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S U M M A R Y
For dynamic measurement of the elastic moduli of a porous material saturated with viscous
fluid using the resonance-bar technique, one also observes attenuation. In this article we have
carried out the solution of the boundary-value problem associated with standing torsional
oscillations of a finite, poroelastic, circular cylinder cast in the framework of volume-averaged
theory of poroelasticity. Analysing this solution by eigenvalue perturbation approach we are
able to develop expressions for torsional resonance and temporal attenuation frequencies in
which the dependence upon the material properties are transparent. It shows how the attenuation
is controlled by the permeability and the fluid properties, and how the resonance frequency
drops over its value for the dry solid-frame due to the drag effect of fluid mass. Based upon this
work we have a firm basis to determine solid-frame shear modulus, permeability, and tortuosity
factor from torsional oscillation experiments.
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1 I N T RO D U C T I O N

The resonance-bar technique is often used to determine the elastic moduli of a solid. In this method a solid core of cylindrical or rectangular
cross-section of finite length is excited into a characteristic mode of a standing wave, such as torsional, longitudinal or flexural, and the
resonance frequency is recorded. The resonance frequency for the case of the torsional mode of vibration is linked to rigidity. For the
longitudinal mode it is related to Young’s modulus and Poisson’s ratio, and for the flexural mode it is linked to Young’s modulus.

When this method is applied to a poroelastic sample (i.e. a solid matrix saturated with viscous fluid), one also observes attenuation of
the wavefield. Currently it is interpreted in terms of solid viscosity by assuming a viscoelastic rheology for the porous material (O’Hara 1985;
Bourbie et al. 1987; Sothcott et al. 2000). The motion of the fluid with respect to the solid-frame and the viscous loss within the pore fluid
are the two likely mechanisms of attenuation in a fluid-saturated, porous material. So it is appropriate to assume a poroelastic rheology and
work out the appropriate boundary-value problem to link the observed resonance frequency and attenuation values with the properties of the
solid and fluid constituents and permeability. In this article we have worked out such a formula for the case of torsional oscillation of a finite,
fully-saturated, homogeneous and isotropic porous cylinder.

The theory of wave propagation in porous media was introduced in the middle of the last century by Biot (1956, 1962). Recently, by
volume averaging pore-scale dynamic equations, a theory of poroelasticity has been develop on a firm basis (de la Cruz & Spanos 1985, 1989;
de la Cruz et al. 1993; Hickey et al. 1995; Sahay 1996; Sahay et al. 2001), wherein change in porosity during deformation is explicitly present
in the constitutive relations. The Biot theory is shown to be a limiting case of this framework: in it the change in porosity during deformation
is only affected by the difference in pressures of the two phases only (Sahay 2001). Furthermore, the only loss mechanism in the Biot theory is
the motion of the fluid with respect to the solid frame, i.e. the Darcian dissipation term. The viscous loss within the pore fluid is not included
in the Biot theory. The volume-averaged constitutive relations incorporates the internal viscous loss process as a relaxation term in a natural
way, in addition to the usual Darcian dissipation process. It should be noted that this relaxation process gives a wavenumber dependent loss,
whereas the Darcian dissipation loss is independent of wavenumber. For a porous sample saturated with highly viscous fluid, such as heavy
crude oil or bitumen, this relaxation process is of importance. Although, for a homogeneous and isotropic case, change in porosity during
deformation affects only a compressional deformation process and thus is not a part of the torsional deformation process under consideration,
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in order to properly take into account pore-fluid viscous relaxation, we will carry out this study in the framework of the volume-averaged
theory of poroelasticity. Dunn (1986) has carried out a formal solution of this problem but has done so in the framework of the Biot theory,
also, he does not give an explicit formula linking the resonance frequency and attenuation to the material properties and permeability.

In Section 2 the standing-torsional-wave problem, in the framework of volume-averaged theory of poroelasticity, is formulated as a 2 ×
2 matrix wave equation with dissipation and relaxation terms. In the following section, the general solution is obtained using an eigenfunction
approach. The expressions for the torsional resonance and temporal attenuation frequencies thus obtained are algebraically complicated to
show the material properties dependence in a transparent manner. In Section 4 these expressions are reworked by eigenvalue perturbation
approach such that the link with material properties are transparent. The approach seeks a transformation of the displacement field vector,
and views the diagonal part of the transformed wave operator as the unperturbed (or zeroth-order) operator and the off-diagonal part of the
transformed wave operator as the perturbation. The transformation is chosen such that the resonance and temporal attenuation frequencies
given by the unperturbed operator are close to the exact values. The unperturbed operator, being diagonal, renders the expressions for (zeroth-
order) resonance and temporal attenuation frequencies in a straightforward manner. This analysis shows how the attenuation is controlled by
permeability and the fluid’s shear viscosity, and how the resonance frequency drops compared to its dry-frame value due to the effect of fluid
mass. Finally, we discuss the implications of our results and present concluding remarks in Section 5.

2 S TAT E M E N T O F T H E P RO B L E M

Let a poroelastic circular cylinder of radius a and length H undergo an angular displacement independent of the angle such that there are no
axial or radial displacements. This means that the cross-section of the cylinder rotates without distortion. The volume-averaged equations of
motion of poroelasticity (Sahay 1996) for the angular displacement field, u, expressed in cylindrical coordinates are(

C + N
∂

∂t

) [
1

r

∂

∂r

(
r

∂

∂r

)
+ ∂2

∂z2
− 1

r 2

]
u = �iI0

∂u

∂t
+ I

∂2u

∂t2
. (1)

The u is a two-component vector (um, ui)T (T stands for transpose). um is the sum of mass-weighted angular displacements of the solid and fluid
phases (centre-of-mass field). ui is the difference of the angular displacements (internal field) of two phases. Although a dynamic problem can
also be studies in terms of phasic field variables, namely solid and fluid displacement fields, it is shown in Sahay (1996) that centre-of-mass
and internal fields are the natural dynamic field variables. These two frameworks are interconnected by a linear transformation which is stated
in eq. (A9). The centre-of-mass field is associated with total linear-momentum flux, whereas the internal field is associated with the relative
acceleration of two phases and it describes spin (angular momentum about the mass centre) flux. Since geophones register the field associated
with total linear-momentum, they in fact track the centre-of-mass field. The internal field amounts to fluid flow because it is the motion of
fluid relative to the solid-frame. While the internal field is not detected directly, its effect is measured via the attenuation of the centre-of-mass
field.

