{εn}



b(s) =


w(s1 − s) · cov{S(s), S(s1)}
w(s2 − s) · cov{S(s), S(s2)}

...
w(sn − s) · cov{S(s), S(sn)}



Z∗i (s) contains the unknown random variableηi . The best linear prediction (6),
which minimizes mean-squared error, will be reached forηi = 0∀i :

Ŷ(s) = m(s)+
n∑

i=1

λi (s) · w(si − s) · (Zi −m(si )) (8)
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Then the continuous kriging prediction variance is the following:

E{(Ŷ(s)− Y(s))2} = E


(
m(s)+

n∑
i=1

λi (s) · w(si − s) · (Zi −m(si ))− Y(s)

)2


= var{S(s)} −
n∑

i=1

λi (s) · w(si − s) · cov{S(s), S(si )}

−
n∑

i=1

λ2
i (s) · (1− w2(si − s))·σ 2

i (9)

If trendm(s), covariance of the processS(s), and kernelw(r ) are continuous, then
the weightsλ(s) in (7) are also continuous. Thus, the prediction and prediction
standard error surfaces are also continuous. In locationss, wherem(s), S(s), and
w(r ) have continuous first derivatives, prediction and prediction standard error
have continuous first derivatives as well.

If data are separated from locations by a distance larger thanχ , correspond-
ing rows and columns of the matrix A(s) are equal to zero, except of diagonal
values, and corresponding rows of vectorb(s) are also zeroes. Solution of such a
system is equivalent to solution of the system using data inside distanceχ from
the prediction location only. This guarantees that data outside distanceχ do not
influence prediction. In contrast, classical kriging weights may depend on data far
beyond the range of data correlation. Using the kernel function

w(r ) =
{

1, ‖r ‖ < χ

0, ‖r ‖ ≥ χ , (10)

(see Fig. 3(B), prediction will be equivalent to prediction using standard simple
kriging with a searching neighborhood where the radius of the circle equalsχ .
This kernel is not continuous and consequently prediction and prediction standard
error are noncontinuous in classical kriging models, see Equation (7).

Using the simulated data described in the introduction and displayed in
Figure 1, and the standard simple kriging with zero mean and known covariance
model (which was used for data simulation), and a radius of the searching neigh-
borhood equaling 10 units, produced the prediction map presented in Figure 4(A).
A continuous simple kriging prediction map is presented in Figure 4(B) using
kernel (4).

Figure 5 shows prediction standard error maps using classical simple kriging
(Fig. 5(A), and continuous simple kriging (Fig. 5(B).

Figure 6 compares continuous simple kriging variance to variance estimated
using classical simple kriging with several different searching neighborhood radii
for transect planeX = 10 in Figure 5.
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Figure 6. Comparing kriging variances using plane YZ transect atX = 10.

It is important that continuous simple kriging variance is between classical
simple kriging variance with searching neighborhood radii 7.5 and 12.5 units,
see Figure 3 and formula (4). Classical simple kriging variance using a searching
neighborhood radius equal to 10 is also displayed in Figure 6. It is close to the
continuous simple kriging variance.

CONDITIONAL GEOSTATISTICAL SIGNAL SIMULATION USING
CONTINUOUS SIMPLE KRIGING

Kriging predicts a single value, close to the true but unknown value. Geo-
statistical conditional simulations describe local data variability based on many
variants (realizations) of the predictions, consistent with the data and its statisti-
cal characteristics. For any of such realizations, the prediction error is larger than
kriging standard error.

If data are not precise, which is common in environmental sciences, it makes
no sense to reproduce inaccurate measurements. We use a modification of the con-
ditional geostatistical simulation approach for data measured with error
(Aldworth, 1998), which is a generalization of (Journel, 1974) and Journel and
Huijbregts (1978), conditional simulation approach using exact simple
kriging.
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In conditional geostatistical simulation practice, simple kriging is usually used
with local neighborhood. As a result, the simulated surfaces have breaks. Using
the continuous simple kriging approach, simulation surfaces will be continuous.