The elements of the second-order C matrix have dimensions of velocity squared and they contain the frame shear modulus and frame and
fluid densities. The elements of the second-order N matrix have dimensions of kinematic viscosity and they contain the fluid shear viscosity.
This matrix accounts for viscous loss within the pore fluid. �i is the relaxation frequency corresponding to the dissipation due to fluid flow
with respect to the solid-frame and it contains a permeability term. In fact, it is akin to the well known Biot critical frequency. The second-order
matrix I0 associated with �i has all of its elements, except one, equal to zero. I is the 2 × 2 identity matrix associated with the inertial terms.
The explicit expressions of these parameters are given in Appendix A.

For the problem under consideration, first we determine the complete set of eigenfunctions and associated eigenvalues for eq. (1) for the
case of a finite cylinder with the stress-free surface: namely, the radial surface (r = a) and the top (z = H) and bottom (z = 0) end-caps. The
stress-free boundary conditions are taken from Sahay (1996), see Section 5:
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θ z
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= 0. (2)

The explicit expressions for σ m
jk , the total stress of the porous medium, and σ i

jk , the stress associated with the relative acceleration of two
phases, are given in Appendix B. Subsequently, nearly equal to these exact eigenvalues, we construct approximate eigenvalues by utilizing
eigenvalue perturbation approach. This leads to the expressions for resonance and attenuation frequencies, wherein dependence on material
properties are explicitly apparent.

3 G E N E R A L S O L U T I O N O F T H E P RO B L E M

3.1 Eigenfunction expansion

We expand the solution in terms of appropriate orthonormal basis functions in radial and axial coordinates that automatically satisfy the
boundary conditions eq. (2). These choices reduce the equations of motion eq. (1) to a system of two coupled, second-order ordinary
differential equations (in time). The solution is then obtained in a straight forward manner.

Because of the cylindrical geometry of the problem, one may take the Bessel function of first-order, J 1(kr), and the cosine function,
cos(lz), as the appropriate basis functions to express the spatial part of displacement fields governed by the differential eq. (1). To satisfy the
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Standing torsional waves in porous cylinder 457

boundary conditions on the radial surface (eq. 2 in conjunction with eqs B1 and B2) one requires that r ∂

∂r ( J1(kr )
r )|r=a = 0, which restricts the

radial wavenumber k to be a discrete set defined as kp = Np

a , where Np is the pth root of the Bessel function of second-order. These Bessel
functions form an orthonormal complete set over the interval 0 ≤ r ≤ a. In order to satisfy the boundary conditions on the end-caps (eq. 2 in
conjunction with eqs B3 and B4) one requires that the ∂

∂z derivative of the axial function cos(lz) vanishes at z = 0 and z = H: these conditions
restrict the axial wavenumber l to be a discrete set given as lq = qπ

H , where q is an integer. These cosine functions form an orthonormal
complete set over the interval 0 ≤ z ≤ H. Hence, we take the solution to be of the form

u(r, z, t) =
∞∑

p=1

∞∑
q=1

kp J1(kpr ) cos (lq z)U(t ; kp, lq ), (3)

which satisfies the boundary conditions eq. (2). Then eq. (1) yields the temporal part of displacement field vector, U = (Um, Ui)T, which is
governed by a system of two coupled damped harmonic oscillators[

I
d2

dt2
+ (�iI0 + ν)

d

dt
+ W

]
U = 0 or in a compact notation

(
I
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dt2
+ D

)
U = 0, (4)

where
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q

)
C, (5)

ν = (
k2
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q

)
N, (6)

D ≡ (�iI0 + ν)
d

dt
+ W. (7)

The matrix W, which is the matrix C weighted by the square of the wavenumber, has dimensions of frequency squared. As it is associated with
the elastic stiffness, it may be regarded as the fundamental-frequency (squared) matrix of the system. The matrix ν, which is the kinematic
viscosity matrix N weighted by the square of the wavenumber, also has dimensions of frequency. Thus, it is the wavenumber-dependent
damping matrix due to viscous loss within the pore fluid. The explicit expressions of these matrices are given in Appendix A.

3.2 Eigenfrequency

We seek a solution of eq. (4) of the form e−iω(k p ,lq )t and obtain the 4th-order characteristic polynomial

ω
{
ω3 + i[�i + T r (ν)]ω2 − [T r (W) + �iν

mm] ω

− i [�iW mm + T r (W)T r (ν) − T r (Wν)]} = 0.
(8)

Hereafter, Tr() stands for the trace of the matrix within the braces. ω = 0 is the trivial root of eq. (8) (hereafter it is labelled as ω4). The
remaining three discrete (complex) frequencies associated with torsional-eigenvibrations are determined by solving the cubic polynomial
within the curly braces in eq. (8). Utilizing the CRC standard mathematical tables (Selby 1971, p. 103) we find the roots to be
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Given that B = − 1
3

b
A and AR = √

3AI, where AR and AI are the real and imaginary parts of A, respectively, the three complex roots are found
to be
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For realistic parameters for geomaterials, the quantity d2

4 − b3

27 > 0 and d < 0, which implies the real and imaginary parts of A are positive
and h > AI

b+3(A2
R+A2

I )

3(A2
R+A2

I )
> 0 for which the pair ω1 and ω2 have the same (negative) imaginary parts and equal but opposite real parts. The root

ω3 is purely (negative) imaginary. It should be noted that the real and imaginary parts of a root are, respectively, the resonance frequency
and the temporal attenuation frequency of the process. The first pair, those with the same negative imaginary part and equal but opposite real
parts, correspond to an underdamped harmonic oscillation and they represent torsional waves propagating in opposite directions. The other
two roots, the purely (negative) imaginary ω3 and the trivial root ω4 = 0 correspond to an overdamped harmonic oscillation and they represent
a diffusive torsional process. In the usual nomenclature, the former pair is the fast-wave process and the later pair is the slow-wave process.
Clearly if a porous sample is set into torsional resonance, it is the fast process that goes into vibration because only its eigenfrequencies have
non-zero real parts.

3.3 Some numerical results

Although the eigenfrequency expressions eqs (9)–(11) are exact, the dependence on the material properties is not transparent in them. In order
to gain some insight, we present numerical computations of eigenfrequencies, corresponding to the first harmonics in radial (k1) and axial (l1)
directions, of the fast and slow processes for a sample of Berea sandstone for a wide range of viscosity values. The physical properties used
are listed in Appendix C. The computation with respect to viscosity is motivated by the fact that, in a laboratory setting, torsional experiments
are often carried out on the same sample saturated with different fluids. It should be noted that in this calculation, for numerical purposes, the
fluid density is kept the same, while the viscosity value is varied. The range of viscosity values may seem unrealistic but they are taken in order
to exhibit the entire spectrum of behaviour. The resonance frequency and temporal attenuation frequency plots of the fast process, i.e. the real
and imaginary parts of the (either ω1 or ω2) eigenfrequency, are shown in Fig. 1 (marked as blue and red curves, respectively). Because the real
part of the eigenfrequency, �(ω), is zero for a part of the data, we have plotted attenuation as the imaginary part of the eigenfrequency, �(ω),
rather than its usual representation as quality factor Q, which is �(ω)

2�(ω) . For clarity, both resonance and temporal attenuation frequencies values
are scaled by ωdry, the resonance frequency for the dry-frame. The details about ωdry are in Appendix D. For the mode under consideration

Figure 1. The plot of torsional resonance frequency (blue curve) and temporal attenuation frequency (red curve) versus fluid viscosity associated with the
fast process corresponding to the first harmonics in radial and axial directions. Both curves are scaled by the resonance frequency of the dry-frame (ωdry). For
clarity the crossover viscosities A, B and C, whose explicit representations are given later in Section 4.3.2, are also marked.
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Standing torsional waves in porous cylinder 459

Figure 2. The plot of temporal attenuation frequency versus fluid shear viscosity for the slow process corresponding to the first harmonics in radial and axial
directions. In this process the real part of the eigenfrequency is zero, therefore it is not plotted.

its numerical value is 62 kHz. The temporal attenuation frequency curve of the slow process (ω3) is presented in Fig. 2. In this case the real
part of the eigenfrequency is always zero.

The plots in Fig. 1 are characterized by three crossover viscosity values. In the resonance frequency plot the third crossover viscosity, C,
marks the transition from an underdamped to an overdamped state of vibration. Above C there is no resonance vibration. Below C there are
two regimes defined by the first crossover viscosity marked as A. In each of these two regimes the resonance frequency drops below the value
for the dry-frame (ωdry) by constant amounts. The drop is less in the regime that lies below A compared to the regime that lies between A
and C. The second crossover viscosity, B, does not have any signature on the resonance plot. The temporal attenuation frequency plot shows
segmented linear trends with viscosity. Above the crossover viscosity C, it increases linearly as expected of an overdamped system. Below
the crossover viscosity A, the trend is also linearly increasing. At the crossover viscosity A its trend, after forming a smooth crest, becomes
linearly decreasing. This trend continues until the crossover viscosity B, at which it again becomes linearly increasing after forming a smooth
trough. The temporal attenuation frequency for the slow process presented in Fig. 2 shows the expected increasing linear trend with viscosity.

There are altogether eight material parameters in this problem: four constituent properties, namely, fluid (ρf
0) and solid (ρs

0) mass
densities, fluid shear viscosity (µf) and shear modulus of the solid-grain (µs); and four averaged parameters, namely, unperturbed porosity
(η0), permeability (K), induced mass coefficient (or tortuosity-factor S) and the frame shear modulus (µ0). Although in the plots only the
variation with respect to fluid viscosity is presented, we find that the variations due to the other parameters do not alter the trends of the
curves. A variation in either solid or fluid density simply alters the magnitude of the drop (from the ωdry value) on the resonance curve.
The tortuosity-factor variation only alters the drop value of the resonance frequency curve in the regime below the crossover viscosity A. A
change in either frame shear modulus (µ0) or solid-grain shear modulus (µs) amounts to a variation in ωdry. Since ωdry is the scale factor of
the resonance frequency plot, the trend of curve remains the same, although, the crossover viscosity A moves to lower values with increasing
ωdry. We find that the inverse of permeability has an essentially identical effect on the plots as that of viscosity.

For any given set of material parameters, the numerical computations show their simple dependence on resonance and temporal attenuation
frequencies, although in the exact expressions given by eqs (9)–(11) the dependencies are not apparent. In the following section using
perturbation theory as applied to eigenvalue problems, we deduce approximate eigenvalues of the operator D (eq. 4) that are nearly equal to
their exact values. We find this procedure renders the approximate expressions for resonance and temporal attenuation frequencies such that
the implicit relations with material properties become transparent.

4 T H E E I G E N VA L U E P E RT U R B AT I O N A P P ROA C H

4.1 The framework

We seek a transformation of the wavefield vector U = EV so that eq. (4) is transformed to(
I

d2

dt2
+ L

)
V = 0, where L ≡ E−1DE. (12)
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The similarity transformation ensures that the eigenvalue of the resulting transformed operator L stays the same as that of the operator D.
We split the operator L into its diagonal part L(0) and off-diagonal part Q, and cast eq. (12) as eigenvalue perturbation problem(

I
d2

dt2
+ L(0) + Q

)
V = 0, (13)

by imposing the transformation matrix E to be such that:

(1) The eigenvalues of the diagonal part L(0) of the resulting transformed operator L, given by(
I

d2

dt2
+ L(0)

)
V(0) = 0, (14)

are close to the exact eigenvalues of the operator L (i.e. D), which shall be henceforth referred to as zeroth-order eigenvalues and V(0) =
E−1U as zeroth-order eigenvectors.

(2) The perturbations to the zeroth-order eigenvalues due to the off-diagonal part Q of the transformed operator L are practically negligible,
which is achieved by ensuring the Frobenius norm∗ of the Q is orders of magnitude smaller than that of the L(0).

Hereafter, we shall refer L(0) and Q as unperturbed and perturbed operators, respectively. The zeroth-order eigenvalues thus constructed
lead to the expressions for resonance and temporal attenuation frequencies in which dominant material properties become distinct.