Conditional simulation using a continuous simple kriging model is as follows:

YC(s) = m(s)+ SN(s)+
∑

‖si−s‖<χ,i=1,n

λi (s) · w(si − s)

× [(Zi −m(si ))− (SN(si )+ εN,i )], (11)

whereYC(s) is a signal,λi (s) solution of (7),w(r ) kernel function, andSN(s) is
a realization of the independent random Gaussian process with zero mean and
known covariance of the processS(s), andεN,i is a realization of independent
normal random variable with zero mean and variance var{εi }. Note that simulated
values are distributed slightly differently from the distribution of simulated values
using standard simple kriging model.

If the variable being studied is continuous by its nature, the result of a condi-
tional Gaussian simulation should be also continuous. We expect that our approach
will find interesting applications.

DISCUSSION AND CONCLUSIONS

Noncontinuous kriging prediction and prediction standard error surfaces can
have a considerable effect on decision-making in applications where the data gra-
dient is calculated. In practice, kriging with local neighborhood always produces
noncontinuous surfaces. We proposed a modification of the simple kriging algo-
rithm to produce continuous surfaces. A model requires information on mean value
or continuous trend surface and can be used with disjunctive kriging (Rivoirard,
1994), where the mean value is assumed to be known.

Simple kriging is the most popular model in geostatistical conditional simu-
lation, but most researchers are using ordinary kriging for interpolation. If mean
value and trend surface are unknown, one possible way to modify data to make the
prediction continuous is the following (this formula is also valid for the universal
kriging model):

Z∗i (s) = Zi +
√

1− w2(si − s)

w(si − s)
· σi · ηi (12)

This formula is a generalization of formula (3) when the mean value is unknown.
Formula (12) reduces to (3) by subtracting the mean value and multiplying by
w(si − s). Both modifications of data, (3) and (12), will produce the same result
in a continuous simple kriging system (7)–(9).
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A continuous version of the ordinary kriging prediction of the signalY(s)
using (12) is

ŶOK(s) =
n∑

i=1

λi (s) · w(si − s) · Zi , (13)

where weights

λOK(s) =


λ1(s)
λ2(s)

...
λn(s)
µ


are a solution of the following system

AOK(s)× λOK(s) = bOK(s), (14)

where

AOK(s) =
var{S(s1)} + var{ε1}

w(s2 − s) · w(s1 − s) · cov{S(s2), S(s1)}
...

w(sn − s) · w(s1 − s) · cov{S(sn), S(s1)}
w(s1 − s)

w(s1 − s) · w(s2 − s) · cov{S(s1), S(s2)} · · · w(s1 − s) · w(sn − s) · cov{S(s1), S(sn)} w(s1 − s)

var{S(s2)} + var{ε2} · · · w(s2 − s) · w(sn − s) · cov{S(s2), S(sn)} w(s2 − s)

...
...

...
...

w(sn − s) · w(s2 − s) · cov{S(sn), S(s2)} · · · var{S(sn)} + var{εn} w(sn − s)

w(s2 − s) · · · w(sn − s) 0



bOK(s) =



w(s1 − s) · cov{S(s), S(s1)}
w(s2 − s) · cov{S(s), S(s2)}

...

w(sn − s) · cov{S(s), S(sn)}
1



The problem is that Eq. (14) does not have a solution when the kernel function is
equal to zero,w(si − s) = 0∀i , and in the nearby area solution of (14) is unstable.
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Thus, in the case of ordinary kriging, the kernel function should be selected care-
fully so that the distanceχ will be large enough to prevent areas where prediction
is not possible. Similar data modification can be used for universal kriging.

Research of using different kernels for simple and ordinary kriging and case
study using simulated and real data are in progress, and we are working on practical
recommendations for the continuous kriging.
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