It turns out the material-parameters space can be split into two regimes. In the first regime the elastic part W is the dominant piece in the
wave operator D (eq. 4), whereas in the second regime the anelastic parts, �iI0 and ν, also become important. A dimensionless parameter,
which we have named ϒ , marks the boundary of these two regimes. ϒ is the ratio of the Darcian dissipation frequency (�i) to the resonance
frequency of the dry porous frame (ωdry) weighted by a dimensionless parameter (R)

ϒ = R
�i

ωdry
. (15)

The explicit expressions of R and �i are given in eqs (A7) and (A8), and the formula for ωdry is stated in eq. (D1). Using those it can be
expressed in terms of constituent properties as

ϒ = 1

2
√

k2
p + l2

q

( η0
S )2√

φ0ρ
s
0 + η0ρ

f
0

(
1 − 1

S

) 1√
µ0

µf

K
. (16)

The above suggests that for realistic geomaterials saturated with light fluids, such as air or light hydrocarbon, the likely scenario is ϒ < 10−2.
For low-permeability rocks saturated with water ϒ < 10−2 still holds true, but for the high-permeability case 10−2 < ϒ < 1 is more likely.
For heavy hydrocarbons, such as crude oil and tar, ϒ > 1 is likely to hold true.

The domain ϒ < 1 pertains to the regime in which the elastic part is dominant and in Fig. 1 it lies below the crossover-viscosity A. The
domain ϒ > 1 corresponds to the regime in which anelastic parts also become important and in Fig. 1 it lies above of the crossover-viscosity
A. They can be regarded as inertia dominated and viscosity dominated regimes, respectively. In the following we obtain the transformation
matrices corresponding to both regimes, and deduce the expressions for resonance and temporal attenuation frequencies in which dependencies
on material properties are transparent.

4.2 Regime I: Υ < 1 (inertia dominated regime)

4.2.1 The transformation matrix

In the operator D (eq. 4), if the viscosity is small, the elastic part W will be dominant over the anelastic parts, namely, the Darcian dissipation
term �iI0 and the kinematic viscosity term ν. In this case the transformation EI (the superscriptI labels the regime under consideration)
should be such that (EI)−1WEI is a diagonal matrix so that the elastic part, W, is completely incorporated in the diagonal part, L(0,I), of the
transformed operator LI[=(EI)−1DEI] for this regime. The resulting diagonal terms of (EI)−1WEI, i.e. the two eigenvalues of the matrix W
namely (W mm + W ii) and 0, may be viewed as the two fundamental-frequencies (squared) of the system. Therefore, the transformation matrix
EI must be the eigenvector matrix of W and we find it to be

EI = 1

1 + W ii

W mm

(
1 − W mi

W mm

W ii

W mi 1

)
,

and using eqs (5) and (A1) it is simplified to

= 1

1 + �fmf

(
1 −mf

�f 1

)
. (17)

∗ The Frobenius norm of a matrix A of order m × n is ||A|| =
√∑m

i=1

∑n
j=1 |ai j |2, where aij’s are the elements of the matrix (Golub & Van Loan 1996,

Section 2.3).
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Standing torsional waves in porous cylinder 461

The entries in the above matrix are dimensionless parameters and they are defined in eqs (A4)–(A6).
The transformed operator LI is split into its diagonal L(0,I) and off-diagonal QI pieces

LI = (EI)−1D EI = L(0,I) + QI, (18)

where

L(0,I) = 1
1+�fmf

[
�i

(
�fmf 0

0 1

)
+

(
νmm + �fν

mi + mfν
im + �fmfν

ii 0

0 �fmfν
mm − �fν

mi − mfν
im + ν ii

)]
d
dt

+
(

W mm + W ii 0

0 0

)
,

and

QI = 1

1 + �fmf

[
�i

(
0 mf

�f 0

)
+

(
0 −mfν

mm + νmi − m2
f ν

im + mfν
ii

−�fν
mm − �2

f ν
mi + ν im + �fν

ii 0

)]
d

dt
.

It turns out for the domain ϒ < 1, the kinematic viscosity terms (νmm etc.) are orders of magnitude smaller than �i, hence, they can be ignored
and the unperturbed (or diagonal) part is simply

L(0,I) ≈ �i

1 + �fmf

(
�fmf 0

0 1

)
d

dt
+

(
W mm + W ii 0

0 0

)
, (19)

and(
I

d2

dt2
+ L(0,I)

)
V(0,I) = 0 (20)

yields the eigenvalues that are regarded as zeroth-order. The perturbed (or off-diagonal) part reads

QI ≈ �i

1 + �fmf

(
0 mf

�f 0

)
d

dt
. (21)

The zeroth-order vector field for this regime is V(0,I) = (EI)−1U, and using eq. (A9) in conjunction with eq. (A6) it can be expressed in
terms of solid and fluid motions as

V(0,I) =
(

V(0,I)
fast

V(0,I)
slow

)
=

(
1 mf

−�f 1

) (
Um

Ui

)
=

(
Us

S−1
S−mf

Us − S
S−mf

Uf

)
. (22)

4.2.2 Eigenvalues of the unperturbed operator L(0,I)

(a) Fast Process. From eq. (22) we find the fast process, i.e. the first component of transform field, is simply the solid motion Us. Naturally
the first row of eq. (20) is its governing equation. It is an equation of damped harmonic oscillator. Its dispersion relation yields a frequency
pair

ω
(0,I)
1 , ω

(0,I)
2 = − i

2
�i

�fmf

(1 + �fmf)
±

√
W mm + W ii −

(
�i

2

�fmf

(1 + �fmf)

)2

,

which we regard as the zeroth-order eigenfrequencies of the fast process in the regime I, and we have labelled the superindices of eigenfre-
quencies accordingly. Obviously, they represent wave processes propagating in opposite directions. Utilizing the expressions of W’s (eq. 5 in
conjunction with eqs A1 and D1) and ϒ (eq. 15) the above is

= − i

2
�i

�fmf

(1 + �fmf)
± ωdry

√
ms (1 + �fmf)

√
1 − ϒ2.

and employing eq. (A6) it is further simplified to

ω
(0,I)
1 , ω

(0,I)
2 = − i

2
�i

mf

S
± ωdry

√
ms

1 − mf
S

√
1 − ϒ2. (23)

The real and (negative) imaginary parts of ω
(0,I)
1 (or ω

(0,I)
2 ) are read as zeroth-order resonance and temporal attenuation frequencies for

the torsional resonance process. In Fig. 3, superimposed on the respective exact curves, they are plotted as dashed-black lines. The per cent
deviation† from their exact values are plotted in Figs 4(a) and (b). These plots show them to be essentially in agreement with the exact values
for the viscosity values satisfying the inequality ϒ � 1.

† Per cent deviation = approx-exact
exact × 100.

C© 2004 RAS, GJI, 157, 455–473

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/157/1/455/2135289 by guest on 22 Septem

ber 2022



462 S. Solorza and P. N. Sahay

Figure 3. For the regime I (ϒ < 1) the comparison of exact, zeroth-order, and second-order corrected values of the torsional resonance and temporal attenuation
frequencies associated with the fast process. The exact resonance and temporal attenuation frequencies are presented as blue and red curves, respectively. On
the respective exact curves, the zeroth-order resonance and temporal attenuation frequencies are superimposed as dashed-black lines, and the dashed-green
curves are their second-order corrected values.

In fact for ϒ � 1, the real part of eq. (23), i.e. the resonance frequency, can be approximated as

�
(
ω

(0,I)
1

)
≈ ωdry

√
ms

1 − mf
S

. (24)

We find this approximate resonance frequency expression is valid up to the point where the first flat part of the resonance curve starts
bending downwards. For realistic geomaterials saturated with low-viscosity fluids, such as air or light hydrocarbons, ϒ is indeed orders of
magnitude smaller than unity.

The dimensionless factor
√

ms

1− mf
S

can be viewed as the measure of the drop in the value of resonance frequency for wet case over its value

for the dry-frame. Obviously this drop factor is controlled by the tortuosity-factor (S) and the fluid-mass fraction.
Using eq. (D1), followed by some algebraic manipulations, eq. (24) can also be viewed as

�
(
ω

(0,I)
1

)
≈

√
k2

p + l2
q

√
µ0

φ0ρ
s
0 + η0ρ

f
0

(
1 − 1

S

) . (25)

Thus, controlled by tortuosity-factor, the fluid mass partially participates in the inertia associated with this wave process. The effective density
associated with the process is φ0ρ

s
0 + η0ρ

f
0(1 − 1

S ).
Also, utilizing eq. (A8) followed by some algebraic rearrangements, the (negative) imaginary part of eq. (23), i.e. the temporal attenuation

frequency can be viewed as

−�
(
ω

(0,I)
1

)
= 1

2

( η0
S )2

φ0ρ
s
0 + η0ρ

f
0

(
1 − 1

S

) µf

K
. (26)

It is apparent that, here, the temporal attenuation frequency is inversely proportional to fluid mobility (ratio of permeability to fluid viscosity),
where the proportionality constant is a function of constituent masses and tortuosity-factor. Also, it is independent of wavenumbers, hence,
for different modes the same temporal attenuation will be observed.

For geomaterial saturated with air ϒ is likely to be under 10−2, thus, the resonance frequency formula given by eq. (25) is applicable.
Since the density of air is over three orders in magnitude smaller than the solid density, hence, contribution of the tortuosity-factor term in
eq. (25) is negligible and the resonance frequency for an air-saturated sample is essentially the same as ωdry. Furthermore, eq. (26), on account
of shear viscosity of air being in the order of 10−5, predicts practically no temporal attenuation for air-saturated sample. Therefore, in this
case if any loss is observed it might be attributed to grain-to-grain friction loss in the solid-frame.

(b) Slow Process. Similarly, we find from eq. (22) the second component of the transform field or slow process to be −�fUm + Ui, which
may be viewed as a motion of fluid accompanied by solid-frame, S−1

S−mf
Us − S

S−mf
Uf. The second row of eq. (20) gives its eigenfrequency pair

which is
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Standing torsional waves in porous cylinder 463

Figure 4. In the regime I (ϒ < 1) the per cent deviation from the exact values of (a) the zeroth-order resonance frequency, (b) the zeroth-order temporal
attenuation frequency, (c) the second-order corrected resonance frequency, and (d) the second-order corrected temporal attenuation frequency associated with
the fast process. The deviation curves are monotone functions. On the plots the upper bounds of viscosity (or ϒ) correspond to the deviation being 1 per cent.

ω
(0,I)
3 , ω

(0,I)
4 = −i�i

1

1 + �fmf
, 0 (27)

and we regard them as the zeroth-order eigenfrequencies of the slow process in the regime I. The subindex of eigenfrequency is as per notation
introduced in Section 3.2. Clearly the first mode, being devoid of a real part, is a diffusive process, and the second is a non-propagating mode.
It is almost able to reproduce the temporal attenuation frequency curve for this regime as shown in Fig. 5(a). Its per cent deviation from the
exact value is plotted in Fig. 5(b).

4.2.3 The correction due to the perturbation operator QI

(a) Fast Process. We find that up to the point where viscosity reaches the value so that �i is equal to
√

W ii, the 2nd-order perturbative
correction of QI is able to approximately reproduce the exact graphs as shown in Fig. 3 as dashed-green lines. The per cent deviation from
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the exact values are shown in Figs 4(c) and (d). The details about the methodology of the perturbative computation is given in Appendix E.
Beyond that point this correction also fails since the perturbation part, QI, becomes comparable to the unperturbed part, L(0,I). It implies that
the transformation defined by eq. (17) is no longer valid and, therefore, beyond this point another transformation matrix has to be reworked
by incorporating the �i term appropriately.

(b) Slow Process. The zeroth-order curve is essentially in agreement with the exact curve. The correction introduced by carrying the
perturbation up to second-order is insignificant, hence for the sake of clarity in Fig. 5 it is not shown.

Figure 5. For the regime I (ϒ < 1) (a) the comparison of the exact (red) and the zeroth-order (dashed-black) values of the temporal attenuation frequency
associated with the slow process, and (b) the per cent deviation of the zeroth-order value from the exact value. For clarity, the upper bound of viscosity (or ϒ)
is taken to be the value by which deviation grows to −1 per cent.
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4.3 Regime II: Υ > 1 (viscosity dominated regime)

4.3.1 The transformation matrix

The appropriate transformation matrix for this regime turns out to be

EII = (1 − ε)


 1

√
ε

1−ε

−
√

ε

1−ε
1


 . (28)

The superscriptII labels the regime and the parameter ε is defined as

ε = W ii

�2
i

. (29)

It contains viscosity as an inverse squared term, since �i is directly proportional to viscosity. Eq. (5) in conjunction with eqs (A1) and (D1)
yields W ii to be � fmfmsω

2
dry. Using eq. (15) �i is expressed in terms of ϒ . Thereafter, employing eq. (A6), the above expression is

ε = 1

4

(mf

S

)3 1

ϒ2
. (30)

At the lower bound of this regime ϒ = 1, for which ε is 1
4 ( mf

S )3 and for a realistic set of geomaterial parameters, turns out to be less than 10−2.
With the increment of viscosity, ϒ also increases, and hence ε dwindles further down ensuring it to be a pertinent perturbative term.

The transformed operator LII for this regime is split into its diagonal L(0,II) and off-diagonal QII pieces as

LII = (EII)−1DEII = L(0,II) + QII, (31)

where

L(0,II) =
[
�i

(
ε 0

0 1 − ε

)

+
(

(1 − ε)νmm − √
ε(1 − ε)νmi − √

ε(1 − ε)ν im + ε(1 − ε)ν ii 0

0 ε(1 − ε)νmm + √
ε(1 − ε)νmi + √

ε(1 − ε)ν im + (1 − ε)ν ii

)]
d
dt

+
(

(1 − ε)W mm − √
ε(1 − ε)W mi − √

ε(1 − ε)W im + ε(1 − ε)W ii 0

0 ε(1 − ε)W mm + √
ε(1 − ε)W mi + √

ε(1 − ε)W im + (1 − ε)W ii

)
,

and

QII =
[
�i

(
0 −√

ε(1 − ε)

−√
ε(1 − ε) 0

)

+

 0

√
ε(1 − ε)νmm + (1 − ε)νmi − ε(1 − ε)ν im − √

ε(1 − ε)ν ii√
ε(1 − ε)νmm − ε(1 − ε)νmi + (1 − ε)ν im − √

ε(1 − ε)ν ii 0





 d

dt

+
(

0
√

ε(1 − ε)W mm + (1 − ε)W mi − ε(1 − ε)W im − √
ε(1 − ε)W ii√

ε(1 − ε)W mm − ε(1 − ε)W mi + (1 − ε)W im − √
ε(1 − ε)W ii 0

)
.

Since in this regime the value of ε is orders of magnitude smaller than unity, the unperturbed (diagonal) operator L(0,II) is approximated by
dropping such terms as

L(0,II) ≈
[
�i

(
ε 0

0 1

)
+

(
νmm 0

0 ν ii

)]
d

dt
+

(
W mm 0

0 W ii

)
, (32)

and(
I

d2

dt2
+ L(0,II)

)
V(0,II) = 0 (33)

yields the eigenvalues that are regarded as zeroth-order. The perturbation (off-diagonal) operator is

QII ≈
(

0 νmi

ν im 0

)
d

dt
+

(
0 W mi

W im 0

)
. (34)

The zeroth-order vector field for this regime is

V(0,II) =
(

V(0,II)
fast

V(0,II)
slow

)
= (

EII
)−1

U =


Um −

√
ε

1−ε
Ui

√
ε

1−ε
Um + Ui


 . (35)
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466 S. Solorza and P. N. Sahay

Figure 6. For the regime II (ϒ > 1) the comparison of the exact and zeroth-order values of the torsional resonance and temporal attenuation frequencies
associated with the fast process. The blue and red curves are the exact resonance and temporal attenuation frequencies, respectively. The superimposed
dashed-black curves on the respective exact curves are the zeroth-order values.

4.3.2 Eigenvalues of the unperturbed operator LII
0

(a) Fast Process. It is obvious from the first row of eq. (35) that in this regime the fast process is basically centre-of-mass motion (Um), and
the difference motion of the solid and fluid constituents (Ui) is inconsequential. The first row of eq. (33) is its governing equation that yields
the eigenvalues for the process as

ω
(0,II)
1 , ω

(0,II)
2 = − i

2
(ε�i + νmm) ±

√
W mm −

[
1

2
(ε�i + νmm)

]2

. (36)

The real and (negative) imaginary parts of ω
(0,II)
1 (or ω

(0,II)
2 ) are read as zeroth-order resonance and temporal attenuation frequencies for the

torsional resonance process. In Fig. 6, superimposed on the respective exact curves, they are plotted as dashed-black lines. The per cent
deviation from their exact values are plotted in Figs 7(a) and (b), which show them to be in good agreement.
Just prior to the crossover viscosity C, for which in Fig. 6 the resonance curve is flat, the inequality W mm � [ 1

2 (ε�i + νmm)]2 holds true. It
suggests that for this region the resonance frequency, i.e. the real part of ω

(0,II)
1 , can be approximated as

�
(
ω

(0,II)
1

)
≈

√
W mm,

and using eq. (5) in conjuction with eqs (A1) and (D1) it is simplified to

= ωdry
√

ms =
√

k2
p + l2

q

√
µ0

ρm
0

. (37)

We find this approximate resonance frequency expression is valid up to the point (prior to the crossover viscosity C) where the flat part of
the resonance curve starts bending downwards. From the first row of eqs (35) and (37) it is apparent that here the wave motion is essentially
unison vibration of solid-frame and pore fluid, such that the fluid imparts its mass completely to the inertia associated with the process. Hence,
it is the total density, ρm

0 , that is associated with this process. As opposed to the regime I, here, the drop factor of the value of (wet) resonance
frequency with respect to ωdry is independent of the tortuosity-factor.

Since ε is W ii

�2
i

, the term ε�i is inversely proportional to viscosity, whereas the term νmm is directly proportional to viscosity. At the

viscosity value for which �i = W ii

νmm holds true, these two terms become equal. This viscosity value precisely corresponds to the crossover
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Standing torsional waves in porous cylinder 467

Figure 7. For the regime II (ϒ > 1) the per cent deviation from the exact values of (a) the zeroth-order resonance frequency, and (b) the zeroth-order temporal
attenuation frequency associated with the fast process.

viscosity B. For lower viscosity values, the temporal attenuation frequency for the fast process, i.e. (negative) imaginary part of ω
(0,II)
1 , is

simply dominated by ε�i. Whereas, for higher viscosity values attenuation is dominated by νmm.
Thus, in the region between A and B, the approximate formula for temporal attenuation of the fast process is

−�
(
ω

(0,II)
1

)
≈ ε�i

2
,

and using eq. (30) together with eqs (15), (A6), (A7) and (D1) it is re-expressed as

= k2
p + l2

q

2

(
ρf

0

ρm
0

)2

µ0 K

µf
. (38)

In contrast to regime I, here, the temporal attenuation frequency is wavenumber dependent and is directly proportional to fluid mobility
where the proportionality constant is a function of constituent masses and frame shear modulus.
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It should be noted that the intersection of eqs (26) and (38) defines the crossover viscosity A. It turns out to be the point where the
viscosity value is such that

√
W mm + W ii = �i holds true.

For the region between B and C the approximate formula for temporal attenuation of the fast process is

−�
(
ω

(0,II)
1

)
≈ νmm

2
,

and employing eq. (6) in conjunction with eq. (A2) it amounts to

= k2
p + l2

q

2

(
1 − µ0

µs

)
1

ρm
0

µf. (39)

The crossover viscosity C marks the transition from an underdamped to an overdamped state of vibration. It is the point where the
viscosity value is such that

√
W mm = 1

2 (ε�i + νmm) ≈ 1
2 νmm (since ε�i � νmm) holds true. Beyond the point C the resonance frequency is

zero and the expression for temporal attenuation frequency can be approximated as

−�
(
ω

(0,II)
1

)
≈ ε�i + νmm

≈ νmm = (
k2

p + l2
q

) (
1 − µ0

µs

)
1

ρm
0
µf.

(40)

It should be noted that for realistic geomaterials, parameters are normally such that regime wherein eq. (40) becomes applicable is never
reached, however, for the sake of completeness of the analysis this was also calculated.

(b) Slow Process. From the second row of eq. (35) we find the slow wave to be basically difference motion of phases (U i) with very insignificant
amount of centre-of-mass motion (Um), therefore, it can be regarded as a fluid flow process. The second row of eq. (33) gives its eigenfrequency
pair, which is

ω
(0,II)
3 , ω

(0,II)
4 = − i

2

(
�i + ν ii

) ±
√

W ii −
[

1

2
(�i + ν ii)

]2

.

Taking into consideration that here
√

W ii � �i+νii

2 , we have

ω
(0,II)
3 , ω

(0,II)
4 ≈ −i

(
�i + ν ii

)
, −i

W ii

�i + ν ii
. (41)

We regard �i + ν ii to be the zeroth-order temporal attenuation frequency associated with the slow-wave. It is almost able to reproduce the
exact temporal attenuation frequency curve for the slow-wave in this regime as shown in Fig. 8(a). The per cent deviation from its exact value
is plotted in Fig. 8(b). The additional diffusive process with temporal attenuation frequency W ii

�i+νii tends to be a non-propagating mode with
increasing viscosity.

4.3.3 The correction due to the perturbation operator QII

For both processes, fast as well as slow, we find that the corrections introduced by carrying the perturbation up to second order are insignificant
and as the zeroth-order curves are essentially in agreement with the exact curves, for the sake of clarity in Figs 6 and 8(a) we have chosen not
to plot them.

5 C O N C L U S I O N S

In the framework of the volume-averaged theory of poroelasticity we have carried out the complete analysis of the standing torsional waves in
a finite fully-saturated, porous, circular cylinder. We have shown that an underdamped harmonic oscillation (i.e. a propagating-wave process
or fast process) and an overdamped harmonic oscillation (i.e. a diffusive process) constitute the eigenprocesses of the governing 2 × 2 matrix
wave equation. It is the former process that is observed in a torsional-resonance experiment.

In order to gain insight into the nature of the eigenvectors and eigenvalues of this problem, we have carried out eigenvalue perturbation
analysis. The set of two similarity transformations that allowed the construction of nearly exact eigenvalues have been vital to this analysis. It
led to expressions of torsional resonance and temporal attenuation frequencies in which links to the constituent properties are transparent. It
showed that entire material-parameters space can be split into two regimes, namely, inertia dominated and viscosity dominated. The domain of
two regimes is found to be defined by the parameter ϒ (eq. 15): the domain ϒ < 1 corresponds to former and the domain ϒ > 1 is associated
with later.

For sandstones or limestones saturated with light fluids, such as air or light hydrocarbon, we found ϒ � 1, therefore, the expressions
for torsional resonance (eq. 25) and temporal attenuation (eq. 26) frequencies pertaining to inertia dominated regime are applicable here. For
heavy hydrocarbons, such as crude oil and tar, ϒ > 1 holds true suggesting the expressions for the torsional resonance (eq. 37) and temporal
attenuation (eqs 38 or 39) frequencies corresponding to the viscosity dominated regime are pertinent here.

Based upon this work we have a firm basis to design a variety of torsional oscillation experiments to determine frame shear modulus,
permeability, and tortuosity-factor.
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Standing torsional waves in porous cylinder 469

Figure 8. For the regime II (ϒ > 1) (a) the comparison of the exact (red) and zeroth-order (dashed-black) values of the temporal attenuation frequency
associated with the slow process, and (b) the per cent deviation of the zeroth-order value from the exact value.
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A P P E N D I X A : C O E F F I C I E N T S

The expressions for the coefficients of the equations of motion eq. (1) are obtained in terms of the constituents material properties in a
straightforward manner from the appendix of Sahay (1996). We have

C =
(

Cmm Cmi

Cim Cii

)

=
(

1 mf

�f mf�f

)
msc2

dry

(A1)

N =
(

Nmm Nmi

Nim Nii

)

=

 1 + φ0

η0
δµ −

(
ms − mf

φ0
η0

δµ
)

−�s

(
1 + φ0

η0
δµ

)
�s

(
ms − mf

φ0
η0

δµ
)

 mfν

f

(A2)

I =
(

1 0

0 1

)

I0 =
(

0 0

0 1

)

where

η0 unperturbed porosity

φ0 = 1 − η0 solid-volume fraction

ρs
0 solid density

ρ
f

0 fluid density

µs solid-grain shear modulus

µ f fluid shear viscosity

δµ shear modulus modifier

µ0 = φ0µ
s(1 − δµ) solid-frame shear modulus

K permeability

S tortuosity-factor (structure factor)

ρ12 = −(S − 1)η0ρ
f

0 induced mass coefficient

c2
dry = µ0

φ0ρs
0

dry-frame wave speed (squared)

νf = µf

ρf
0

kinematic viscosity of the fluid
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ρm
0 = φ0ρ

s
0 + η0ρ

f
0 total density

1
ρr

0
= 1

φ0ρs
0

+ 1
η0ρf

0
reciprocal of the reduced density

ρ i
0 = ρr

0 − ρ12 = ρr
0

(
1 + S−1

ms

)
modified reduced density

ms = φ0ρ
s
0

ρm
0

solid-mass fraction (A3)

mf = η0ρ
f
0

ρm
0

fluid-mass fraction (A4)

�s = φ0ρ
s
0

ρ i
0

= ρm
0

ρ i
0

ms = ms

mf

1

S − mf
(A5)

�f = η0ρ
f
0

ρ i
0

= ρm
0

ρ i
0

mf = 1

S − mf
(A6)

R = �fmf

2
√

ms(1 + �fmf)3/2
= mf

2S

(
1 − mf

S

ms

)1/2

(A7)

�i = η2
0µ

f

ρ i
0 K

Darcian flow relaxation frequency

= η0ρ
f
0

ρ i
0

η0µ
f

ρf
0 K

= �f × Biot critical frequency.

(A8)

The Um and Ui fields in terms of the solid and fluid motions, Us and Uf respectively, are(
Um

Ui

)
=

(
ms mf

1 −1

) (
Us

Uf

)
. (A9)

A P P E N D I X B : S T R E S S E S

σ m
rθ = ρm

0

(
Cmm + Nmm ∂

∂t

)
r

∂

∂r

(
um

r

)
+ ρm

0

(
Cmi + Nmi ∂

∂t

)
r

∂

∂r

(
ui

r

)
(B1)

σ i
rθ = ρ i

0

(
Cim + Nim ∂

∂t

)
r

∂

∂r

(
um

r

)
+ ρ i

0

(
Cii + Nii ∂

∂t

)
r

∂

∂r

(
ui

r

)
(B2)

σ m
θ z = ρm

0

(
Cmm + Nmm ∂

∂t

)
∂um

∂z
+ ρm

0

(
Cmi + Nmi ∂

∂t

)
∂ui

∂z
(B3)

σ i
θ z = ρ i

0

(
Cim + Nim ∂

∂t

)
∂um

∂z
+ ρ i

0

(
Cii + Nii ∂

∂t

)
∂ui

∂z
(B4)

A P P E N D I X C : DATA

The following data are used in the numerical computation:

ρs
0 = 2.65 × 10+03

( kg
m3

)
µs = 2.30 × 10+10 (Pa)

ρf
0 = 1.00 × 10+03

( kg
m3

)
µ0 = 7.17 × 10+09 (Pa)

K = 1.00 × 10−11 (m2)

η0 = 0.25

S = 4/3

a = 2.5 × 10−2 (m) radius of the cylindrical core

H = 40 × 10−2 (m) length of the cylindrical core.
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A P P E N D I X D : T O R S I O N A L R E S O N A N C E F R E Q U E N C Y O F T H E D RY S O L I D F R A M E

Below we present the expression of the torsional resonance frequency for a porous frame devoid of fluid. In this case the equation of motion is

φ0ρ
s
0

∂us

∂t2
= µ0

[
1

r

∂

∂r

(
r

∂

∂r

)
+ ∂2

∂z2
− 1

r 2

]
us.

Its solution, subjected to the stress-free boundary conditions on the radial surface (r = a) as well as on the top (z = H) and bottom (z = 0)
end-caps, is

us =
∞∑

p=1

∞∑
q=1

B(kp, lq )kp J1(kpr ) cos (lq z) cos [ωdry(kp, lq )t],

where the radial, kp, and the axial, lq, wavenumbers are the same as defined in Section 3.1 and B(kp, lq) is a constant to be determined by the
initial conditions. The torsional resonance frequency, ωdry, is dependent only on the frame shear modulus and solid-mass density

ω2
dry = (

k2
p + l2

q

) µ0

φ0ρ
s
0

. (D1)

A P P E N D I X E : E I G E N VA L U E P E RT U R B AT I O N C O M P U TAT I O N S

For the clarity of this computation, the eigenvalue perturbation problem that is casted in Section 4 as a 2 × 2 system of second-order ODEs
is rewritten as a system of first-order ODEs.

The unperturbed and perturbed operators pertaining to the regime I are re-expressed as 3 × 3 matrix operators

L(0,I) =




0 i 0

−i
(
W mm + W ii

) −i mf�f
1+mf�f

�i 0

0 0 −i 1
1+mf�f

�i


 ,

QI =




0 0 0

0 0 −i mf
1+mf�f

�i

0 −i �f
1+mf�f

�i 0


 ,

and for the regime II, they are 4 × 4 matrix operators

L(0,II) =




0 0 i 0

0 0 0 i

−iW mm 0 −i (ε�i + νmm) 0

0 −iW ii 0 −i
(
�i + ν ii

)


 ,

QII =




0 0 0 0

0 0 0 0

0 −iW mi 0 −iνmi

−iW im 0 −iν im 0


 .

The unperturbed problem, with eigenvalues ω(0)
n and eigenvectors V(0)

n , is given by

L(0)V(0)
n = ω(0)

n V(0)
n .

The second superindex labelling the regime is suppressed for clarity of the notation. The subindex n (n = 1, N) labels the modes. N assumes
the value 3 and 4, respectively, for the regimes I and II.

ω(0)
n and V(0)

n are regarded as the zeroth-order eigenvalues and eigenvectors, respectively, of the operator L(0) + Q.
The perturbative correction to the zeroth-order eigenvalues and eigenvectors due to the operator Q is developed following Morse &

Feshbach (1953, section 9.1, p. 1018). The iterative expressions of kth-order eigenvalues and eigenvectors are

ω(k)
n = ω(0)

n + (
V̄(0)

n · QV(k−1)
n

)
(E1)

V(k)
n = V(0)

n −
N∑

m1 �=n

Pm1n

ω
(0)
m1 − ω

(k)
n

V(0)
m1

+
N∑

m1 �=n

N∑
m2 �=n

Pm1m2 Pm2n[
ω

(0)
m1 − ω

(k)
n

] [
ω

(0)
m2 − ω

(k)
n

]V(0)
m1

+ . . . + (−1)k
N∑

m1 �=n

· · ·
N∑

mk �=n

Pm1m2 Pm2m3 · · · Pmkn[
ω

(0)
m1 − ω

(k)
n

] [
ω

(0)
m2 − ω

(k)
n

]
· · ·

[
ω

(0)
mk − ω

(k)
n

]V(0)
m1

(E2)
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V̄(0)
n are worked out as the solution of the adjoint of the operator L(0)

L(0)†V̄(0)
n = ω(0)

n V̄(0)
n .

The operator L(0), cast as system of first-order ODEs, is not symmetric. V(0)
n and V̄(0)

n form its bi-orthogonal basis vectors, i.e.

V̄(0)
m · V(0)

n = δmn .

Pmn is the projection of the perturbation operator Q on the basis space, i.e.

Pmn = V̄(0)
m · QV(0)

n .
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